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Reaction-diffusion models

e Partial differential equation models combine
organism movement with population processes

e Answer questions about:
Dispersal
Ecological invasion
Effect of habitat geometry and size
Dispersal mediated coexistence
Emergence of spatial-temporal patterns

e Derivation of the model

Lagrangian approach: Movement of individuals over time

Eularian approach: Fix a point in space and consider flow or
flux past the point over time



Fokker-Plank Equation and
random walks

e Given information about how an organism moves over
short time scales can we determine how it moves over

long time scales?

e Random walk in 1-D:
Each time step t jump left 1/2 1/2

or right a distance &
One step markov process, m m

the precise path taken to get |

to the current location plays I |
no role in determining the T —10 T
future position



Master equation

e X(t) = stochastic process describing the location of an
Individual at time t, released at location x=0 at time O

e p(x,tH)d=probability an individual is between x and x+5 at
time t. (So p(x.t) is a probability density function )

e Unbiased random walk: probability jump right R=1/2
and probability jump left L=1/2
1/2 1/2

/\Iﬂ

z—0 T r+94

o(X.t +7) =%p(x—5,t)+% O(X +5.1)



Obtaining the PDE

e Expand the RHS of the master equation using Taylor Series:
82p

S () +hot=
1{p(xt) 58p(xt)+52 2p(xt)+p(xt)+5 'O(xt)+52 2p(xt)+hot}
e Simplifying
%(x,t)%itf(x,t) (;5 P (x,t)+hot

e Ignoring the higher order terms (h.o.t) taking the limit as o, t
—>0, so that 8%/(2t) —> D yields the diffusion equation
op 0°p
—= D
ot OX’

Random movement




Obtaining the PDE: ICs & BCs

Initial conditions: - 1/6

p(x,0) = Dirac Delta Fucntion

—0/2  0/2



Obtaining the PDE: ICs & BCs

e Initial conditions: - 1/6

p(x,0) = Dirac Delta Fucntion

—0/2  0/2

e Boundaries: Suppose that
Inside region {x>0} individuals move left and right with prob. 1/2

At x=0 (the boundary) individuals move right with prob. 1/2, leave
with prob. ad/2 and stay at the boundary with prob. (1-a0)/2.

a Is the rate per unit space of leaving the region

p(0,t+7) = % p(J,t) +%(1— as)p(0,t)
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e Initial conditions: - 1/6

p(x,0) = Dirac Delta Fucntion
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e Boundaries: Suppose that
Inside region {x>0} individuals move left and right with prob. 1/2

At x=0 (the boundary) individuals move right with prob. 1/2, leave
with prob. ad/2 and stay at the boundary with prob. (1-a0)/2.

a Is the rate per unit space of leaving the region

p(0,t+7) = % p(J,t) +%(1— as)p(0,t)

2 A2 /

op o (0op o o0°p op
—(0,t) =—| —(0,t) —ap(0,t) |+ — 0,t)+h.ot = —(0,t)—ap(0,t) =0
at( ) ZT(GX( ) —ap( )j ZTGXZ( ) 6)(( )—ap(0,t)




Some slight variations
e Bias movement: R=1/2 +yd, L=1/2 —y5 yields:

2
Advection-diffusion @: Da Zp — Va_p 752
equation ot _ X 2 where, —— —v,

Random movement  Advection

2T




Some slight variations
e Bias movement: R=1/2 +yd, L=1/2 —y5 yields:

2
Advection-diffusion @: Da E — Va_p /5
equation at _ox7 - 5t>_<, where, or —>V,
Random movement vection

e Movement probabilities depend on space (current
locatoion): R(x), L(x), N(x) (prob not moving)

2
Fokker-Planck 2P = sz [ﬁi(ﬁ p]—(jx[é(ﬁ p) Where, u(x) = DILLx)+R(x)),

equation ot Motility B(X) = D(L(X)é— R(x)) |

Bias




Some slight variations
e Bias movement: R=1/2 +yd, L=1/2 —y5 yields:

2
Advection-diffusion @: Da E — Va_p 752
equation ot X _OX where, — —> v,

Random movement Advection T

e Movement probabilities depend on space (current
locatoion): R(x), L(x), N(x) (prob not moving)

Bias

2
Fokker-Planck ?t) =§X [ﬂ( )p]—Eﬂ(X) p) where, () = BILE)+RO)),

equation Motility B(X) = D(L(X)é_ R(x)) |

e Movement probabilities depend on half way point from
current location to next location

ckiandifusion P _ [ o _9
Fickian-diffusion - 6)([ ()@J ax(ﬂ(x)p)

