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« Applications of SAR
- estimating number of species in areas of different sizes
- estimating extinction debt
- understanding how communities are structured

« Applications of neutral theory

- predicting how populations and communities will be affected by
area and connectivity

« Applications of phyologenetic approaches

» Detecting changes before they happen
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* Every decade 10 million species are led to
extinction due to habitat loss, degradation
and fragmentation

 Species-area relationship
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Species-area curve and Island Biogeography
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Figure 2. Exponential loss of species from fragmented
Jorest. The number of species irn an area of ornce-corn-
tinuous forest (S, 4ma ) declines through the number
€S0 @t the titne (U when a survey was conducted to
the number that will eventually survive (Sp,pen?- We
Carn estinnale S, ipa USIRE S = CAY with 7z = 0.15 and
Spagnent USINZ S = CA* with z = 0.25. Because the de-
cay Is exponerntial, we can characterize it by a balf-
life, the time takern to lose 50% of the species.

Brooks et al. 1999
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Species richness

Observed richness in recently
fragmented patches

I

Predicted richness according
to species-area relationship
In equilibrium patches
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LETTER

Species-area relationships always overestimate
extinction rates from habitat loss

Fangliang He"” & Stephen P. Hubbell™*

doi:10.1038/nature 09985
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Species-area relationships always overestimate
extinction rates from habitat loss

Fangliang He'” & Stephen P. Hubbell**

doi:10.1038/nature 09985

SAR entire area  SAR portion of area

Araa of last S, = CA? S, =ca?
ancounter
Area of first SAR species loss in A-a
ancountar
Sp,=C(A-a)?

Number of species endemic to a
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Table 1 | Eight stem-mapped forest plots across the world and distributions of passerine birds in the continental USA

Plot Forest type Size (ha) Number Number ZeaR ZEAR Biaspso (%)  Biasas (9R)
of trees of species
Barro Coloradolsland, Panama Lowland tropical forest 50 325,549 316 0.133 (0.00202) 0.0803 (0.000611) 6561 64.38
Yasuni, Ecuador Lowland tropical forest 50 307,279 1,128 0.126 (0.00473) 0.0623 (0.00189) 102.21 10041
Pasoh, Malaysia Lowland tropical forest 50 323,262 814 0.124(0.00374) 0.0536(0.00158) 131.30 129.02
Korup, Cameroon Lowlpnd tropical forest 50 328973 496 0.179(0.00369) 0.113(0.00116) 5838 5692
Dinghu, China Subtropical evergreen 20 71,617 210 0274 (0.00180) 0.193 (0.000880) 4194 40.34
broad-leaved forest
Fushan, Taiwan Subtropical evergreen 25 114,508 110 0.142(0.00199) 0.0922 (0.000838)] 5399 5292
broad-leaved forest
Tiantong, China Subtropical evergreen 20 94,603 152 0.200(0.00214) 0.0994 (0.00175) 101.15 98.34
broad-leaved forest
Changbai, China Temperate forest 25 38902 52 0.184 (0.00296) 0.0905 (0.00233) 103.27 10062
USA Passerine birds 14,904 - 279 0.187 (0.00101) 00766 (0.000516)] 144.06 14031
(0.24° % 0.24%)
USA Passerine birds 3,830 - 279 0.195(0.00106) 0.0791 (0.000421)| 147.39 14339
(0.48° x 0.48")

The *bias’ is the overestimation calculated by comparingthe extinction rates estimated from the 25, values with those from the endemic zgag values: (Asar — Aear) 2ear. We calculated percentage bias by assuming

0.52% and 25% habitat loss™, respectively. Equation (3) gives 4. To analyse passerine distributions, we divided the lower 48 states of the USA into a grid of 14,904 cells with cell size of
0.24° |atitude = 0.24° longitude and into 3,830 cells with cell size of 0.48° latitude = 0.48° longitude.

He and Hubbell 2011 Nature
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Eralogy, 93(12), 2012, pp. 2560-2569
@ 2012 by the Ecologcal Sodety of America

Unraveling the drivers of community djssimilarit}-' and species
extinction in fragmented landscapes

= 5
Cristina Banks-Leme, "> RoserT M. Ewers,” AnD Jean Paur Merzcer!

