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1 Lie derivatives

Lie derivatives arise naturally in the context of fluid flow and are a tool that can
simplify calculations and aid one’s understanding of relativistic fluids.

Begin, for simplicity, in a Newtonian context, with a stationary fluid flow with
3-velocity v(r). A function f is said to be dragged along by the fluid flow, or Lie-
derived by the vector field v that generates the flow, if the value of f is constant
on a fluid element, that is, constant along a fluid trajectory r(¢):

A = vV =0 m
The Lie derivative of a function f, defined by
Lyf=v- -V, ()

is the directional derivative of f along v, the rate of change of f measured by a
comoving observer.

Consider next a vector that joins two nearby fluid elements, two points r(t)
and T(¢) that move with the fluid: Call the connecting vector Aw, so that for small
A the fluid elements are nearby: A\w = T(¢) — r(¢). Then Aw is said to be dragged
along by the fluid flow, as shown in Fig. (1). In the figure, the endpoints of r(¢;)
and T(t;) are labeled r; and T;.

A vector field w is Lie-derived by v if, for small A\, A\w is dragged along by
the fluid flow. To make this precise, we are requiring that the equation

r(t) + Aw(r(t)) = T(t) 3)

be satisfied to O(\). Taking the derivative of both sides of the equation with
respect to ¢ at t = 0, we have

v(r) + Av-Vw(r) = v(F)=v[r+ Aw(r)]
= v(r)+ Aw - Vv(r) + O(\?), 4)

which holds if and only if
[v,w]=v-Vw—w-Vv=0. Q)
The commutator [v, w] is the Lie derivative of w with respect to v, written

’CVW = [V7W]' (6)
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Figure 1: Two nearby fluid elements move along the flow lines, their successive
positions labeled r; and 1;. A vector field Aw is said to be dragged along by the
flow when, as shown here, it connects successive positions of two nearby fluid
elements.

Then w is Lie-derived by v when £, w = 0. The Lie derivative £, w compares
the change in the vector field w in the direction of v to the change that would
occur if w were dragged along by the flow generated by v. In a curved spacetime
the Lie derivative of a function f is again its directional derivative,

£uf = uavaf- @)

If u® is the 4-velocity of a fluid, generating the fluid trajectories in spacetime,
Ly f is commonly termed the convective derivative of f. The Newtonian limit
of u® is the 4-vector 8; + v, and L, f has as its limit the Newtonian convective
derivative (0, +v- V) f, again the rate of change of f measured by a comoving ob-
server. (Now the flow is arbitrary, not the stationary flow of our earlier Newtonian
discussion.)

A connecting vector is naturally a contravariant vector, the tangent to a curve
joining nearby points in a flow; and in a curved spacetime, the Lie derivative of a
contravariant vector field is again defined by Eq. (6),

Low® = u’Vpw™ — w’Vgu. (8)



We have used a fluid flow generated by a 4-velocity u“ to motivate a definition of
Lie derivative; the definition, of course, is the same in any dimension and for any
vector fields:

Low® = "V — w’Vyu. 9

Although the covariant derivative operator V appears in the above expression, it
is in fact independent of the choice of derivative operator. This is immediate from
the symmetry I, = FE k) which implies that the components have in any chart
the form

Lyw' =1 0;w" —w! 0. (10)

One can extend the definition of Lie derivative to arbitrary tensors by requiring
that, for a product, it act as a derivative, satisfying the Leibnitz rule: Thus, for any
covector o,, and any vector e, one requires

Ly(0ae") = (Lyog)e® + o, L€ (11)

Because the component o,e® is a scalar, its Lie derivative is the directional deriva-
tivev - V(o -e) =v-0(c-e). From Egs. (11) and (9), we have

(Lyog)e* + aa(vbvbe“ — ebvbva) = vbvb(aae“) = (vbvboa)ea + 0,0V, e

e Loyo, = Vo, + 2oy V0°.
Because the value of e® at any one point along the trajectory is arbitrary, we have
Ly, ="V, + 0, Va'. (12)

Again it is easy to check that the definition (12) is independent of the choice
of derivative operator, that the components in any chart are given by

‘Cvai = Ujajai + O'jaﬂ)j. (13)

