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1 Lie derivatives
Lie derivatives arise naturally in the context of fluid flow and are a tool that can
simplify calculations and aid one’s understanding of relativistic fluids.

Begin, for simplicity, in a Newtonian context, with a stationary fluid flow with
3-velocity v(r). A function f is said to be dragged along by the fluid flow, or Lie-
derived by the vector field v that generates the flow, if the value of f is constant
on a fluid element, that is, constant along a fluid trajectory r(t):

d

dt
f [r(t)] = v · ∇f = 0. (1)

The Lie derivative of a function f , defined by

Lvf = v · ∇f, (2)

is the directional derivative of f along v, the rate of change of f measured by a
comoving observer.

Consider next a vector that joins two nearby fluid elements, two points r(t)
and r̄(t) that move with the fluid: Call the connecting vector λw, so that for small
λ the fluid elements are nearby: λw = r̄(t)− r(t). Then λw is said to be dragged
along by the fluid flow, as shown in Fig. (1). In the figure, the endpoints of r(ti)
and r̄(ti) are labeled ri and r̄i.

A vector field w is Lie-derived by v if, for small λ, λw is dragged along by
the fluid flow. To make this precise, we are requiring that the equation

r(t) + λw(r(t)) = r̄(t) (3)

be satisfied to O(λ). Taking the derivative of both sides of the equation with
respect to t at t = 0, we have

v(r) + λv · ∇w(r) = v(r̄) = v[r + λw(r)]

= v(r) + λw · ∇v(r) +O(λ2), (4)

which holds if and only if

[v,w] ≡ v · ∇w −w · ∇v = 0. (5)

The commutator [v,w] is the Lie derivative of w with respect to v, written

Lvw = [v,w]. (6)
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Figure 1: Two nearby fluid elements move along the flow lines, their successive
positions labeled ri and r̄i. A vector field λw is said to be dragged along by the
flow when, as shown here, it connects successive positions of two nearby fluid
elements.

Then w is Lie-derived by v when Lvw = 0. The Lie derivative Lvw compares
the change in the vector field w in the direction of v to the change that would
occur if w were dragged along by the flow generated by v. In a curved spacetime
the Lie derivative of a function f is again its directional derivative,

Luf = uα∇αf. (7)

If uα is the 4-velocity of a fluid, generating the fluid trajectories in spacetime,
Luf is commonly termed the convective derivative of f . The Newtonian limit
of uα is the 4-vector ∂t + v, and Luf has as its limit the Newtonian convective
derivative (∂t+v ·∇)f , again the rate of change of f measured by a comoving ob-
server. (Now the flow is arbitrary, not the stationary flow of our earlier Newtonian
discussion.)

A connecting vector is naturally a contravariant vector, the tangent to a curve
joining nearby points in a flow; and in a curved spacetime, the Lie derivative of a
contravariant vector field is again defined by Eq. (6),

Luw
α = uβ∇βw

α − wβ∇βu
α. (8)
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We have used a fluid flow generated by a 4-velocity uα to motivate a definition of
Lie derivative; the definition, of course, is the same in any dimension and for any
vector fields:

Lvw
a = vb∇bw

a − wb∇bv
a. (9)

Although the covariant derivative operator ∇ appears in the above expression, it
is in fact independent of the choice of derivative operator. This is immediate from
the symmetry Γijk = Γi(jk), which implies that the components have in any chart
the form

Lvw
i = vj∂jw

i − wj∂jvi. (10)

One can extend the definition of Lie derivative to arbitrary tensors by requiring
that, for a product, it act as a derivative, satisfying the Leibnitz rule: Thus, for any
covector σa, and any vector ea, one requires

Lv(σae
a) = (Lvσa)e

a + σaLvea. (11)

Because the component σaea is a scalar, its Lie derivative is the directional deriva-
tive v · ∇(σ · e) = v · ∂(σ · e). From Eqs. (11) and (9), we have

(Lvσa)e
a + σa(v

b∇be
a − eb∇bv

a) = vb∇b(σae
a) = (vb∇bσa)e

a + σav
b∇be

a

eaLvσa = eavb∇bσa + eaσb∇av
b.

