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Integrodifference equations



 

Diffusion models assume growth and 
dispersal occur at the same time.



 

When reproduction and dispersal occur at 
discrete intervals an integrodifference 
equation is a more relevant formulation. E.g.


 

annual plants,


 

Many insects,


 

Migrating bird species



Integrodifference equation
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Kernels            k(x,y)=k(x-y)  when dispersal depends on distance only



Mechanistic derivation of 
dispersal kernels



 

Gaussian: a(t)=(t-T), stops at time T



 

Laplacian: a(t)=a>0, constant settling rate




settled Total

0

rate
Settling

),()()(

)(),0(       ,)(








dttxutaxk

xxuutaDuu xxt 









 x

D
a

D
axkL exp

4
)(











DT
x

DT
xkG 4

exp
4

1)(
2





Dispersal kernels from data



Travelling wave speeds


 

Assume


 

f is linearly bounded, f(N)<=f’(0)N (No Allee effect)


 

f is monotone


 

K(x) has a moment generating function (no ‘fat-tailed 
dispersal kernels)



 

Then we can linearly determine the asymptotic wave speed.


 

Look at behaviour near N*=0 (linearise there)
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Travelling wave speeds


 

A travelling wave solution moves with constant shape and 
speed c, so )()(1 cxNxN tt 



Travelling wave speeds
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A travelling wave solution moves with constant shape and 
speed c, so 



 

Then (assume distance dependent dispersal)
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Travelling wave speeds


 

A travelling wave solution moves with constant shape and 
speed c, so 



 

Then (assume distance dependent dispersal)



 

Look for solutions at the edge of the travelling wave which 
decay exponentially, so



 

M(s) is the moment generating function for k(y)
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Asymptotic wave speed


 

Differentiating with respect to s, and noting that initial 
conditions with compact support lead to a minimum 
speed give c*
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Examples of wave speeds


 

Gaussian 



 

Note if r=ln f’(0) and D=2 then the wave speed is 
the same as the PDE case:



 

Laplacian



 

We can’t find c explicitly, but since ML (s)>=MG (s) then 
cLaplace >cGaussian
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Shape of the kernel greatly 
affects speed.



Fat tailed kernels



Spatial extent


 

Fat tailed kernels can give accelerating waves, we can’t 
calculate the speed, but we can measure the spatial 
extent of the wave at a given time.


 

Spatial extent= distance from source where population first falls 
below a threshold N.



 

Use Fourier Transforms
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Spatial extent


 

In the case of the Cauchy Kernel:



 

Its easy to find the inverse of the Fourier transform in this 
case so



 

More generally
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Population spread and 
invasion Muskrat

House finch

Cheat grass



 

Linear expansion
with time 



 

Slow initial spread
followed be linear
expansion (e.g.Allee
effects)



 

Spread rate 
continually increases
with time (e.g long 
distance dispersal)



House finch model
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Reproduction


 

Average number of offspring 
produced



 

Competition for nesting sites


 

C= average number of 
offspring born that survive 
summer



 

, rate or pair formation


 

T, Time for pair formation


 

density of nest sites
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Dispersal

dyyNxyKpdyyNfpxyKNfpsNfpxN

dyyNxyKpNfpsxA

dyyNfxyKpNfpxJ

tAAtJJtAtJt

tAAtAt

tJJtJt

)()())(()()()1()()1()(

)()()()1()(

))(()()()1()(

1

adults Dispersingsurvive which Adults
dispersing-Non

1

juveniles Dispersingjuveniles
dispersing-Non

1





























    

    

Add the equations together to get an equation for breeders

Expected density of birds
at the Christmas Bird Counts
in successive years





 

Dispersal kernels



Results: Range expansion


 

Slow initial spread
followed be linear
expansion 



Invasion summary


 

Shape of the kernel significantly affects speed.


 

Travelling waves may exhibit accelerating spread if the 
dispersal kernels have ‘fat tails’ (not expontenially 
bounded)



 

Populations escaping an Allee effect may termporally 
accelerate before achieving a constant speed
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