Finally, the Lie derivative of an arbitrary tensor 7% .., again follows from

[ T : a---b a b,k l :
the Leibnitz rule applied to Ly (T .. q¢; - - - €jw, - - - w,), for arbitrary vectors
e}, ...,e? and covectors w!, ... w™:
al--am _ c at-Qm,
LVT ! bib, — U VCT ! by-bn
_Tc~~amb1mbnvcya1 — = Ta1~-~cblmbnvcvam

FT 0 Ny 0 A Ty, 0 (14)



independent of the derivative operator, and with components in a chart given by

010 _ k (SRR
L,T Ty = U akT " i gin
=T lmjl...jni?kv“ — e =T™ jl...jnﬁkuzm

AT, 050 e T 05,08 (15)

Action of diffeos' and relation to Lie derivatives. We began by using the flow
generated by a velocity field v to motivate the definition (6) of Lie derivative of a
vector field w. It is useful to see formally the way in which any vector field gen-
erates a flow and to use that flow to give a geometrical definition of Lie derivative.
Note first that the trajectory (worldline) of a fluid element is an integral curve of
the vector field u®, where:

Definition. An integral curve c(\) of a vector field £* is a curve whose tangent
vector at each point P = ¢()\g) is £(P).

In a chart {2}, the tangent &' to an curve c¢()\) has components aci(/\); and the

statement that ¢()\) is an integral curve has the form ﬁci()\) = &'e(N)].

Proposition. Any smooth vector field £ in an n-dimensional manifold M has a
family of integral curves, one through each point of M. 2

Example 1: As noted, the velocity field u® of a fluid has as its integral curves the
fluid trajectories parameterized by proper time. The 3-dimensional vector field v
of a stationary Newtonian flow has as its integral curves the flow lines, parameter-
ized by Newtonian time.

Example 2: The vector field 94 = x8, — y0, has as integral curves the lines of

constant ¢, r, 0,
A= (t,r, 0,0+ )

Note that when a vector field vanishes at P (e.g., 04 vanishes on the symmetry
axis x = y = 0) the integral curve simply stays at P: ¢(\) = P.

'A smooth, 1-1 map of a manifold onto itself or onto another manifold is called a diffeo (or
diffeomorphism).

2This result is equivalent to the existence theorem for solutions to ordinary differential equa-
tions, proved, for example, in Coddington and Levinson [1].



We can view the 4-dimensional flow of a fluid as a family of smooth maps of
the fluid to itself in the following way: In a given proper time 7 each point P in
the fluid moves along the fluid trajectory through P from ¢(0) = P to the point
¢(T). As in the case of the 4-velocity, we can use the integral curves of any vector
field to define a family v, of diffeos of a manifold to itself (for a star, the fluid has
a boundary, and the map v is from the support of the fluid to itself):

For each point P let ¢(\) be the integral curve of £* for which P = ¢(0). For a
fixed value )\, define the map v, by

OA(P) = c(A), (16)

That is, ¥, maps each point P to the point a parameter distance A from P along
the integral curve through P. The vector field £ is said to generate the family ¢,
of diffeos. In a chart {z'}, we have

. d .
§la)= ZUA@| - (17)
Example: The vector field 9, generates the family of diffeos
(t,r,0,0) — (t,r,0,0+ N,
rotations by )\ in the -y plane about the axis where 9, vanishes.

We can now repeat for manifolds the relation with which we began this sec-
tion, between the flow - the diffeos - generated by a vector field and the Lie deriva-
tive. We again need the action of a diffeo ) on a tensor 7'

The definition of ¢/T" is closely tied to our intuitive understanding of a fluid
flow. As in the flat-space discussion at the beginning of this section, we start with
functions and vectors. A function f of a fluid is conserved if the fluid drags the
function along with it. Define the dragged-along function ¢ f by requiring that
SF[G(P)] = f(P), or

Vf(P) = flv~(P)]. (18)

A function f on a fluid is Lie-derived by the fluid flow if

d
d_w‘rf = _Euf = O, (19)
T

where 1) is again the family of diffeos generated by the fluid velocity u“. Then,
for any smooth vector field £* and function f on a manifold M, one can define the
Lie derivative L¢ f by

d
Lef = —yaf, (20)
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where 1) is the family of diffeos generated by £°.