Because the value of ea at any one point along the trajectory is arbitrary, we have

Lvσa = vb∇bσa + σb∇av
b. (12)

Again it is easy to check that the definition (12) is independent of the choice
of derivative operator, that the components in any chart are given by

Lvσi = vj∂jσi + σj∂iv
j. (13)

Finally, the Lie derivative of an arbitrary tensor T a1···amb1···bn again follows from
the Leibnitz rule applied to Lv(T a···bc···de

a
i · · · ebjωkc · · ·ωld), for arbitrary vectors

ea1, . . . , e
a
n and covectors ω1

a, . . . , ω
m
a :

LvT
a1···am

b1···bn = vc∇cT
a1···am

b1···bn

−T c···amb1···bn∇cv
a1 − · · · − T a1···cb1···bn∇cv

am

+T a1···amc···bn∇b1v
c + · · ·+ T a1···amb1···c∇bnv

c, (14)
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independent of the derivative operator, and with components in a chart given by

LvT
i1···im

j1···jn = vk∂kT
i1···im

j1···jn

−T k···imj1···jn∂kvi1 − · · · − T i1···kj1···jn∂kuim

+T i1···imk···jn∂j1v
k + · · ·+ T i1···imj1···k∂jnv

k. (15)

Action of diffeos1 and relation to Lie derivatives. We began by using the flow
generated by a velocity field v to motivate the definition (6) of Lie derivative of a
vector field w. It is useful to see formally the way in which any vector field gen-
erates a flow and to use that flow to give a geometrical definition of Lie derivative.
Note first that the trajectory (worldline) of a fluid element is an integral curve of
the vector field uα, where:
Definition. An integral curve c(λ) of a vector field ξa is a curve whose tangent
vector at each point P = c(λ0) is ξa(P ).

In a chart {xi}, the tangent ξi to an curve c(λ) has components
d

dλ
ci(λ); and the

statement that c(λ) is an integral curve has the form
d

dλ
ci(λ) = ξi[c(λ)].

Proposition. Any smooth vector field ξa in an n-dimensional manifold M has a
family of integral curves, one through each point of M . 2

Example 1: As noted, the velocity field uα of a fluid has as its integral curves the
fluid trajectories parameterized by proper time. The 3-dimensional vector field v
of a stationary Newtonian flow has as its integral curves the flow lines, parameter-
ized by Newtonian time.

Example 2: The vector field ∂φ = x∂y − y∂x has as integral curves the lines of
constant t, r, θ,

λ→ (t, r, θ, φ+ λ)

Note that when a vector field vanishes at P (e.g., ∂φ vanishes on the symmetry
axis x = y = 0) the integral curve simply stays at P : c(λ) = P .

1A smooth, 1-1 map of a manifold onto itself or onto another manifold is called a diffeo (or
diffeomorphism).

2This result is equivalent to the existence theorem for solutions to ordinary differential equa-
tions, proved, for example, in Coddington and Levinson [1].
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We can view the 4-dimensional flow of a fluid as a family of smooth maps of
the fluid to itself in the following way: In a given proper time τ each point P in
the fluid moves along the fluid trajectory through P from c(0) = P to the point
c(τ). As in the case of the 4-velocity, we can use the integral curves of any vector
field to define a family ψλ of diffeos of a manifold to itself (for a star, the fluid has
a boundary, and the map ψτ is from the support of the fluid to itself):
For each point P let c(λ) be the integral curve of ξa for which P = c(0). For a
fixed value λ, define the map ψλ by

ψλ(P ) = c(λ). (16)

That is, ψλ maps each point P to the point a parameter distance λ from P along
the integral curve through P . The vector field ξa is said to generate the family ψλ
of diffeos. In a chart {xi}, we have

ξi(x) =
d

dλ
ψiλ(x)

∣∣∣∣
λ=0

. (17)

Example: The vector field ∂φ generates the family of diffeos
(t, r, θ, φ)→ (t, r, θ, φ+ λ),

rotations by λ in the x-y plane about the axis where ∂φ vanishes.
We can now repeat for manifolds the relation with which we began this sec-

tion, between the flow - the diffeos - generated by a vector field and the Lie deriva-
tive. We again need the action of a diffeo ψ on a tensor T

The definition of ψT is closely tied to our intuitive understanding of a fluid
flow. As in the flat-space discussion at the beginning of this section, we start with
functions and vectors. A function f of a fluid is conserved if the fluid drags the
function along with it. Define the dragged-along function ψf by requiring that
ψf [ψ(P )] = f(P ), or

ψf(P ) := f [ψ−1(P )]. (18)

A function f on a fluid is Lie-derived by the fluid flow if

d

dτ
ψτf ≡ −Luf = 0, (19)

where ψτ is again the family of diffeos generated by the fluid velocity uα. Then,
for any smooth vector field ξa and function f on a manifold M , one can define the
Lie derivative Lξf by