Diffusivity



2-D space: Patlak model i
=2 1*";(2;12) {7 peco) - me(Ti )V[?ﬁ]p(x’t)
= (0/0x,8106y) _ —

m, Average move length

m, Averagesquared move length

T Average move duration

w Mean cosine of the turning angle

10 20 30 40 5 -150 -100 -50 © 50 100 150
Move length m Turning angle o




Probability to density

e p(x,t) ~ probability of finding an indivdual location x at
time t

e N=total number of moving organisms
e Nn(X,t)=Np(x,t)=density of organisms at location x at time t



Equilibrium distributions

Fokker-Planck on  0° Equilibri o
x)n quilibrium distribution

Equation (no bias T A2
q ( ) ot  ox VR 7" (x) = constant
#(X)
Fickian diffusion on & an Equilibrium distribution
Equation (no bias) 5 ~ 5 ,D(X), P n*(x) = constant
Diffusivity

e Fokker-Plank predicts organisms will eventually
accumulate in locations where movement rate is low.

e Fickian Diffusion predicts a uniform distribution of
Individuals even if D varies in space!



Residence Index

e Residence index connects individual movement to
population level redistribution patterns

1
p(X) = m

e Residence index is proportional to density and is for

comparative purposes, e.g. “the density of
organisms in patch i is three times that in patch |”)

e E.g. Random walk, fixed move length

27
R(x) + L(x))

/O(X) - 52(



Example: Flea beetles Iin
collard patches

*Patch distance 2 metres=90
*Movement of beetles recorded
1 hour (=1) after release '

eData:
sproportion moved Pm
sproportion stayed Ps
*1-(Ps+Pm) not captured

e (R+L)=Pm/(Pm+Ps)

/uLush — 061m2/h /uStunted =163m2/h

pLush — :uStunted — 267

Pstunted K\ ush



Population spread

Invasion

e Linear expansion
with time

Range Distance

e Slow initial spread
followed be linear

expansion (e.g.Allee
effects)

Range Distance

e Spread rate
continually increases .
with time (e.g long
distance dispersal)

Range Distance
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Population spread: model

e Nn(x,t)=density of individuals

on o°n
—=D——+ f(n)
ot oX* ‘——
—~—  Growth
Random
movement

e f(n)=rn(1-n/K)  Logistic growth

f(n) 1

e f(n)=rn(1-n/k)(n-a) Bistable (Allee effect)

e

Difficulty reproducing at low density due to

e.g. mate finding, low genetic diversity

f(n) 1

K\ N



Scale (hon-dimensionalise) the
model

u=n/K, t" =rt, x*:\/%x
/ ! ~

Scale density by ~Scale time by Scale space by
carry capacity Growth rate ~ average dispersal distance

e Scaled modelis

ou  o°u
e 8_ +9(U)
X Growth

Random
movement

e g(u)=u(1-u) logistic
e g(u)=u(1-u)(u-a)



Travelling wave solutions

e Look for travelling wave solutions
Constant speed, c
Constant shape ——p U(X, 1) =U(X—-ct) =U(2)

Zz=X-ct Is the wave variable
(moving coordinate)

o6} | Analogy: Watching a metro train

g; go by you see the people on the
=5 | train move.

0.2 1 If you are on the train then the

b . people on the train are not moving

° *0 15E %0 this is the moving frame of reference




PDE to ODESs

e Travelling wave profile

] <
fOI‘Z—‘»—oo

>0

for z—» oo

e Behind the wave the population is at carry carrying capacity, in front of

the wave there is no population
ou du o°u dU

e Sointhe new variables: —=-¢" o A
e The PDE becomes U"=-cU’'-g(U)
e Introduce the new variable V=U’'=dU/dz:
U'=V Phew!!! A system of
Vi=-CtV -9(U) ¢ ODEs we know how to
work with these.




Case 1: logistic growth

g(u)=u(l-u)

e The steady states are
(U,V)=(0,0) or (1,0)

.. (0,0) stable spiral for c<2

[ NS

i-/\ Y

\U(z)
N A~

V=l

U(z) < 0: not biologically relevant

Sh 4

U'=V
V'=-cV -gU)

(0,0) stable node for c>=2

V=dU/dz<0

for ; -’:X
—0

forz—» oo




Spread rate for logistic growth

e C>=2is a necessary condition for a travelling wave solution

%

Travelling wave solution in our
ODE phase plane.

V=dU/dz=0 ‘¥‘ /Vsz/dz<O

forz »-co

V=dU/dz=0

U=1 (scaled carry capacity) / U=0
—0




Spread rate for logistic growth

e C>=2is a necessary condition for a travelling wave solution

V

Travelling wave solution in our
ODE phase plane.