' Deparemento de Ecologia, Instituto de Biociéncias, Universidade de Sdo Paulo, Rua do Mardo, 321, travessa 14, 05508 9N,
) Sdo Paulo, SP, Brazil
“Division of Ecelogy and Evelution, Imperial College London, Silweod Park Campus, Ascot SLS 7PY United Kingdom

Abstract. Communities in fragmented landscapes are often assumed to be structured by
species extinction due to habitat loss, which has led to extensive use of the species—area
relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that
habitat loss leads species to extinction but does not allow for extinction to be offset by
colonization of disturbed-habitat specialisis. Moreover, the use of SAR assumes that species
richness is a good proxy of community changes in fragmented landscapes. Here, we assessed
how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple
scales; then we estimated the ability of models ruled by SAR and by species turnover in
successfully predicting changes in community composition, and asked whether species richness
is indeed an informative community metric. To address these issues, we used a data set
consisting of 140 bird species sampled in 65 patches, from six landscapes with different
proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns
against simulations of over 8 million communities structured by different magnitudes of the
power-law SAR and with species-specific rules to assign species to sites. Empirical results
showed that, while bird community composition was strongly influenced by habitat loss at the
patch and landscape scale, species richness remained largely unaffected. Modeling results
revealed that the compositional changes observed in the Atlantic Forest bird metacommunity
were only matched by models with either unrealistic magnitudes of the SAR or by models
ruled by species turnover, akin to what would be observed along natural gradients. We show
that, in the presence of such compositional turnover, species richness is poorly correlated with
species extinction, and = values of the SAR strongly underestimate the effects of habitat loss.
We suggest that the observed compositional changes are driven by each species reaching its
individual extinction threshold: either a threshold of forest cover for species that disappear
with habitat loss, or of matrix cover for species that benefit from habitat loss.

Key words:  Atlantic Forest, community; fragmentation threshold; habirar fragmenration; habirar foss;
species—area relationship; species tumaover.
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Island biogeography

Species

Terrestrial systems:
nestedness

Species
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Species-area relationship: assumptions

Species richness is not an informative community metric

Species richness =

Species indentity #
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« Community composition
» Species richness
» Species abundance
= Species identity

1. Build a similarity matrix (e.g. Euclidean Distance,
Bray-Curtis)

2. Build an ordination
3. Obtain the main ordination axes
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1- Is which species richness an appropriate proxy for species loss?

2- Is the species-area relationship structuring communities in
fragmented landscapes?
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Study areas
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10 mist nets (12 m length, 31 mm mesh) at each sampling point

540 to 720 net-hours at each sampling point (summer/winter)

Sunrise to sunset
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2001 - 2007: 140 species captured from 65 sites (2 to
10,000 ha)
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Biodiversity responses to habitat loss at several spatial scales
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Simulated dataset: matrices of species hy sites

Maximum patch size: 10,000 ha
Maximum observed species richness: 31 species/site

S = c*A?

Species

65 sites

Z-values: varied from 0 to 1 (increments every 0.025)
> 8 million simulated matrices
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Random community (RAND): species loss is -%

independent of species indentity 2
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IS species richness an appropriate proxy for species loss?

» Species richness and number of forest species

RAND NEST SPEC Bird

model model model community
Correlation 1.0 (0.00) | 0.99(0.02) | 0.72 (0.2) 0.73
Underestimation 0 0 9.5 (0.5) 9.3
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Is the SAR responsibie for ohserved changes in community
composition ohserved in fragmented landscapes?

Correlation of ordination scores obtained from simulated matrices and bird
community (PCoA — Sgrensen Index)

' |RAND model | NEST models SPEC model

Total 0.59 (0.21) 0.63 (0.17) 0.81 (0.05)
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Is the SAR responsibie for ohserved changes in community
composition ohserved in fragmented landscapes?

Pearsonr
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Take home messages

1- Is species richness an appropriate proxy for species loss?
- Depends on the community structure

- It can be weakly correlated to species loss and strongly underestimate
specie loss

2- Is the SAR responsible for observed changes in community
composition and for structuring communities in fragmented
landscapes?

- Strong species turnover across the gradient of habitat loss
- No strong evidence of species-area relationship

- Species reach their individual extinction threshold rather than global
effect of habitat area determining the maximum number of species
coexisting in a community
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Lessons from neutral theory to landscape ecology and
biodiversity conservation

Neutral theory uses just three parameters:

« Fundamental biodiversity number (0)

 Immigration rate (m)

 Local community size (J)
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The role of patch size at the population level

1.00

Small patches/islands

or communities: more
likely that species | will be
absent and more variable
the species composition of
the community.

