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Tools for Computing Amplitudes

* New tools for computing in gauge theories — the core of
the Standard Model

* Motivations and connections
— Particle physics: SU(3) x SU(2) x U(1)
— N=4 supersymmetric gauge theories and AdS/CFT
— Witten’s twistor string
— Grassmanians

— N'=8 supergravity



The particle content of the Standard Model is now
complete, with the announcement in 2012 a Higgs-like
boson by the ATLAS and CMS collaborations, looking more
and more SM-like

Every discovery opens new doors, and raises new questions

How Standard-Model-like is the new boson?

— We'll need precision calculations to see

Is there anything else hiding in the LHC data?

— We'll need background calculations to know
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Jets are Ubiquitous



An Eight-Jet Event

Run Number: 166198, Event Number: 100726931
Date: 2010-10-05 03:27:52 CEST




Events

Jets are Ubiquitous
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Complexity is due to QCD

Perturbative QCD:
Gluons & quarks — gluons & quarks

Real world:
Hadrons — hadrons with hard physics described by

pQCD

Hadrons — jets narrow nearly collimated streams of hadrons



Jets

* Defined by an experimental resolution parameter

— originally by invariant mass in e*e” (JADE), later by relative
transverse momentum (Durham, Cambridge, ...)

— cone algorithm in hadron colliders: cone size R = /(An)2? + (A¢)?
and minimum E;: modern version is seedless (SISCone, Salam &
Soyez)

— (anti-)kpalgorithm: essentially by a relative transverse
momentum

Atlas eight-jet event







In theory, theory and practice are the same.

In practice, they are different
— Yogi Berra



QCD-Improved Parton Model

X

Z / dxqdxy, dPhase f, fp 0.50(v — Observable)
a,b



The Challenge

Everything at a hadron collider (signals, backgrounds,

luminosity mea:
Strong coupling
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Approaches

* General parton-level fixed-order calculations
— Numerical jet programs: general observables
— Systematic to higher order/high multiplicity in perturbation theory

— Parton-level, approximate jet algorithm; match detector events only
statistically

e Parton showers
— General observables

— Leading- or next-to-leading logs only, approximate for higher
order/high multiplicity

— Can hadronize & look at detector response event-by-event

— Understood how to match to matrix elements at leading order
* Semi-analytic calculations/resummations

— Specific observable, for high-value targets

— Checks on general fixed-order calculations



Renormalization Scale

Needed to define the coupling

Physical quantities should be independent of it
Truncated perturbation theory isn’t
Dependence is ~ the first missing order * logs

Similarly for factorization scale — define parton distributions



Every sensible observable has an expansion in o
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Leading-Order, Next-to-Leading Order

* QCD at LO is not quantitative

* LO: Basic shapes of distributions
but: no quantitative prediction — large dependence on unphysical
renormalization and factorization scales
missing sensitivity to jet structure & energy flow

* NLO: First quantitative prediction, expect it to be reliable to 10-15%
improved scale dependence — inclusion of virtual corrections
basic approximation to jet structure — jet =2 partons
importance grows with increasing number of jets

* NNLO: Precision predictions
small scale dependence
better correspondence to experimental jet algorithms
understanding of theoretical uncertainties
will be required for <56% predictions for future precision
measurements
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What Contributions Do We Need?

« Short-distance matrix elements to 2-jet production at
leading order: tree level amplitudes

B S




« Short-distance matrix elements to 2-jet production at next-
to-leading order: tree level + one-loop amplitudes +
real emission
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