To extend the action of diffeos to vector fields, we consider a curve ¢(s) joining
two fluid elements, and let w® be its tangent vector. For small s, sw® can be
regarded as a connecting vector joining fluid elements a distance s apart. For a
fixed proper time 7, write ¢ = 1,. The fluid flow maps the curve ¢(s) to a curve
¥[c(s)], dragged along a proper time 7 with the fluid flow. The tangent vector w®
to c at a point P is in this way dragged along to a vector ¢w® tangent to ) o c at
Y (P), a proper distance 7 from P. Its components are

dl/

c
ds

d
Yl = ()| = 00

s=0
Equivalently, Yw#(P) = d,*w” [y~ (P)].

More generally, any diffeo ¢ of a manifold M to itself drags a vector field w*
to a vector field Yw?, with

Yw'(P) = 0p"w’ [~ (P)). (22)

A vector field w® is Lie-derived by a vector field £ if the family of diffeos ¢,
generated by &% leave w® unchanged, if ¥ w® = w?; and the Lie derivative is
again given by

= o, uw”(P).  (21)

s=0

d
Low® = —— @, 23
w ™ Yrw (23)
To check that this agrees with our earlier definition, we use Eq. (17) and ¢y =

identity, writing

d ; B i 31/13 J -1
) (Vaw |P)‘)\:O T dh |:85L'jw (W3(P) A=0
9 [dY j Ov5 i (5
= (d/\ )Aow (P)+ 90 |,_, Y (v31(P))
Using
d . B ow' dwa(P) P Y Oy} :
aw (¢)\ (P)) — axaT = _5 ajw and i 520 R
we have
d i = 08w — o'
wheo = 98w — o

= —,ngi.



The action of a diffeo on a covector o, can be found by writing it, at a point
P, as the gradient of a function. The covector field V,, f is in this way dragged to
a covector field YV, f = Vo (¢ f) = V,[f o ¢, with components given by

Vi )lp = 0i(f o v™)|p = 0jfly-1(pdb ™",
Then 1) drags any covector field o, to the covector field o, with components
Yoy(P) = 0np™ o[~ (P)]. (24)

Because a tensor is a sum of tensor products of vectors and covectors, a tensor
field T7%?,.. 4 is dragged to a tensor field {/T%?,...;, with components

VT a(P) = Ot - - 0 Opp ™0 - Qp ™1™ ", [ H(P)]. (25)

Finally, the Lie derivative of any tensor is given by

d
LT g = —aiﬂATambc--m (26)

and a calculation essentially identical to that for a vector field verifies that the
definition yields Eq. (20).

2 Integration, forms and densities

2.1 Introduction to integration on manifolds

In flat space, the area of a parallelogram spanned by the vectors A, Bis |[AxB| =
ey A2 BP]; and the volume spanned the vectors A, B, C is

|A x B C| = |ew.A*BC¢|. Similarly, in Minkowski space, requiring that the
volume spanned by four orthonormal vectors t<, %, y“, z“ be 1 implies that a
parallelepiped €2 spanned by any four vectors A%, B*, C*, D“ is

Q| = |eaps A“B?CYDO|.

The vectors are positively oriented if €,3,54* B?C7D° > 0.
The volume of an arbitrary region ) is obtained by adding volumes of in-

finitesimal parallelepipeds spanned by vectors along the coordinate axes, ej, e,
ey, €5 with lengths Az°, Az!, Az?, Ax3
AW = oA’ Art AP AL

1 " v g T
= ZEWUTAx’ Az’ Ax® Az (—1)",
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where (—1) = 1 when p, v o, 7 is an even permutation IT of 0, 1,2, 3 and (—1)!! =
—1 for an odd permutation. Because ea,gm;AaBﬂ C7D? is a scalar, the volume of
a region of flat space is given in any chart by

Q| = €0123 dxodxldedx3 = d4V
|
Q Q

The Jacobian, % , that relates the volume element in two different coordinate

systems arises from the coordinate transformation of the totally antisymmetric
tensor €,4+5:
ox* Oz dx” O0x" Ox
OV = 5070 9l 9 9B 7"~ |9
A curved space is locally flat in the sense that, in a locally inertial coordinate
system, the metric components are flat up to quadratic order in the coordinates.
By demanding that the volumes of small regions, to first order in the length of a
side, are those measured by a locally inertial observer using her local Minkowski
metric, one uniquely picks out the volume element

€0123-

d*'V = €p3 dz’dxtda?dad. 27

Because the totally antisymmetric tensor €po3 has the value /|g|, the volume
element can be written in the equivalent form 3

d*V = /|g| dz’daxtda?da®, (28)
and in n-dimensions
A"V = eypdat - dz" = \/|g| dxt - - - da”. (29)
In index notation, one writes
d'V = €,..5dS¥Y,

and thinks of dS®* having components

1
“dStT = i—zdx“dx”dx"df .

