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Lecture 2 Lecture 1



Reaction-diffusion models


 

Partial differential equation models combine 
organism movement with population processes



 

Answer questions about:


 

Dispersal 


 

Ecological invasion


 

Effect of habitat geometry and size


 

Dispersal mediated coexistence


 

Emergence of spatial-temporal patterns


 

Derivation of the model


 

Lagrangian approach: Movement of individuals over time


 

Eularian approach: Fix a point in space and consider flow or 
flux past the point over time



Fokker-Plank Equation and 
random walks


 

Given information about how an organism moves over 
short time scales can we determine how it moves over 
long time scales? 



 

Answer: Yes, if the movement rules are “fairly” simple.



 

Random walk in 1-D:


 

Each time step jump left 
or right a distance 



 

One step markov process,
the precise path taken to get 
to the current location plays 
no role in determining the 
future position



Master equation


 

X(t) = stochastic process describing the location of an 
individual at time t, released at location x=0 at time 0



 

p(x,t)=probability an individual is between x and x+
 

at 
time t. (So p(x,t) is a probability density function )



 

Unbiased random walk: probability jump right R=1/2 
and probability jump left L=1/2
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Obtaining the PDE


 

Expand the RHS of the master equation using Taylor Series:



 

Simplifying



 

Ignoring the higher order terms (h.o.t) taking the limit as 
 so that D yields the diffusion equation
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Obtaining the PDE: ICs & BCs


 

Initial conditions:

Fucntion   Delta Dirac )0,( xp







Obtaining the PDE: ICs & BCs


 

Initial conditions:



 

Boundaries: Suppose that


 

Inside region {x>0} individuals move left and right with prob. 1/2


 

At x=0 (the boundary) individuals move right with prob. 1/2, leave 
with prob. aand stay at the boundary with prob. (1-a



 

a is the rate per unit space of leaving the region

Fucntion   Delta Dirac )0,( xp
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Master Equation Robin boundary
conditions



Some slight variations


 

Bias movement: R=1/2 +L=1/2 –
 

yields:



 

Movement probabilities depend on space (current 
locatoion): R(x), L(x), N(x) (prob not moving)



 

Movement probabilities depend on half way point from 
current location to next location
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Fokker-Planck
equation
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Fokker-Planck
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Fickian-diffusion



2-D space: Patlak model
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Probability to density


 

p(x,t) ~ probability of finding an indivdual location x at 
time t



 

N=total number of moving organisms


 

n(x,t)=Np(x,t)=density of organisms at location x at time t



Equilibrium distributions



 

Fokker-Plank predicts organisms will eventually 
accumulate in locations where movement rate is low.



 

Fickian Diffusion predicts a uniform distribution of 
individuals even if D varies in space!
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Fokker-Planck
Equation (no bias)

Equilibrium distribution

Fickian diffusion
Equation (no bias)

Equilibrium distribution
constant)(  xn



Residence Index


 

Residence index connects individual movement to 
population level redistribution patterns



 

Residence index is proportional to density and is for 
comparative purposes, e.g. “the density of 
organisms in patch i is three times that in patch j”)



 

E.g. Random walk, fixed move length
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Example: Flea beetles in 
collard patches

•Patch distance 2 metres=
•Movement of beetles recorded      
1 hour (=after release
•Data: 

•proportion moved Pm
•proportion stayed Ps
•1-(Ps+Pm) not captured

• (R+L)=Pm/(Pm+Ps)

67.2 

/hm 63.1/h   m 61.0

Lush

Stunted

Stunted

Lush

2
Stunted

2
Lush













Density in lush is 2.67 times
density in stunted patches



Population spread and 
invasion Muskrat

House finch

Cheat grass



 

Linear expansion
with time 



 

Slow initial spread
followed be linear
expansion (e.g.Allee
effects)



 

Spread rate 
continually increases
with time (e.g long 
distance dispersal)



California Sea Otter expansion

Start

1-D invasion: Hunted for 
fur until near extinction. A 
surviving population of 50 
slowly recovered & spread



Population spread: model


 

n(x,t)=density of individuals



 

f(n)=rn(1-n/K)      Logistic growth



 

f(n)=rn(1-n/k)(n-) Bistable (Allee effect)

Difficulty reproducing at low density due to
e.g.  mate finding, low genetic diversity


Growth

movement
Random

2

2

)(nf
x
nD

t
n









 f(n)

nK

f(n)

nK



Scale (non-dimensionalise) the 
model



 

Scaled model is 



 

g(u)=u(1-u) logistic


 

g(u)=u(1-u)(u-a)

x
D
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Scale density by
carry capacity