Lξf = − d

dλ
ψλf, (20)
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where ψλ is the family of diffeos generated by ξa.
To extend the action of diffeos to vector fields, we consider a curve c(s) joining

two fluid elements, and let wα be its tangent vector. For small s, swα can be
regarded as a connecting vector joining fluid elements a distance s apart. For a
fixed proper time τ , write ψ ≡ ψτ . The fluid flow maps the curve c(s) to a curve
ψ[c(s)], dragged along a proper time τ with the fluid flow. The tangent vector wα

to c at a point P is in this way dragged along to a vector ψwα tangent to ψ ◦ c at
ψ(P ), a proper distance τ from P . Its components are

ψwµ|ψ(P ) =
d

ds
ψµ[c(s)]

∣∣∣∣
s=0

= ∂νψ
µdc

ν

ds

∣∣∣∣
s=0

= ∂νψ
µwν(P ). (21)

Equivalently, ψwµ(P ) = ∂νψ
µwν [ψ−1(P )].

More generally, any diffeo ψ of a manifold M to itself drags a vector field wa

to a vector field ψwa, with

ψwi(P ) = ∂jψ
iwj[ψ−1(P )]. (22)

A vector field wa is Lie-derived by a vector field ξa if the family of diffeos ψλ
generated by ξa leave wa unchanged, if ψλwa = wa; and the Lie derivative is
again given by

Lvw
a = − d

dλ
ψλw

a. (23)

To check that this agrees with our earlier definition, we use Eq. (17) and ψ0 =
identity, writing

d

dλ

(
ψλw

i|P
)∣∣
λ=0

=
d

dλ

[
∂ψiλ
∂xj

wj
(
ψ−1
λ (P )

)]
λ=0

=
∂

∂xj

(
dψiλ
dλ

)
λ=0

wj(P ) +
∂ψiλ
∂xj

∣∣∣∣
λ=0

d

dλ
wj
(
ψ−1
λ (P )

)
.

Using

d

dλ
wi
(
ψ−1
λ (P )

)
=
∂wi

∂xj
dψj−λ(P )

dλ
= −ξj∂jwi and

∂ψiλ
∂xj

∣∣∣∣
λ=0

= δij,

we have

d

dλ
ψλw

i|λ=0 = ∂jξ
iwj − ξj∂jwi

= −Lξw
i.
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The action of a diffeo on a covector σa can be found by writing it, at a point
P , as the gradient of a function. The covector field ∇af is in this way dragged to
a covector field ψ∇af = ∇a(ψf) = ∇a[f ◦ ψ−1], with components given by

∇i(ψf)|P = ∂i(f ◦ ψ−1)|P = ∂jf |ψ−1(P )∂iψ
−1 j.

Then ψ drags any covector field σa to the covector field ψσa with components

ψσi(P ) = ∂iψ
−1 jσj[ψ

−1(P )]. (24)

Because a tensor is a sum of tensor products of vectors and covectors, a tensor
field T a···bc···d is dragged to a tensor field ψT a···bc···d, with components

ψT i···jk···l(P ) = ∂mψ
i · · · ∂nψj∂kψ−1 p · · · ∂lψ−1 qTm···np···q[ψ

−1(P )]. (25)

Finally, the Lie derivative of any tensor is given by

LξT
a···b

c···d = − d

dλ
ψλT

a···b
c···d, (26)

and a calculation essentially identical to that for a vector field verifies that the
definition yields Eq. (20).

2 Integration, forms and densities

2.1 Introduction to integration on manifolds
In flat space, the area of a parallelogram spanned by the vectors A,B is |A×B| =
|εabAaBb|; and the volume spanned the vectors A,B,C is
|A × B · C| = |εabcAaBbCc|. Similarly, in Minkowski space, requiring that the
volume spanned by four orthonormal vectors tα, xα, yα, zα be 1 implies that a
parallelepiped Ω spanned by any four vectors Aα, Bα, Cα, Dα is

|Ω| = |εαβγδAαBβCγDδ|.

The vectors are positively oriented if εαβγδAαBβCγDδ > 0.
The volume of an arbitrary region Ω is obtained by adding volumes of in-

finitesimal parallelepipeds spanned by vectors along the coordinate axes, eα0 , eα1 ,
eα2 , eα3 with lengths ∆x0, ∆x1, ∆x2, ∆x3

∆4V = ε0123∆x0∆x1∆x2∆x3

=
1

4!
εµνστ∆x

µ∆xν∆xσ∆xτ (−1)Π,
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where (−1)Π = 1 when µ, ν σ, τ is an even permutation Π of 0, 1, 2, 3 and (−1)Π =
−1 for an odd permutation. Because εαβγδAαBβCγDδ is a scalar, the volume of
a region of flat space is given in any chart by

|Ω| =
∫

Ω

ε0123 dx
0dx1dx2dx3 ≡

∫
Ω

d4V.