3The equality €p123 = \/m can be obtained as follows. In an orthonormal frame (e.g., in
locally inertial coordinates), €p123 and \/@ each have the value 1. Under a coordinate trans-
formation from z# to a'*, \/|g|, like €p123, is multiplied by the absolute value of the Jacobian
|02/0a'|, implying that for any positively oriented coordinate system, v/]g| = €p123-
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The integral,

[y = [ geaeear = [ 1 olart e oo
0 Q &

over a region € is is well-defined (that is, its value is independent of the choice of
coordinates), because, under a change of coordinates, the integrand on the right

side 1s multiplied by the Jacobian ‘% }

2.2 Forms and densities

The tensor ¢,..., and the quantity \/H that appear in the alternative ways of writ-
ing an integral are, respectively, an example of a form and a scalar density. As we
will see, there is a duality between forms and densities that underlies a equivalence
between Stokes’s theorem and Gauss’s theorem. We define forms and densities,
present the duality that relates them, and go on to the corresponding duality relat-
ing the integral theorems.

Forms.

Definition. A p-form o,..., is an antisymmetric, covariant tensor with p indices.
In particular, a scalar f is a O-form, a covariant vector A, is a 1-form, and an
antisymmetric 2-index tensor Fj;, is a 2-form.

Definition. The exterior derivative do of a p-form o is the p + 1 form

(dU)ab---c = (p + 1)v[aab...c]- (31

The factor p + 1 is the number of independent ways of distributing the p + 1
indices between V and o. The antisymmetry implies that do is independent of the
derivative operator; in any chart it has components

(do)ij... = (p+1)0;i0;. - (32)
Antisymmetry and the commutativity of partial derivatives imply for any form o
d*c = 0. (33)

Lie derivatives and exterior derivatives commute,

Lydo = dLyo, (34)
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and the two derivatives satisfy the Cartan identity,
Lyo=v-(do)+d(v-o),where (v-0)g.p := VCcq..b- (35)

Each relation can be proved by induction on p (the number of indices of o). For
an n-form in n dimensions, the second relation can be written as

Lvo—a---b = Vc(aa---bvc)a (36)

with special case
£v€a---b = Vc(Ea...bUC) = €a...bvc?)c. (37)

In n-dimensions, any nonzero n-form is functionally proportional to any other,
because each has only one independent component. In particular, because any n-
form o is given by 0,.., = fe,.., for some scalar f, the integral of an n-form is
well-defined, given in any coordinate system by

/ Ty dS¢ 0 = /Ul.mdxl <o da™.
Q

(Again the integral is well defined because a change of coordinates multiplies the
value of a p-form by the Jacobian of the transformation.)

Densities.

A scalar density | (of weight 1), by definition, transforms under a change of
coordinates in the same way as one component of an n-form in n dimensions:
f— ’ ggf, f. Just as one can write any n-form as a multiple of ¢,.., (once one is
given a metric), one can write any scalar density as a scalar multiple of \/m :

= fvldl, (38)

for some scalar f (namely f/ \/W). One can analogously introduce vector and
tensor densities by transformation laws that differ from those of vectors and ten-
sors by the Jacobian of the transformation: The change of the components of a
vector density under a coordinate transformation is given by j* — ’ g; g%: ik
, with 7% a vector

Again one can write any vector density in the form j* = j%4/|g
field.

The Lie derivative of a scalar or tensor density can be deduced from this fact
as follows (a metric-free derivation uses the geometric definition of Lie derivative
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and the fact that the action of a diffeo on a density differs from its action on a
tensor by the inverse Jacobian of the diffeo): We have

E\/—\/E_1lag

vgab - 5 ﬁvgalr
2 \/ |g| agab

Now the coefficient of the component g;; in the determinant g is the minor A% of

AU o -~ -~
gij» and the inverse metric is given by g = . Thus 5 N - gg"”, and
g 9ij
we have
Lo/l9l = 5V 919" Lyga = V19V 0" = Va(V/]g0?). (39)

Finally, Egs. (2) and (39) imply that the Lie derivative of a general scalar density
f1s
Lyf = va(fva)' (40)

