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Overview



 

Lecture 1: Metapopulations


 

Lecture 2: Reaction-diffusion models: 
invasion and persistence



 

Lecture 3: Reaction-diffusion models: spatial 
patterns



 

Lecture 4: Integrodifference equations



Why include space?


 

Both the theory and experiments can be difficult, 
but…….



 

Huffaker (1958) spatial heterogeneity allowed 
persistence



Why include space?



 

Mac Arthur- Wilson (1967) Theory of island 
biogeography



 

Human expansion was
leading to fragmentation, 
resulting in species extinction.



 

The spatial patterning of 
fragments is important for 
patterns of diversity



Why include space?



 

Skellam (1951) Spread of novel organisms and 
genotypes into an environment

• Dispersal dynamics
• Effective population sizes
• Rate and spatial patterning 
of invasions



Why include space?



 

Hutchinson (1961) Paradox of the 
plankton



 

“Many more plankton species 
coexist in a supposedly
homogeneous habitat than
permitted under the competitive
exclusion principal of Gause”

One explanation: Spatial refuges



Why include space?



 

Turing (1952) Pattern formation Random 
movement and population dynamics can give spatial 
variation in density in the absence of environmental 
heterogeneity (Segal & Jackson 1972)



Approaches to large-scale 
spatial ecology



 

Landscape ecologists: Describing complex structures of real 
landscapes. Study the movement of individuals and resources in them



 

Theoretical ecologists: Generally assume homogeneous or 
discrete space. Focus, how population dynamic processes can generate 
complex dynamics and spatial patterns without landscape heterogeniety



 

Metapopulation ecology: Idealised habitat patches. Species 
occur in local populations connected by migration. Focus, persistence



Metapopulation modelling


 

Metapopulation is a population of unstable local 
populations, which can persists in a balance of local 
extinctions and colonisations.



 

Basic assumptions:


 

Habitat occurs in discrete patches (local populations)


 

Local population extinction is a recurrent event (not 
rare)



 

Patch dynamics are asynchronous



Types of metapopulation 
models



Types of metapopulation 
models



Levins’ metapopulation model


 

p=fraction of occupied patches



 

c is large if patches are close


 

e is small if habitat patches are large


 

Assumptions:


 

Infinite number of patches (>100 is fine)


 

Patches are the same size, and equally accessible


 

Timescale is on the scale of the colonisation and extinction, 
local dynamics are ignored.

 

popualtion local
a of Extinction

patchempty 
ofon Colonisati

patch occupied of
#on  depends

emigration
of Rate

)1( eppcp
dt
dp




Presenter
Presentation Notes
P=



Levins’ metapopulation model


 

p=fraction of occupied patches



 

Steady state:  p*=1-e/c


 

Never get 100% occupation.


 

If e/c >=1 there is extinction, extinction can happen 
before all the habitat has gone.
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Patch destruction and 
shrinkage

1.  Removing patches
reduces c.

Result, P* decreases

2. Reducing patch area
reduces c and increases e

Result, P* decreases

Extinction 
rate, eP

Colonisation rate
C(1-P)P

P* (old)P* (new)
P

Extinction,
rate, eP

Colonisation rate
C(1-P)P

P* (old)P* (new)
P



Types of metapopulation models: 
What about patch distance?



Cellular automata / individual 
based models: 



 

c dt = prob an occupied site colonises 
and sends out a propagule



 

e dt = prob a site goes extinct


 

New propagules are sent to a 
neighbourhood of the parent cell (with 
1-cell , 2-cells etc)



 

Algorithm:
1. Randomly pick a site. Generate a 

uniform random number x
2. Occupied -> colonises

3. Occupied -> empty if
mc

cx


0

1


x
mc

c



Cellular automata: dispersal 
range



 

Clumping in nature is not 
necessarily due to the 
environment



 

Size of the neighbourhood 
effects equilibrium number 
of occupied sites 


 

more likely to land on a 
neighbour is dispersal is 
local



 

Local dispersal -> Lower 
equilibrium density



 

Large dispersal -> Higher 
equilibrium density

Random         Nearest neighbour



A digression: Percolation


 

Percolation: How flow responds to “clogs” (barriers) in 
the substrate.