~
™= U
—_ B
V=dU/dz=0 for:-"= /V_dU/dZ<O V=dU/dz=0
U=1 (scaled carry capacity) / U=0

f01 z-> 00

e Aronson & Weinberger(1975) show the spread rate for the logistic
case Is exactly the minimum speed

*=2rD (dimensional value)



Spread rate in a
heterogeneous environment

L, L
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Spread rate In a
heterogeneous environment

L, L,

alx. £} (o
Iy Iy Iy
D, D,

I, D, r\ ﬂ W\NV\W
D, D, U f”f* ;

A

c*=2./rD r_r1L1+r2L2 o - L+l
a=h T L AL " L/D,+L,/D,

e Invasion is determined by growth and diffusion

e Spatial variation in dispersal can deter spread because
harmonic means are much lower than arithmetic means
when there Is lots of variation.



River problem: Drift paradox

e Drift paradox: Why can population persist in streams
when they are being constantly washed down stream?

2
@: Da—zl — v@ +rm(l—n/K)
ot OX _OX

Random movement  Advection

e v=speed of the stream.



River problem: Drift paradox

e Drift paradox: Why can population persist in streams
when they are being constantly washed down stream?

2
@: Da—zl — v@ +ml—-n/K)
ot OX _OX

Random movement  Advection

e v=speed of the stream.

e Change coordinates to move at the speed to the river. Let
X:X'Vt, T:t speed

spread rate
¢+ downstream

2 c*

@: Darl +rm(l—n/K)
oT oX
%/_J

Random movement

c* advection speed v

spread rate
¢* — v upstream



Case 2: Allee effect
g(u)=u(l-u)(u-a)

Travelling wave coordinates
ou o L) J ” |
ot ox* = 9)
— Growth
Random
movement




Case 2: Allee effect
g(u)=u(l-u)(u-a)

Travelling wave coordinates

ou  o°u
A ae U —— U= g)
— Growth

Random
movement

e Multiply by U’ and integrate over z

0= TU’U'dz + T(U’)Zdz+ch(U)U'dz

'

Zero

[aW)du
C 0

Jun?dz <« positive




Case 2: Allee effect -
conclusions

e If the travelling wave exists it has a unique speed.
jg(U)dU g(u)A

C= 0
Jun?az \ @\; y

1

04 A1<A2 ‘F) h d 03 Al1>A2
od invasion usne o retreat
" Waves' -,

0z 0z

0
-20 -10 1] 10 20 IQEIII -10 1] 10 20
= =

e We can show (using another method) that - :ﬁ@_a)



Key differences that arise from
an Allee effect

e A threshold density must be exceeded for invasion to
take hold.

e Initial spatial arrangement of invades effects the fate of
an invasion.

e Velocity of spread is reduced in proportion to the Allee
effect.



Key differences that arise from
an Allee effect

e A threshold density must be exceeded for invasion to
take hold.

e Initial spatial arrangement of invades effects the fate of
an invasion.

e Velocity of spread is reduced in proportion to the Allee
effect. 1

e In a predator-prey system
with Allee effect in the prey, —«
predators Can reverse the 0 20 40 60 ?{I,Jspati1a??msiti102nn 140 160 180 200

wave of invading prey.

=
Z 06t
5
=004
=
s
EIEL

=
a

0 2l 40 60 &0 100 120 140 180 1§0 200
A, spatial position



Critical domain size

e Q: Will a population grow when rare?

e A: Assume the population is at low density so we linearise about
n=0. If this steady state is stable with have extinction if it is unstable

with have persistence.

Hostile exterior

ot ox? n(0,t) =n(L,t) =0,  n(x,0)=n,(x)
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e A: Assume the population is at low density so we linearise about
n=0. If this steady state is stable with have extinction if it is unstable
with have persistence.

Hostile exterior

ot ox? n(0,t) =n(L,t) =0,  n(x,0)=n,(x)

e Ansatz: Solutions have the form
r—A

n(x,t) ce®f(x)  Hence:f"+ f =0 f(0)="f(L)=0

ODE



Critical domain size

e Q: Will a population grow when rare?

e A: Assume the population is at low density so we linearise about
n=0. If this steady state is stable with have extinction if it is unstable
with have persistence.