The Jacobian,
∣∣ ∂x
∂x′

∣∣, that relates the volume element in two different coordinate
systems arises from the coordinate transformation of the totally antisymmetric
tensor εαβγδ:

ε0′1′2′3′ =
∂xµ

∂x′0
∂xν

∂x′1
∂xσ

∂x′2
∂xτ

∂x′3
εµνστ =

∣∣∣∣ ∂x∂x′
∣∣∣∣ ε0123.

A curved space is locally flat in the sense that, in a locally inertial coordinate
system, the metric components are flat up to quadratic order in the coordinates.
By demanding that the volumes of small regions, to first order in the length of a
side, are those measured by a locally inertial observer using her local Minkowski
metric, one uniquely picks out the volume element

d4V = ε0123 dx
0dx1dx2dx3. (27)

Because the totally antisymmetric tensor ε0123 has the value
√
|g|, the volume

element can be written in the equivalent form 3

d4V =
√
|g| dx0dx1dx2dx3, (28)

and in n-dimensions

dnV = ε1···ndx
1 · · · dxn =

√
|g| dx1 · · · dxn. (29)

In index notation, one writes

d4V = εa···bdS
a···b,

and thinks of dSa···b having components

“ dSµνστ = ± 1

4!
dxµdxνdxσdxτ ”.

3The equality ε0123 =
√
|g| can be obtained as follows. In an orthonormal frame (e.g., in

locally inertial coordinates), ε0123 and
√
|g| each have the value 1. Under a coordinate trans-

formation from xµ to x′µ,
√
|g|, like ε0123, is multiplied by the absolute value of the Jacobian

|∂x/∂x′|, implying that for any positively oriented coordinate system,
√
|g| = ε0123.
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The integral,∫
Ω

fdnV =

∫
Ω

f ε1···n dx
1 · · · dxn =

∫
Ω

f
√
|g| dx1 · · · dxn, (30)

over a region Ω is is well-defined (that is, its value is independent of the choice of
coordinates), because, under a change of coordinates, the integrand on the right
side is multiplied by the Jacobian

∣∣ ∂x
∂x′

∣∣.
2.2 Forms and densities
The tensor εa···b and the quantity

√
|g| that appear in the alternative ways of writ-

ing an integral are, respectively, an example of a form and a scalar density. As we
will see, there is a duality between forms and densities that underlies a equivalence
between Stokes’s theorem and Gauss’s theorem. We define forms and densities,
present the duality that relates them, and go on to the corresponding duality relat-
ing the integral theorems.

Forms.
Definition. A p-form σa···b is an antisymmetric, covariant tensor with p indices.
In particular, a scalar f is a 0-form, a covariant vector Aa is a 1-form, and an
antisymmetric 2-index tensor Fab is a 2-form.
Definition. The exterior derivative dσ of a p-form σ is the p+ 1 form

(dσ)ab···c = (p+ 1)∇[aσb...c]. (31)

The factor p + 1 is the number of independent ways of distributing the p + 1
indices between∇ and σ. The antisymmetry implies that dσ is independent of the
derivative operator; in any chart it has components

(dσ)ij···k = (p+ 1)∂[iσj...k]. (32)

Antisymmetry and the commutativity of partial derivatives imply for any form σ

d2σ = 0. (33)

Lie derivatives and exterior derivatives commute,

Lvdσ = dLvσ, (34)
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and the two derivatives satisfy the Cartan identity,

Lvσ = v · (dσ) + d(v · σ),where (v · σ)a···b := vcσca···b. (35)

Each relation can be proved by induction on p (the number of indices of σ). For
an n-form in n dimensions, the second relation can be written as

Lvσa···b = ∇c(σa···bv
c), (36)

with special case
Lvεa···b = ∇c(εa···bv

c) = εa···b∇cv
c. (37)

In n-dimensions, any nonzero n-form is functionally proportional to any other,
because each has only one independent component. In particular, because any n-
form σ is given by σa···b = fεa···b for some scalar f , the integral of an n-form is
well-defined, given in any coordinate system by∫

Ω

σa···bdS
a···b =

∫
σ1···ndx

1 · · · dxn.