# of clogs

Prob. the
water flows

Percolation threshold



Effect of habitat destruction 
and restoration



 

“flow” – dispersal and reproduction of the 
population



 

“clogs” – destroyed habitat


 

Model: Random destruction of habitat 


 

Compare cellular automata model to levins’



Effects of habitat distruction 
and restoration: Hysteresis!

Levins

Cellular automata

Proportion of habitat removed



Types of metapopulation models: 
What about patch size and location?



Incidence Functions and data


 

Objective: Understand patterns 
in patch occupancy data



 

The following example focuses 
on: Patch area and patch 
isolation effects



 

Question: How do changes in 
the network (e.g. remove 3 
largest patches) effect 
occupancy patterns and 
metapopulation persistence?



Incidence function model (IFM)


 

Ilkka Hanski, leading expert 
on metapopulations, works at
the interface between theory 
and data



 

Model assumptions:


 

Finite number of patches


 

Patches can be of different sizes with unique spatial coordinates


 

Localised spatial interaction


 

Patches need to be large enough to support local breeding 
populations, BUT not too large that local extinction is rare



Incidence Function Models: 
Data
1. Experimentally determine habitat and non-habitat.  

Caution: Not finding a species in a location does not 
mean is in non-habitat

2. Locate patches on a spatial grid and obtain a snap 
shot of the occupancy data

3. Measure patch area and patch isolation to check if 
there is an effect on occupancy
Caution: Choose  isolation measure carefully, shortest 
distance to another patch ignores viscosity of the 
matrix





Incidence function model: The 
Model!


 

Markov chain model: Two states, Occupied and Empty is 
extended to a metapopulation of connect patches



 

Incidence function (key to linking model to the data):
Long term probability patch i is occupied

Ci probability of colonisation       Ei is probability of extinction

Occ Occ Ext
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Relating Ei and Ci to the 
landscape


 

Ai =area of patch i



 

Mi =expected number of migrants arriving patch i



 

pj =0 if patch empty, 1 if patch occupied


 

dij = distance from patch i to patch j
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Incidence function and data


 

Substitute all the expressions into Ji



 

Link from to model to field data: Using logistic regression 
or nonlinear least squares



 

Ai , Si  and Ji are from the data for each patch. We estimate 
the constants e, y’ and  x (common parameters for all the 
patches)
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Assumptions and difficulties


 

Assumes Mi (Migrant to patch i) is constant, at 
steady state


 

Numerics say this assumption is fine and generally holds


 

Assumes the data is at a stochastic steady state, so 
if the size of the metapopulation (number of local 
populations) shows a long term increasing or decreasing 
trend, this approach will not work.


 

Stochastic steady state is difficult to test for.


 

e and y’ cannot be estimated independently.


 

So we need to find e independently, we can estimate the patch 
area A0 such that 
E=e (A0 )-x =1    (Critical patch size)  



Iterate the model


 

We now know all the parameters, so we know the 
colonisation and extinction probability for each patch.



 

Randomly choose a patch i, let X be a random variable 
then,



 

Now update pi = indicator of if patch i is occupied…. 
Repeat

Occ Ext

t+1t

If X<Ci

Ext Occ

t+1t

If X<Ei (1-Ci )
(includes rescue effect)



Model predictions for real 
metapopulations

Hesperia comma
Rapidly extinct

Melitea diamina
fluctuates
around observed
fraction of
occupied patches



Ranking patches in order of 
importance


 

Taking each patch in term introduce an occupied patch 
and see if the population can reinvade the network

Glanville fratillary butterfully



Extensions


 

IFM can be easily extended to include the effects of 
other environmental factors, apart from patch area and 
isolation, on the  extinction and colonisation probabilities, 
e.g.


 

Patch quality could effect extinction rate


 

Habitat type may effect emigration and immigration rates (e.g. 
abundance of nectar flowers reduces emigration from, increase 
immigration to a habitat for Glanville fratillary)



Summary


 

Metapopulations can answer 
questions about persistence  - 
important for conservation.



 

Good connection to data



 

Patch isolation questions:


 

When can populations pass 
through corridors?



 

How do populations  move 
through matrix?



 

Patch area questions:


 

What is the critical patch size for 
a viable population?



 

How does patch are relate to 
extinction probability? Local 
population dynamics?
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