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Lecture 2 Lecture 1



Reaction-diffusion models


 

Partial differential equation models combine 
organism movement with population processes



 

Answer questions about:


 

Dispersal 


 

Ecological invasion


 

Effect of habitat geometry and size


 

Dispersal mediated coexistence


 

Emergence of spatial-temporal patterns


 

Derivation of the model


 

Lagrangian approach: Movement of individuals over time


 

Eularian approach: Fix a point in space and consider flow or 
flux past the point over time



Fokker-Plank Equation and 
random walks


 

Given information about how an organism moves over 
short time scales can we determine how it moves over 
long time scales? 



 

Answer: Yes, if the movement rules are “fairly” simple.



 

Random walk in 1-D:


 

Each time step jump left 
or right a distance 



 

One step markov process,
the precise path taken to get 
to the current location plays 
no role in determining the 
future position



Master equation


 

X(t) = stochastic process describing the location of an 
individual at time t, released at location x=0 at time 0



 

p(x,t)=probability an individual is between x and x+
 

at 
time t. (So p(x,t) is a probability density function )



 

Unbiased random walk: probability jump right R=1/2 
and probability jump left L=1/2
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Obtaining the PDE


 

Expand the RHS of the master equation using Taylor Series:



 

Simplifying



 

Ignoring the higher order terms (h.o.t) taking the limit as 
 so that D yields the diffusion equation
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Obtaining the PDE: ICs & BCs


 

Initial conditions:

Fucntion   Delta Dirac )0,( xp







Obtaining the PDE: ICs & BCs


 

Initial conditions:



 

Boundaries: Suppose that


 

Inside region {x>0} individuals move left and right with prob. 1/2


 

At x=0 (the boundary) individuals move right with prob. 1/2, leave 
with prob. aand stay at the boundary with prob. (1-a



 

a is the rate per unit space of leaving the region

Fucntion   Delta Dirac )0,( xp
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Some slight variations


 

Bias movement: R=1/2 +L=1/2 –
 

yields:



 

Movement probabilities depend on space (current 
locatoion): R(x), L(x), N(x) (prob not moving)



 

Movement probabilities depend on half way point from 
current location to next location


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2-D space: Patlak model
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Probability to density


 

p(x,t) ~ probability of finding an indivdual location x at 
time t



 

N=total number of moving organisms


 

n(x,t)=Np(x,t)=density of organisms at location x at time t



Equilibrium distributions



 

Fokker-Plank predicts organisms will eventually 
accumulate in locations where movement rate is low.



 

Fickian Diffusion predicts a uniform distribution of 
individuals even if D varies in space!
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Residence Index


 

Residence index connects individual movement to 
population level redistribution patterns



 

Residence index is proportional to density and is for 
comparative purposes, e.g. “the density of 
organisms in patch i is three times that in patch j”)



 

E.g. Random walk, fixed move length
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Example: Flea beetles in 
collard patches

•Patch distance 2 metres=
•Movement of beetles recorded      
1 hour (=after release
•Data: 

•proportion moved Pm
•proportion stayed Ps
•1-(Ps+Pm) not captured

• (R+L)=Pm/(Pm+Ps)

67.2 

/hm 63.1/h   m 61.0
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Stunted

Lush

2
Stunted

2
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Density in lush is 2.67 times
density in stunted patches



Population spread and 
invasion Muskrat

House finch

Cheat grass



 

Linear expansion
with time 



 

Slow initial spread
followed be linear
expansion (e.g.Allee
effects)



 

Spread rate 
continually increases
with time (e.g long 
distance dispersal)



California Sea Otter expansion

Start

1-D invasion: Hunted for 
fur until near extinction. A 
surviving population of 50 
slowly recovered & spread



Population spread: model


 

n(x,t)=density of individuals



 

f(n)=rn(1-n/K)      Logistic growth



 

f(n)=rn(1-n/k)(n-) Bistable (Allee effect)