(Again the integral is well defined because a change of coordinates multiplies the
value of a p-form by the Jacobian of the transformation.)

Densities.
A scalar density f (of weight 1), by definition, transforms under a change of

coordinates in the same way as one component of an n-form in n dimensions:
f →

∣∣ ∂x
∂x′

∣∣ f. Just as one can write any n-form as a multiple of εa···b (once one is
given a metric), one can write any scalar density as a scalar multiple of

√
|g|:

f = f
√
|g|, (38)

for some scalar f (namely f/
√
|g|). One can analogously introduce vector and

tensor densities by transformation laws that differ from those of vectors and ten-
sors by the Jacobian of the transformation: The change of the components of a
vector density under a coordinate transformation is given by ji →

∣∣ ∂x
∂x′

∣∣ ∂x′i
∂xk

jk.

Again one can write any vector density in the form ja = ja
√
|g|, with ja a vector

field.
The Lie derivative of a scalar or tensor density can be deduced from this fact

as follows (a metric-free derivation uses the geometric definition of Lie derivative
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and the fact that the action of a diffeo on a density differs from its action on a
tensor by the inverse Jacobian of the diffeo): We have

Lv

√
|g| =

∂
√
|g|

∂gab
Lvgab =

1

2

1√
|g|

∂g

∂gab
Lvgab.

Now the coefficient of the component gij in the determinant g is the minor ∆ij of

gij , and the inverse metric is given by gij =
∆ij

g
. Thus

∂g

∂gij
= ∆ij = ggij , and

we have

Lv

√
|g| = 1

2

√
|g|gabLvgab =

√
|g|∇av

a = ∇a(
√
|g|va). (39)

Finally, Eqs. (2) and (39) imply that the Lie derivative of a general scalar density
f is

Lvf = ∇a(fv
a). (40)

Duality. A duality between p-forms σa1···ap and antisymmetric tensor densities
Aa1···aq , with q = n− p indices (n the dimension of the space) is given by

Aa1···aq =
1

p!

√
|g|εa1···aqb1···bpσb1···bp . (41)

The inverse relation is σa1···ap = ± 1

q!
|g|−1/2εa1···apb1···bqAb1···bq , where the sign is

positive for a positive definite metric, negative for a metric with Lorentz signature.
The divergence ∇ · A, of an antisymmetric density,

(∇ · A)b···c := ∇cAca···b, (42)

is dual to the exterior derivative dσ of the form σ dual to A, and it is independent
of the choice of∇, having components

∇kAki···j = ∂kAki···j. (43)

In particular, the equation for the divergence of a vector density Aa,

∇aAa = ∂iAi, (44)

is equivalent (once one has a metric) to the familiar relation∇aA
a = 1√

|g|
∂i(
√
|g|Ai).
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The relations (33), (34), and (35) are dual to the relations

∇ · (∇ · A) = 0, (45)
Lv∇ · A = ∇ · LvA, (46)
LvA = ∇ · (v ∧ A) + v ∧∇ · A, (47)

where (v ∧ A)ab···c := (q + 1)v[aAb···c].
On an n-dimensional manifold, integrals are naturally defined for n-forms or

for scalar densities, which can be said to be dual to their corresponding n-forms.
That is, the integrals∫

ωa···bdS
a···b =

∫
ω1···ndx

1 · · · dxn and
∫

fdx1 · · · dxn (48)

are well defined because under a change of coordinates, each integrand is multi-
plied by the Jacobian of the transformation. The mathematical literature adopts
an index-free notation in which the integral of an n-form ω over an n-dimensional

region Ω is written
∫

Ω

ω.

2.3 Diffeomorphism invariance
The usual invariance of an integral under a coordinate transformation has as its
active equivalent the invariance of an integral under a diffeo. Let ωa...b be an n-
form on an n-dimensional volume V . With ψ(V ) the image of V and ψωa...b the
dragged n-form, the invariance relation is∫

ψ(V )

ψω =

∫
V

ω. (49)

As in the case of coordinate transformations, invariance under diffeos follows
from the fact that the components of ωa...b change by a Jacobian. Intuitively,
the invariance follows from the physical equivalence of diffeo-related tensors on
diffeo-related domains.

A corollary for a family of diffeos, ψλ, is used to obtain the relation between
conservation of vorticity and conservation of circulation:
Let ξa be the generator of the family ψλ. Then

d

dλ

∫
ψλ(V )

ω =

∫
V

Lξω. (50)
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The proof is immediate from Eq. (26), starting from Eq. (49) in the form∫
ψλ(V )

ω =

∫
V

ψ−λω:
d

dλ

∫
ψλ(V )

ω =

∫
V

d

dλ
ψ−λω =

∫
V

Lξω.