Hostile exterior

ot ox? n(0,t) =n(L,t) =0,  n(x,0)=n,(x)

e Ansatz: Solutions have the form
r—A

n(x,t) ce®f(x)  Hence:f"+ f =0 f(0)="f(L)=0

'

ODE

Solution ; f(x) = Acos(w/ﬂxj+ Bsinﬂ/uxJ
D D
BCs f(0)=0= A=0, f(L)=0= ‘/rgi _ "f




Critical domain size

n(x,t) = kf; B, exp((r - D(k;z/ L ))t)sin(km(/ L)

e We have A > A,>A>A> ... SO If the largest eigenvalue is positive
then the population persists.

L>LC=7Z'\/§
I



Critical domain size

n(x,t) = kio; B, exp((r - D(k;z/ L ))t)sin(kyzx/ L)

e We have A > A,> A > A> ... So If the largest eigenvalue is positive
then the population persists.

L>LC=7Z'\/§
I

e What about non-hostile boundary conditions?

2
an — D@ T Dn (0,t) =an(0,t) nD,(L,t)=an(L,t)
ot OX°

D. . a as a— oo, tan"(a/+/Dr)—> z/2
L>L, =2,/—tan"| —
r v Dr as a—0, tan(a/+/Dr)—>0



Corridors and persistence

P, probability of staying in the corridor when reaching the corridor boundary

D,=1 D=1 D,=1
Corridor
< > < > < >
L, L, L,
Patches are D, But, combined ) D,
too smallto ~ <Lk =7 r, Persistenceis L >l =7 T,

persist on possible



Corridor results

» 10

r,=-0.2 p=0.5

Net population
growth rate
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Corridor results

Net population

growth rate
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p,Probability of staying in the corridor
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(as a function of corridor length L,)



Critical Domain Size summary

e Factors that increase movement out of a patch (drift or
repulsion) lead to larger Critical Domain Sizes

e Factors that decrease movement out of a patch
(attraction to the patch, or density dependent dispersal)
lead to smaller Critical Domain Sizes

e Density-dependent growth regulates population size in a
patch, BUT it does not effect Critical Domain Size unless
there are Allee growth dynamics.



References

P. Turchin (1998) Quantitative Analysis of movement, Sinauer Associates

Owen, M, Lewis M A (2001) How predation can stop, slow or reverse a prey
invasion, Bulletin of Mathematical Biology, 63, 655-684

Sh}gegada, N, Kawasaki(1997) Biological Invasions: Theory and Practice, OUP,
Oxfor

R. Cantrel and C. Cosner (2003) Spatial ecology via reaction-diffusion
equations, Wiley

M.A. Lewis, Hillen, T, Lutscher, F.(2009) Spatial dynamics in ecology. In
Mathematical Biology Volume 1 of Park city Mathematics Series. Institute of
Adavanced Studies.

E.E. Holmes, Lewis, M.A., Banks, J.E. , Veit, R.R. (1994) Partial differential
equations in ecology: spatial interactions and population dynamics, Ecology
75(1) 12-29.

E. Pachepsky, F Lutscher, R.M Nesbit, M.A. Lewis (2005) Pesistence, spread
and the drift paradox, Theoretical Population Biology, 67. 61-73
O.Ovaskainen, S.J. Cornell. (2003)Biased movement at a boundary and

conditional occupancy times for diffusion processes. Journal of Applied
Probability, 40(3), 557-580



	Spatial Ecology: �Lecture 2, Reaction-diffusion models: invasion and persistence
	Slide Number 2
	Reaction-diffusion models
	Fokker-Plank Equation and random walks
	Master equation
	Obtaining the PDE
	Obtaining the PDE: ICs & BCs
	Obtaining the PDE: ICs & BCs
	Obtaining the PDE: ICs & BCs
	Some slight variations
	Some slight variations
	Some slight variations
	2-D space: Patlak model
	Probability to density
	Equilibrium distributions
	Residence Index
	Example: Flea beetles in collard patches
	Population spread and invasion
	California Sea Otter expansion�
	Population spread: model
	Scale (non-dimensionalise) the model
	Travelling wave solutions
	PDE to ODEs
	Case 1: logistic growth g(u)=u(1-u)
	Spread rate for logistic growth
	Spread rate for logistic growth
	Spread rate in a heterogeneous environment
	Spread rate in a heterogeneous environment
	River problem: Drift paradox
	River problem: Drift paradox
	Case 2: Allee effect �g(u)=u(1-u)(u-a)
	Case 2: Allee effect �g(u)=u(1-u)(u-a)
	Case 2: Allee effect - conclusions
	Key differences that arise from an Allee effect
	Key differences that arise from an Allee effect
	Critical domain size
	Critical domain size
	Critical domain size
	Critical domain size
	Critical domain size
	Corridors and persistence
	Corridor results 
	Corridor results 
	Corridor results 
	Critical Domain Size summary
	References

