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Interacting Species

We saw that populations ( animals, plants, bactérias, etc) do
live in networks of trophic interactions that might be quite
complex .
Sometimes – as we saw – certain species can be considered
effectively non-interacting.But in many instances, not.Let us
see the simplest cases of interacting species.
We begin with just two species.
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Types of interactions

There are three types of basic interactions between species:

Predation: the presence of a species (A) is detrimental for species(B),
but the presence of (B) is favors (A). Species (A) is the predator, and
(B) is its prey.

Competition: the presence of (A) is detrimental for (B) and
vice-versa.

Mutualism: the presence of (A) favors (B) and vice-versa.

Nota bene
There is also the amensalism (negative for one species, neutral for the other)
and the comensalism ( positive for one species and neutral for the other). Not
to speak of neutralism.
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Predation

Predation is a widespread interaction between species.
Ecologically, it is a direct interaction.
Let us now proceed to describe a mathematical model for it.
This is known as the Lotka-Volterra model.
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Lotka and Volterra
Muoiono gl’imperi, ma i teoremi d’Euclide conservano eterna giovinezza (Volterra)

Vito Volterra (1860-1940), an Italian mathematician,

proposed the equation now known as the Lotka-

Volterra one to undestand a problem proposed by his

futer son-in-law , Umberto d’Ancona, who tried to

explain oscillations in the quantity of predator fishes

captured at the certain ports of the Adriatic sea.

Alfred Lotka (1880-1949),was an USA mathemati-

cian and chemist,born in Ukraine, who tried to trans-

pose the principles of physical-chemistry to biology.

He published his results in a book called “Elements

of Physical Biology", dedicated to the memory of

Poynting. His results are independent from the work

of Volterra.



The Lotka-Volterra equations

Let
N(t) be the number of predators,
V (t) the number of preys.

In what follows, a, b, c e d are positive constants



The Lotka-Volterra equations

O number of prey will increase when there are no predators:

dV

dt
= aV



The Lotka-Volterra equations

But the presence of predators should lower the growth rate of prey:

dV

dt
= V (a − bP)



The Lotka-Volterra equations

On the other hand the population of predators should decrease in
the absence of prey :

dV

dt
= V (a − bP)

dP

dt
= −dP



The Lotka-Volterra equations

and presence of prey will increase the number of predators:

dV

dt
= V (a − bP)

dP

dt
= P(cV − d)



The Lotka-Volterra equations

These two coupled equations ate known as
The Lotka-Volterra equations

dV

dt
= V (a − bP)

dP

dt
= P(cV − d)

Let’s study them!



Lotka-Volterra: analysis

We have nice equations.

But we do not know their solution.
These equation do not have solutions in terms of elementary
functions.
What can we do?
Two ways

Numerical integration. What’s that?
Qualitative analysis. What’s that?
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Lotka-Volterra: qualitative analysis

Let’s get back to the equations:

dV

dt
= V (a− bP)

dP

dt
= P(cV − d)

The second divided by the first:

dP

dV
=

P(cV − d)

V (a− bP)

So that:
dP(a− bP)

P
=

dV (cV − d)

V
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....

dP(a− bP)

P
=

dV (cV − d)

V

Integrate on both sides:

a lnP − bP = cV − d lnV + H

where H is a constant.

Nn other words:

cV(t)− bP(t) + a lnP(t) + d lnV(t) = H

This is a relation that has to be fulfilled by the solution of the Lotka-Volterra
system of equations.

For a given value of H we can plot on the P × V plane the geometric locus of
the points that obey the above relation. Let’s do it!.
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Phase trajectories

dV

dt
= V (a−bP)

dP

dt
= P(cV−d)

The phase trajectories of the Lotka-Volterra equations, with
a = b = c = d = 1. Each curve corresponds to a given value of H.
The curves obey: cV(t)− bP(t) + a lnP(t) + d lnV(t) = H



Lotka-Volterra: oscillations

We call the P × V plane, the phase space.

The curves are called trajectories or the orbits.
In theis case, we have closed orbits.

What do they represent?

Take a point in the phase phase.

It represents a certain number of predators and prey.

There is a trajectory passing by this point.

As time passes by, these populations evolve according go the trajectory in phase
space.

After a certain amount of time, they will come back to the initial point.

This system is periodic.
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Oscillations II

Ok, the system is periodic.
Let’s take a closer look.

Take a point in the P × V plane and follow it in time:

Let us see how the
variable V evolves (prey).

from 1 to 3 it increases.

from 3 to 8 it decreases.

and from 8 to 3 it
increases again

and so on.

The number of prey oscillates periodically in time.
and the predators so the same.
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What about the solutions

Until now we saw how the solutions of the de Lotka-Volterra equations behave
qualitatively.
That’s a lot: we can predict that the “predator-prey” system presents periodic
oscillations of the species populations.

But, and solutions ?. The real thing!.

We can show a plot of them . Where does it come from? Numerical integration.

Here it is:
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More about Lotka-Volterra

In words...

Lotka-Volterra equations tell us that:
Given a small number of predators and a certain number ( not
small) of prey ;
The availability of prey makes the population of predators
grow;
And therefore the prey population will grow slower. After a
certain amount of time, it will begin to decrease ;
And predators attain a maximal population, and – because the
lack of enough prey – it’s population begins to decrease;
Meanwhile, prey get to a minimum and begin to recover, as
the number of predators has decreased;
and so on....

Makes sense!
But, is it true?
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The real world

Does the Lotka-Volterra equations describe real situations?

Partially.

There are some elements that are clearly not realistic:

The growth of prey in the absence of predator is exponential; it does not
saturate.

No big deal. Just put a logistic term there. We can still have oscillating solutions.
Great!

On the other hand... the growth rate of the predator is given by (cV − d).
The larger V , the higher the rate. This predator is voracious!
It would be rather natural to suppose that the conversion rate also
satures. An effect of the predators becoming satieted or because there is
handling time to consume prey.
We can modify the above equations to take this into account.

Cycling can still be present.

So, the lesson of the Lotka-Volterra equation is: although being an
oversimplified equation for predator-prey system it captures an important
feature: this kind of system exhibits oscillations – which are intrinsic to the
dynamics.
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Further beyond the Lotka-Volterra equations

Obviously real interactions occur in interaction webs that can involve
many species true predation, competition and mutualism.

Simple question

Whereupon does the prey feed?
This is not taken into account in the Lotka-Volterra equations.
If resource availability for prey is approximatively constant than a
(generalized) Lotka-Volterra dynamics is maybe a good model.
But, on the other hand, the possibility exists that the prey and its
resource are dynamically coupled... In this case we need to consider at
least three species.
But beware!!! Do not try to put all species in a model.

In summary, the Lotka-Volterra equations are rather a staring point than
a final point for predator-prey models. .
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A last comment

Host-parasitoid relations

In close relation to the predator-prey dynamics there is the
relation a parasitoid and its host ,
The parasitoid plays a role analogous to the one of the
predator and the host, that of the prey.
Although these may be seen as different biological interactions,
the dynamics is similarly described.

Note, however, that many insect species have non-overlaping
generations.
which takes us to the realm of discrete-time equations, or
coupled mappings.
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What I should remember

Two-species interactions are the building blocks of larger
networks of interactions:
In a rough way, we can divide them as:

predator-prey;
competition;
mutualism.

Predator-Prey tend to produce oscillations.
Just don’t forget that not every oscillation comes from a
predator-prey dynamics.

Thank you for your attention.
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