In particular, for ψτ the family of diffeos describing the flow of a fluid with 4-
velocity uα, we have

d

dτ

∫
cτ

huαdl
α =

∫
c

Lu(huα)dlα, (51)

where c is a closed curve in the fluid and cτ = ψτ (c).

3 Gauss’s theorem and Stokes’s theorem
To understand the relation between differential and integral conservation laws for
relativistic stars and black holes, one needs the generalization of Stokes’s theorem
and Gauss’s theorem to manifolds. It is helpful to see quickly how these general-
izations go before we move to a more formal presentation. The simplest version
of Stokes’s theorem is its 2-dimensional form, namely Green’s theorem:∫

S

(∂xAy − ∂yAx)dx dy =

∫
c

(Axdx+ Aydy),

where c is a curve bounding the 2-surface S. The theorem involves the integral
over a 2-surface of the antisymmetric tensor ∇aAb −∇bAa. In three dimensions,
the tensor is dual to the curl of A: (∇×A)a = εabc∇bAc; and Stokes’s general-
ization of Green’s theorem can be written in either the form∫

S

(∇×A) · dS =

∫
c

A · dl

or in terms of the antisymmetric tensor∇aAb −∇bAa∫
S

(∇aAb −∇bAa)dS
ab =

∫
c

Aadl
a, (52)

where, for an antisymmetric tensor Fab, FabdSab means F12dx
1dx2 +F23dx

2dx3 +
F31dx

3dx1. Written in this form, the theorem is already correct in a curved space-
time. The reason is that the antisymmetric derivative∇aAb−∇bAa has in curved
space the same form it has in flat space: As we have seen, its components in any
coordinate system are just ∂iAj − ∂jAi.
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As a result, the flat-space proof of Green’s theorem and Stokes’s theorem,
based on the Fundamental Theorem of calculus (

∫ b
a
f ′(x)dx = f(b)−f(a)), holds

in curved space as well: Let S be a coordinate square in a surface of constant x3.
Then ∫

S

(∂1A2 − ∂2A1)dx1dx2 =

∫
c

(A1dx
1 + A2dx

2),

with the boundary of the square traversed counterclockwise as seen from above
the square.

Gauss’s theorem, ∫
V

∇aA
ad3x =

∫
S

AadSa, (53)

with S a surface bounding the volume V again has a simple generalization to
curved space. Although the divergence ∇aA

a does not have components ∂iAi,
the divergence of Aa := Aa

√
g does: ∇aAa = ∂iAi. Again the flat-space proof

of Gauss’s theorem follows from an integration over a coordinate cube using the
fundamental theorem of calculus for the integral over each coordinate; and again
the integration over a coordinate cube has the identical form in curved space. If V
is a coordinate cube∫

V

∂iAidx1 dx2 dx3 =

∫
S

(A1dx2dx3 +A2dx1dx3 +A3dx1dx2);

and any volume is approximated by an arbitrarily fine division into coordinate
cubes.
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3.1 Gauss’s theorem (divergence theorem)
In Rn, in Cartesian coordinates, the integral of a divergence over an n-cube can
be expressed as a surface integral after an integration by parts:∫

V

∂iA
idnx =

∫
V

∂1A
1dx1dx2 · · · dxn + · · ·+

∫
V

∂nA
ndxndx1 · · · dxn−1

=

∫
∂1+V

A1dx2 · · · dxn −
∫
∂1−V

A1dx2 · · · dxn + · · ·

+

∫
∂n+V

Andx1 · · · dxn−1 −
∫
∂n−V

Andx1 · · · dxn−1

=

∫
∂V

AidSi (∂V means the boundary of V ) (54)

where dSi = ±εij···kdxj · · · dxk
1

(n− 1)!
,with

dS1 = +dx2 · · · dxn for x1 increasing outward,
dS1 = −dx2 · · · dxn , for x1 increasing inward.