Scale time by
Growth rate

Scale space by
average dispersal distance
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Travelling wave solutions


 

Look for travelling wave solutions


 

Constant speed, c


 

Constant shape )()(),( zUctxUtxu 

z=x-ct  is the wave variable 
(moving coordinate)

Analogy: Watching a metro train
go by you see the people on the 
train move.
If you are on the train then the 
people on the train are not moving
this is the moving frame of referencex

u(
x,

t)



PDE to ODEs


 

Travelling wave profile



 

Behind the wave the population is at carry carrying capacity, in front of 
the wave there is no population 



 

So in the new variables:


 

The PDE becomes


 

Introduce the new variable V=U’=dU/dz:
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 Phew!!! A system of

ODEs we know how to 
work with these.



Case 1: logistic growth 
g(u)=u(1-u)


 

The steady states are 
(U,V)= (0,0) or (1,0) )(UgcVV

VU




Always saddle pointStable for c>0

(0,0) stable spiral for c<2

V=dU/dz<0

(0,0) stable node for c>=2



Spread rate for logistic growth


 

c>=2 is a necessary condition for a travelling wave solution



 

Aronson & Weinberger(1975) show the spread rate for the logistic 
case is exactly the minimum speed

V=dU/dz<0

Travelling wave solution in our
ODE phase plane.Behind waveAhead of wave

Ahead of wave:
V=dU/dz=0
U=0

Behind wave:
V=dU/dz=0
U=1 (scaled carry capacity)

rDc 2 (dimensional value)
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Spread rate in a 
heterogeneous environment
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Spread rate in a 
heterogeneous environment
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Invasion is determined by growth and diffusion


 

Spatial variation in dispersal can deter spread because 
harmonic means are much lower than arithmetic means 
when there is lots of variation.
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River problem: Drift paradox


 

Drift paradox: Why can population persist in streams 
when they are being constantly washed down stream?



 

v=speed of the stream.


 

Change coordinates to move at the speed to the river. Let 
X=x-vt,  T=t
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Case 2: Allee effect 
g(u)=u(1-u)(u-a)
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Travelling wave coordinates



Case 2: Allee effect 
g(u)=u(1-u)(u-a)



 

Multiply by U’ and integrate over z
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Travelling wave coordinates

positive



Case 2: Allee effect - 
conclusions


 

If the travelling wave exists it has a unique speed.



 

We can show (using another method) that 
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Key differences that arise from 
an Allee effect


 

A threshold density must be exceeded for invasion to 
take hold.



 

Initial spatial arrangement of invades effects the fate of 
an invasion.



 

Velocity of spread is reduced in proportion to the Allee 
effect.



Key differences that arise from 
an Allee effect


 

A threshold density must be exceeded for invasion to 
take hold.



 

Initial spatial arrangement of invades effects the fate of 
an invasion.



 

Velocity of spread is reduced in proportion to the Allee 
effect.



 

In a predator-prey system
with Allee effect in the prey, 
predators can reverse the 
wave of invading prey.



Critical domain size


 

Q: Will a population grow when rare?


 

A: Assume the population is at low density so we linearise about 
n=0. If this steady state is stable with have extinction if it is unstable 
with have persistence.
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Critical domain size



 

We have 

 



 



 



 



 

So if the largest eigenvalue is positive 
then the population persists.
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Critical domain size



 

We have 

 



 



 



 



 

So if the largest eigenvalue is positive 
then the population persists.



 

What about non-hostile boundary conditions?
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Corridors and persistence
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L2 L2
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Patches are
too small to 
persist on

But, combined
persistence is 
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p, probability of staying in the corridor when reaching the corridor boundary



Corridor results 

p,Probability of staying in the corridor
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Corridor results 

p,Probability of staying in the corridor 
(as a function of corridor length L1 )

N
et

 p
op

ul
at

io
n

gr
ow

th
 ra

te
gr

ow
th

 ra
te

In
 c

or
rid

or
gr

ow
th

 ra
te

In
 c

or
rid

or

Persistence

Persistence

No Persistence

No Persistence

Corridor length

r1 =-0.2 p=0.5

L1

p
1/2



Critical Domain Size summary


 

Factors that increase movement out of a patch (drift or 
repulsion) lead to larger Critical Domain Sizes



 

Factors that decrease movement out of a patch 
(attraction to the patch, or density dependent dispersal) 
lead to smaller Critical Domain Sizes



 

Density-dependent  growth regulates population size in a 
patch, BUT it does not effect Critical Domain Size unless 
there are Allee growth dynamics.
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