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Integrodifference equations

e Diffusion models assume growth and
dispersal occur at the same time.

e \WWhen reproduction and dispersal occur at
discrete intervals an integrodifference
equation is a more relevant formulation. E.g.

annual plants,
Many Insects,
Migrating bird species
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Kernels k(x,y)=k(x-y) when dispersal depends on distance only




Mechanistic derivation of
dispersal kernels

u, =Du,, — i(gu, u(0, x) = o(x)

Settling
rate

k(x) = Ta(t)u(x,t)dt

~
Total settled

e Gaussian: a(t)=o(t-T), stops attime T

kG (X) =
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e Laplacian: a(t)=a>0, constant settling rate

k, (X) = \/%exp[— \/%\x\]




Dispersal kernels from data
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Travelling wave speeds

e Assume
fis linearly bounded, f(N)<=f'(0)N (No Allee effect)
f IS monotone

K(X) has a moment generating function (no ‘fat-tailed
dispersal kernels)

e Then we can linearly determine the asymptotic wave speed.
Look at behaviour near N*=0 (linearise there)

Net (00 = [ KOG TN )Y e [Ny () = £ O) 7K (x, )N, (y)dly



Travelling wave speeds

e A travelling wave solution moves with constant shape and
speed c, SO N, (X) =N, (x-c)
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Travelling wave speeds

e A travelling wave solution moves with constant shape and
speed c, SO N,.,(x) =N, (x-c)
e Then (assume distance dependent dispersal)
N (x=c) = f'(O)f "K(Ix—y N, (y)dy
e Look for solutions at the edge of the travelling wave which
decay exponentially, SO N,(x) =exp(-sx)

exp(sc) = £'(0)[ K (y)exp(sy)dy = f'(O)M (s)

e M(s) is the moment generating function for k(y)



Asymptotic wave speed

e Differentiating with respect to s, and noting that initial
conditions with compact support lead to a minimum
speed give ¢’

c = msin{%m[l\/l (s)f '(O)]}




Examples of wave speeds

e Gaussian
M (s) =exp(c’s®/2), wherec?® =2D c=0%,/2Inf'(0)

Note if r=In f(0) and D=c?%/2 then the wave speed is
the same as the PDE case: c¢-=2/Dr

e Laplacian
1

ML(S):1—0252/2' whereoc* =2D/a

e We can’t find c explicitly, but since M, (s)>=Mg(s) then

CLaplace>(-:Gaussian
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Fat tailed kernels
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Spatial extent

e Fat tailed kernels can give accelerating waves, we can't
calculate the speed, but we can measure the spatial
extent of the wave at a given time.

Spatial extent= distance from source where population first falls
below a threshold N.

Ny () = T'O)[ K YN (Y)dy, Ny (x) = Nod(x)
e Use Fourier Transforms

N, (W) = TNt(X)eiWde, N, (X) = TNt(w)e‘Wde

Hence, N, (w) = (F'(0))" (k(w))' N,



Spatial extent

e In the case of the Cauchy Kernel:

___ P S (W) — exn(—
K(x) = 2B xD)’ k(w) = exp(=4|w])
e Its easy to find the inverse of the Fourier transform in this
case so

_NORt M _ ﬂtNoRt_ 2
N = =2 xf(t)—J oS- (A)

e More generally

N, (X) » N,R'K(X), X, (t)= kl(NN

t ] provided x| >> 1
oR



Population spread

Invasion

e Linear expansion
with time

Range Distance

e Slow initial spread
followed be linear

expansion (e.g.Allee
effects)

Range Distance

e Spread rate
continually increases .
with time (e.g long
distance dispersal)
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Survival

J, (X) = Juveniles (9 —12 months old in spring)
A, (x) = Adults

N, (x) = J,(X) + A (x) = Breeding pairs
Summer

Survival

Disperse



Reproduction

e Average number of offspring
produced

cN/

f(N,) =
() 4/(6T)+2N, + N2 /S

e Competition for nesting sites

e C= average number of
offspring born that survive
summer

e o, rate or pair formation
e T, Time for pair formation
e J, density of nest sites

Growth Function (f)
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Dispersal

300 = =Py FN)+ b, K (y =) F (N, (y)dy

Non- dlspersmg
juveniles

A0 =50 P F(ND + pa Ky =N, (y)dy

Non- dlspersmg
Adults which survive

Dlspersmg juveniles

Dlspersmg adults

Add the equations together to get an equation for breeders

N () = @=py) F (N +5@= p) TN+ [ K (y=x)p, F (N (V)dy + pa [ K, (y =N, (y)dy

N

Expected density of birds
at the Christmas Bird Counts |7 |
In successive years |




e Dispersal kernels
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Results: Range expansion

e Slow Initial spread
followed be linear
expansion
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Invasion summary

e Shape of the kernel significantly affects speed.

e Travelling waves may exhibit accelerating spread if the
dispersal kernels have ‘fat tails’ (not expontenially
bounded)

e Populations escaping an Allee effect may termporally
accelerate before achieving a constant speed



References

e M. Kot, M.A. Lewis, P van den Driessche. (1996)
Dlspersal data and the spread of invading organisms,
Ecology 77:2027-2042

e J.A.Powell,(2009)Spatiotemporal Models in Ecology:An
Introduction to Integro-Difference Equations
http://www.math.usu.edu/powell/wauclass/labs.html

e Neubert, M.G., M. Kot and M.A. Lewis, 1995. Dispersal
and pattern formation in a discrete-time predator-prey
model. Theoretical Population Biology 48: 7—43.

e R.R. Veit, M.A. Lewis(1996) Dispersal population growth
and the Allee effect: Dynamics of the house finch
Invasion of Eastern North America, American Naturalist,
148(2), 255-274



	Spatial Ecology: �Lecture 4, Integrodifference equations
	Integrodifference equations
	Integrodifference equation
	Integrodifference equation
	Mechanistic derivation of dispersal kernels
	Dispersal kernels from data
	Travelling wave speeds
	Travelling wave speeds
	Travelling wave speeds
	Travelling wave speeds
	Asymptotic wave speed
	Examples of wave speeds
	Slide Number 13
	Fat tailed kernels�
	Spatial extent
	Spatial extent
	Population spread and invasion
	House finch model
	Reproduction
	Dispersal
	Slide Number 21
	Results: Range expansion
	Invasion summary
	References