More generally the integral over any volume V in Rn of a divergence is related
to a surface integral by∫

V

∂iA
i dnV =

∫
∂V

AidSi =

∫
∂V

AinidS

where ni is the unit outward normal to S (along the gradient of an outwardly
increasing scalar) and dS the area element of S. In curved space the analogous
result follows immediately from the form of the divergence of a vector density:∫

Ω

∇aA
adnV =

∫
Ω

∂i

(√
|g|Ai

)
dnx. (55)

To generalize Gauss’s theorem to an n-dimensional manifold M with metric
gab, let Ω be an n-dimensional submanifold with smooth boundary ∂Ω. Define a
surface element dSa on ∂Ω by requiring that, in any chart x1, . . . , xn for which x1

is constant on ∂Ω and increasing outward,

dSi = ∇ix
1
√
|g| dx2 · · · dxn = δ1

i

√
|g| dx2 · · · dxn. (56)

This definition involves no choice of orientation (in fact Ω need not be ori-
entable, as long as the outward normal to ∂Ω is well-defined.)
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Gauss’s Theorem in Curved Space. For any smooth vector field Aa on M ,∫
Ω

∇aA
adnV =

∫
∂Ω

AadSa. (57)

Sketch of proof. When Ω is a coordinate cube the steps in Eq. (54) go through as
written, with Ai replaced by Ai = Ai

√
|g|:

∫
Ω

∂iAidnx =

∫
∂1+V

A1dx2 · · · dxn −
∫
∂1−V

A1dx2 · · · dxn + · · ·

+

∫
∂n+V

Andx1 · · · dxn−1 −
∫
∂n−V

Andx1 · · · dxn−1

=

∫
∂Ω

AidSi .

Decomposing the volume of integration into a set of coordinate cubes and taking
the limit as the size of each cube shrinks to zero, yields∫

Ω

∇aA
adnV =

∫
∂Ω

AadSa; (58)

as usual, surface terms from cubes that share a surface cancel, because the out-
ward normal to one cube is the inward normal to the adjacent cube.

This form is correct for a region in a space with a metric, independent of the
signature of the metric. When ∂Ω has a unit outward normal na (along the gradient
of a scalar that increases outward), one can write dSa in the form dSa = nadS. In
this case, ∫

∇aA
adnV =

∫
AanadS. (59)

Example: The integral form of baryon mass conservation∇α(ρuα) = 0 is

0 =

∫
Ω

∇α(ρuα)d4V =

∫
∂Ω

ρuαdSα

=

∫
V2

ρuαdSα −
∣∣∣∣∫
V1

ρuαdSα

∣∣∣∣ .
Here the fluid is taken to have finite spatial extent, and the spacetime region Ω is
bounded by the initial and final spacelike hypersurfaces V1 and V2. In a coordinate
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system for which V1 and V2 are surfaces of constant t, with t increasing to the
future, we have dSµ = ∇µt

√
|g|d3x = δtµ

√
|g|d3x on V2, dSµ = −δtµ

√
|g|d3x on

V1, and ∫
Ω

∇α(ρuα)d4V =

∫
V2

ρut
√
|g|d3x−

∫
V1

ρut
√
|g|d3x. (60)

If, on a slicing of spacetime one chooses on each hypersurface V a surface element
dSα along +∇αt, the conservation law is then

M0 =

∫
V

ρuαdSα = constant. (61)

Note that the fact that one can write the conserved quantity associated with a
current jα in the form, ∫

V

jαdSα =

∫
V

jt
√
|g| d3x,

means that there is no need to introduce nα and
√

3g to evaluate the integral. This
fact is essential if one is evaluating an integral

∫
jαdSα over a null surface, where

there is no unit normal. The flux of energy or of baryons across the horizon of a
Schwarzschild black hole, for example, can be computed in Eddington-Finkelstein
or Kruskal coordinates: In ingoing Eddington-Finkelstein coordinates v, r, θ, φ,
the horizon is a surface of constant r, and we have∫

jαdSα =

∫
jr
√
|g| dvdθdφ.

3.1.1 Generalized divergence theorem

The key to Gauss’s theorem is the fact that the divergence of a vector density has
the form ∂i

(√
|g| Ai

)
or ∂iAi. This is true of any q-index antisymmetric tensor

density, Aa···b = Aa···b
√
|g|, and an analogous theorem holds. Because the text

uses only the case of a two-index antisymmetric tensor, the electromagnetic field
Fαβ , and because the way one extends the proof will be clear, we will give the
generalization in detail for this case. The theorem now relates an integral over an
n− 1-dimensional submanifold S of M to an integral over its n− 2-dimensional
boundary ∂S: ∫

S

∇bA
abdSa =

∫
∂S

AabdSab, (62)
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where the sign of dSa and the meaning of dSab are defined as follows.
Let x1, . . . , xn be a positively oriented chart on a subset of M for which x1 is

constant on S, and with x2 constant on ∂S and increasing outward. Choose the
sign of dSa by dSa = εab···cdS

b···c or, equivalently, by requiring dSa = ∇ax
1
√
|g|dx2 · · · dxn.