100,000
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0.407

P =001
1

Incidence of ith Species in Local Community

0.00 ' 1 ' 1 - 1 .
-4 -3 -2 -1 0

Log (10) Probability of Immigration, m

Fic. 7.2. Equilibrium incidence functions for the ith species in an
ergodic community undergoing zero-sum drift, as a function of prob-
ability of immigration m, and a metacommunity relative abundance
P. = 0.01, for four orders of magnitude variation in local community
of size.
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The role of immigration at the popuiation level

Fraction of Time Species Present

J=64

0.0 - - - -
0.0 0.2 0.4 0.6 0.8 1.0

Metacommunity Relative Abundance, P

Fic. 7.1. Equilibrium incidence functions for the ith species in an
ergodic community undergoing zero-sum drift, as a function of proba-
bility of immigration m, and metacommunity relative abundance P, for
a local community of size | = 64.
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The role of immigration on relative species ahundance
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Implications of neutral theory to biodiversity conservation in
fragmented landscapes

« By lowering immigration rates, fragmentation can
promote persistence of rare local endemics.

« Common and widespread species prior to
fragmentation are more likely to persist in habitat
fragments.

 Fragmented landscapes should present higher beta-
diversity among patches than continuous
landscapes, where m is high.
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_patches than continuous landscapes, where Ill IS high.
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Fragmented landscapes should present higher heta-diversity among
patches than continuous landscapes, where /7 IS high.
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Common and widespread species prior to fragmentation are more
likely to persist in hahitat fragments

Species
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Phylogenies as tools to understanding species sensitivity to
environmental change

Morphological and ecological traits as predictors of
species sensitivity to change

Newbold et al. 2012 ProcB:

mﬁhn

Birds:

- Life span

- Body size

- Migratory behaviour

- Feeding guild specialisation
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« Gradual change leads the system to a bifurcation

point, a tipping point, causing loss in resilience and
promoting a shift to alternative state

resource biomass
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Dakos et al. 2012 Plos One
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« Gradual change leads the system to a bifurcation
point, a tipping point, causing loss in resilience and
promoting a shift to alternative state

 Critical thresholds are difficult to detect and acquire

« Early warning signals, mathematical indicators, can
help detect the proximity of a system to a tipping
point
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Table 1. Early warning signals for critical transitions.

Method/Indicator

Phenomenon

Rising memory

Rising variability Flickering

metrics

models

Autocorrelation at-lag-1

Autoregressive coefficient of AR(1) model
Return rate (inverse of AR(1) coefficient)
Detrended fluctuation analysis indicator
Spectral density

Spectral ratio (of low to high frequencies)
Spectral exponent

Standard deviation

Coefficient of variation

Skewness

Kurtosis

Conditional heteroskedasticity

BDS test

Time-varying AR(p) models

MNonparametric drift-diffusion-jump models

Threshold AR(p) models

Potential analysis (potential wells estimator)

X

Dakos et al. 2012 Plos One
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Rising memory

Critical slowing down: rate of return to equilibrium
following a perturbation slows down as the systems
approach a tipping point, detected by changes in the
correlation structure of the time series.

Critical slowing down causes an increase in short-term
memory (correlation at low lags) of a system prior to
transition.

Method/Indicator Rising memory Rising variability Flickering

metrics

Autocorrelation at-lag-1

Autoregressive coefficient of AR(1) model
Return rate (inverse of AR(1) coefficient)
Detrended fluctuation analysis indicator
Spectral density

Spectral ratio (of low to high frequencies)

= = o= = = ®x =

Spectral exponent
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Drift: slow return rates back to a stable state close to a
transition can make the system drift widely around a
stable state

Flickering: strong disturbances can push the system
across boundaries of alternative states

Skewness: slow dynamics near the boundary of either
stable state lead to rise in the skewness of a time-series,
the distribution of values series will be asymmetric.

Phenomenon

Method/Indicator Rising memory Rising variability Flickering

Standard deviation
Coefficient of variation
Skewness

Kurtosis

Conditional heteroskedasticity
BDS test

> > > > > E
> * * * * *
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Early warning signals

critical slowing down dataset
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Dakos et al. 2012 Plos One

* No single best approach to identifying early warning
signals

* Al methods required specific data-treatment to yield
sensible results

« Combination of methods is the best way
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Early Warnings of Regime Shifts: A Whole-Ecosystem Experiment
S. R. Carpenter et al.
Science 332, 1079 (2011);
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Garpenter e7a/ 2011 Science
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Garpenter e7a/ 2011 Science
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summary

« Current theory can give us guidelines but none allow us to predict how
communities will change, or which species are most sensitive to
environmental change.

» Species-area relationship is a well-established pattern in unmodified
habitats but does not have high predictive power under habitat loss.

» Neutral theory generates several predictions, many of which are still to
be tested.

« Evolutionary approach can help us upscale predictions.

« Early warning signals is data hungry but should be the focus of future
research.



