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Integrodifference equations



 

Diffusion models assume growth and 
dispersal occur at the same time.



 

When reproduction and dispersal occur at 
discrete intervals an integrodifference 
equation is a more relevant formulation. E.g.


 

annual plants,


 

Many insects,


 

Migrating bird species
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Kernels            k(x,y)=k(x-y)  when dispersal depends on distance only



Mechanistic derivation of 
dispersal kernels



 

Gaussian: a(t)=(t-T), stops at time T



 

Laplacian: a(t)=a>0, constant settling rate
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Dispersal kernels from data



Travelling wave speeds


 

Assume


 

f is linearly bounded, f(N)<=f’(0)N (No Allee effect)


 

f is monotone


 

K(x) has a moment generating function (no ‘fat-tailed 
dispersal kernels)



 

Then we can linearly determine the asymptotic wave speed.


 

Look at behaviour near N*=0 (linearise there)
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Travelling wave speeds


 

A travelling wave solution moves with constant shape and 
speed c, so 



 

Then (assume distance dependent dispersal)



 

Look for solutions at the edge of the travelling wave which 
decay exponentially, so



 

M(s) is the moment generating function for k(y)
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Asymptotic wave speed


 

Differentiating with respect to s, and noting that initial 
conditions with compact support lead to a minimum 
speed give c*

 






 )0(')(ln1min* fsM

s
c

s



Examples of wave speeds


 

Gaussian 



 

Note if r=ln f’(0) and D=2 then the wave speed is 
the same as the PDE case:



 

Laplacian



 

We can’t find c explicitly, but since ML (s)>=MG (s) then 
cLaplace >cGaussian
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Shape of the kernel greatly 
affects speed.



Fat tailed kernels



Spatial extent


 

Fat tailed kernels can give accelerating waves, we can’t 
calculate the speed, but we can measure the spatial 
extent of the wave at a given time.


 

Spatial extent= distance from source where population first falls 
below a threshold N.



 

Use Fourier Transforms
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Hence,



Spatial extent


 

In the case of the Cauchy Kernel:



 

Its easy to find the inverse of the Fourier transform in this 
case so



 

More generally
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Population spread and 
invasion Muskrat

House finch

Cheat grass



 

Linear expansion
with time 



 

Slow initial spread
followed be linear
expansion (e.g.Allee
effects)



 

Spread rate 
continually increases
with time (e.g long 
distance dispersal)



House finch model
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Reproduction


 

Average number of offspring 
produced



 

Competition for nesting sites


 

C= average number of 
offspring born that survive 
summer



 

, rate or pair formation


 

T, Time for pair formation


 

density of nest sites
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Allee efffect!



Dispersal
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Add the equations together to get an equation for breeders

Expected density of birds
at the Christmas Bird Counts
in successive years





 

Dispersal kernels



Results: Range expansion


 

Slow initial spread
followed be linear
expansion 



Invasion summary


 

Shape of the kernel significantly affects speed.


 

Travelling waves may exhibit accelerating spread if the 
dispersal kernels have ‘fat tails’ (not expontenially 
bounded)



 

Populations escaping an Allee effect may termporally 
accelerate before achieving a constant speed
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