The volume element dSab is similarly chosen to satisfy, in our oriented chart,

dSab = ∇[ax
1∇b]x

2
√
|g|dx3 · · · dxn. (63)

Then in the coordinates’ domain,∫
S

∇bA
abdSa =

∫
S

∇b(A
ab∇ax

1
√
|g|)dx2 · · · dxn. (64)

But the last integrand is just the divergence of the vector density Ãb = Aab∇ax
1
√
|g|,

and we have already proved Gauss’s law for this case:∫
S

∇bÃ
b
√
|g|dx2 · · · dxn =

∫
∂S

ÃbdS̃b, (65)

where, in each chart, dS̃b = ∇bx
2
√
|g|dx3 · · · dxn. Finally, ÃbdSb = AabdSab,

whence Eq. (65) is identical to the generalized divergence theorem, Eq. (62).
Example (Electric charge). Let V be a ball containing a charge Q. The 4-dimensional
form of Gauss’s law relates the charge Q =

∫
V
jαdSα in V to the electric flux∫

FαβdSαβ through the 2-dimensional surface of V :

Q =

∫
V

jαdSα =
1

4π

∫
V

∇βF
αβdSα =

1

4π

∫
∂V

FαβdSαβ. (66)

Pick positively oriented coordinates t, r, θ, φ for which V is a t =constant
surface and ∂V an r = constant surface. Then

Q =
1

4π

∫
F tr
√
|g|dθdφ. (67)

Flat space:

F tr = Er =
Q

r2
=⇒

∫
V

jαdSα =
1

4π

∫ (
Q

r2

)
(r2 sin θ)dθdφ =

Q

4π

∫
dΩ = Q.

For a q-index antisymmetric tensor Aa···bc, the generalized divergence theorem
takes the form

∫
S
∇cA

a···bcdSa···b =
∫
∂S
Aa···bcdSa···bc.
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3.2 Stokes’s theorem
The divergence ∇aA

a of a vector on an n-dimensional manifold is dual to the
exterior derivative (dω)ab···c = n∇[aωb···c] of the (n− 1)-form ω dual to Aa. That
is, with

ωb···c := Aaεab···c, (68)

we have
εab···c∇dA

d = (dω)ab···c. (69)

Because both sides of the equation are n-forms, one need only check one com-
ponent: n∇[1ω2···n] = ∇1(Adεd2···n)−∇2(Adεd13···n)− · · · − ∇n(Adεd2···n−1 1) =
ε12···n∇dA

d. The corresponding dual of the generalized divergence theorem above
is called
Stokes’s Theorem. Let ω be an n− 1-form on an n-dimensional manifold S with
boundary ∂S. Then ∫

S

dω =

∫
∂S

ω. (70a)

In index notation, ∫
S

(dω)ab···cdS
ab···c =

∫
∂S

ωb···cdS
b···c. (70b)

The theorem implicitly assumes an orientation for ∂S obtained from that of
S by requiring that, if x1, · · · , xn is a positively oriented chart on S with ∂S a
surface of constant x1 and x1 increasing outward, then x2, · · · , xn is a positively
oriented chart for ∂S.
Proof. This dual of Gauss’s theorem follows quickly from Eq. (55), in the form∫

S

∇dA
dεab···cdS

ab···c =

∫
∂S

AadSa. (71)

Define Aa by Eq. (68), and note that, with the orientation chosen above, dSa =
εab···cdS

b···c. Then ∫
S

∇dA
dεab···cdS

ab···c =

∫
∂S

Aaεab···cdS
b···c, (72)

and, from Eqs. (68) and (69), the result follows:∫
S

(dω)ab···cdS
ab···c =

∫
∂S

ωb···cdS
b···c. � (73)
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Example: Stokes’s theorem in three dimensions.
Let Aa be a 3-vector. (dA)ab = ∇aAb −∇bAa∫

S

(∇aAb −∇bAa)dS
ab =

∫
c

Aadl
a,

c the curve bounding S. As noted at the beginning of this section, this is equivalent
to the usual form of Stokes’s theorem in vector calculus:∫
S

~∇× ~A · d~S =

∫
S

(
εabc∇bAc

)
εadedS

de =

∫
S

(∇aAb −∇bAa)dS
ab =

∫
c

~A · d~l.
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