Difficulty reproducing at low density due to
e.g.  mate finding, low genetic diversity
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Scale (non-dimensionalise) the 
model



 

Scaled model is 



 

g(u)=u(1-u) logistic


 

g(u)=u(1-u)(u-a)

x
D
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Travelling wave solutions


 

Look for travelling wave solutions


 

Constant speed, c


 

Constant shape )()(),( zUctxUtxu 

z=x-ct  is the wave variable 
(moving coordinate)

Analogy: Watching a metro train
go by you see the people on the 
train move.
If you are on the train then the 
people on the train are not moving
this is the moving frame of referencex

u(
x,

t)



PDE to ODEs


 

Travelling wave profile



 

Behind the wave the population is at carry carrying capacity, in front of 
the wave there is no population 



 

So in the new variables:


 

The PDE becomes


 

Introduce the new variable V=U’=dU/dz:
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Case 1: logistic growth 
g(u)=u(1-u)


 

The steady states are 
(U,V)= (0,0) or (1,0) )(UgcVV

VU




Always saddle pointStable for c>0

(0,0) stable spiral for c<2

V=dU/dz<0

(0,0) stable node for c>=2



Spread rate for logistic growth


 

c>=2 is a necessary condition for a travelling wave solution



 

Aronson & Weinberger(1975) show the spread rate for the logistic 
case is exactly the minimum speed

V=dU/dz<0

Travelling wave solution in our
ODE phase plane.Behind waveAhead of wave

Ahead of wave:
V=dU/dz=0
U=0

Behind wave:
V=dU/dz=0
U=1 (scaled carry capacity)

rDc 2 (dimensional value)
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Spread rate in a 
heterogeneous environment
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Spread rate in a 
heterogeneous environment
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Invasion is determined by growth and diffusion


 

Spatial variation in dispersal can deter spread because 
harmonic means are much lower than arithmetic means 
when there is lots of variation.
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River problem: Drift paradox


 

Drift paradox: Why can population persist in streams 
when they are being constantly washed down stream?



 

v=speed of the stream.


 

Change coordinates to move at the speed to the river. Let 
X=x-vt,  T=t
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Case 2: Allee effect 
g(u)=u(1-u)(u-a)
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Case 2: Allee effect 
g(u)=u(1-u)(u-a)



 

Multiply by U’ and integrate over z
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Case 2: Allee effect - 
conclusions


 

If the travelling wave exists it has a unique speed.



 

We can show (using another method) that 
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Key differences that arise from 
an Allee effect


 

A threshold density must be exceeded for invasion to 
take hold.



 

Initial spatial arrangement of invades effects the fate of 
an invasion.



 

Velocity of spread is reduced in proportion to the Allee 
effect.



Key differences that arise from 
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A threshold density must be exceeded for invasion to 
take hold.



 

Initial spatial arrangement of invades effects the fate of 
an invasion.



 

Velocity of spread is reduced in proportion to the Allee 
effect.



 

In a predator-prey system
with Allee effect in the prey, 
predators can reverse the 
wave of invading prey.



Critical domain size


 

Q: Will a population grow when rare?


 

A: Assume the population is at low density so we linearise about 
n=0. If this steady state is stable with have extinction if it is unstable 
with have persistence.
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Critical domain size



 

We have 

 



 



 


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So if the largest eigenvalue is positive 
then the population persists.
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So if the largest eigenvalue is positive 
then the population persists.
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What about non-hostile boundary conditions?
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Corridors and persistence
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Corridor results 

p,Probability of staying in the corridor
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Corridor results 

p,Probability of staying in the corridor 
(as a function of corridor length L1 )
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Critical Domain Size summary


 

Factors that increase movement out of a patch (drift or 
repulsion) lead to larger Critical Domain Sizes



 

Factors that decrease movement out of a patch 
(attraction to the patch, or density dependent dispersal) 
lead to smaller Critical Domain Sizes



 

Density-dependent  growth regulates population size in a 
patch, BUT it does not effect Critical Domain Size unless 
there are Allee growth dynamics.
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