Duality. A duality between p-forms oy, ..., and antisymmetric tensor densities
A% with ¢ = n — p indices (n the dimension of the space) is given by

At _17 lglem e oy, . @1

. .. 1, - ..
The inverse relation is 04,...q, = i—'|g| 1/26a1..AapblA..qub1 b where the sign is

positive for a positive definite metric, negative for a metric with Lorentz signature.
The divergence V - A, of an antisymmetric density,

(V- AP =V A7, (42)

is dual to the exterior derivative do of the form ¢ dual to A, and it is independent
of the choice of V, having components

Vi AT = g A (43)
In particular, the equation for the divergence of a vector density .4¢,
VoA = 9,A", (44)

is equivalent (once one has a metric) to the familiar relation V,A* = ﬁ@i(\ /1g|A").
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The relations (33), (34), and (35) are dual to the relations

V- (V-A) = 0, (45)
LNV - A = V- LA, (46)
LA = V- (vANA)+vAV-A, 47)

where (v A A)®¢ = (g + 1)vleA>,

On an n-dimensional manifold, integrals are naturally defined for n-forms or
for scalar densities, which can be said to be dual to their corresponding n-forms.
That is, the integrals

/wa...de“'"b = /wl...ndxl <--dz™  and /fd:cl <o da” (48)

are well defined because under a change of coordinates, each integrand is multi-
plied by the Jacobian of the transformation. The mathematical literature adopts
an index-free notation in which the integral of an n-form w over an n-dimensional

region () is written / w.
Q

2.3 Diffeomorphism invariance

The usual invariance of an integral under a coordinate transformation has as its
active equivalent the invariance of an integral under a diffeo. Let w,. ; be an n-
form on an n-dimensional volume V. With (V") the image of V" and Yw,_, the
dragged n-form, the invariance relation is

/ Yw = / w. (49)
(V) v

As in the case of coordinate transformations, invariance under diffeos follows
from the fact that the components of w,_;, change by a Jacobian. Intuitively,
the invariance follows from the physical equivalence of diffeo-related tensors on
diffeo-related domains.

A corollary for a family of diffeos, 1), is used to obtain the relation between
conservation of vorticity and conservation of circulation:
Let £ be the generator of the family /. Then

i
— w= [ Lew. (50)
dX Pa(V) 14
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The proof is immediate from Eq. (26), starting from Eq. (49) in the form

d d
w= [ Y w: — w:/ —w,\w:/ Lew.
/W(V) . /v dX wuWv)  JV dA o 4 S
In particular, for ¢, the family of diffeos describing the flow of a fluid with 4-

velocity u®, we have

L / Lo(hua)dl®, (51)

dr J.. .

where c is a closed curve in the fluid and ¢, = 1, (¢).

3 Gauss’s theorem and Stokes’s theorem

To understand the relation between differential and integral conservation laws for
relativistic stars and black holes, one needs the generalization of Stokes’s theorem
and Gauss’s theorem to manifolds. It is helpful to see quickly how these general-
izations go before we move to a more formal presentation. The simplest version
of Stokes’s theorem is its 2-dimensional form, namely Green’s theorem:

/S(axAy — 0,A,)dx dy = /(Axdx + A,dy),

C

where c is a curve bounding the 2-surface S. The theorem involves the integral
over a 2-surface of the antisymmetric tensor V, A, — V,A,. In three dimensions,
the tensor is dual to the curl of A: (V x A)* = €V, A,; and Stokes’s general-
ization of Green’s theorem can be written in either the form

/S(VXA)-dS:/CA-dl

or in terms of the antisymmetric tensor V, A, — V, A,

/ (Vo Ay — VpA,)dS™ = / Agdl®, (52)
S

[

where, for an antisymmetric tensor F;, F,,dS® means Fioda'da? + Fogda?da® +
F3dx®da!. Written in this form, the theorem is already correct in a curved space-
time. The reason is that the antisymmetric derivative V, A, — V, A, has in curved
space the same form it has in flat space: As we have seen, its components in any
coordinate system are just 9; A; — 0, A;.
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As a result, the flat-space proof of Green’s theorem and Stokes’s theorem,
based on the Fundamental Theorem of calculus ( fab f'(x)dz = f(b)— f(a)), holds
in curved space as well: Let S be a coordinate square in a surface of constant 3.
Then

/(81142 — 82A1)d:c1dx2 = /(Aldl’l + Agdl’Q),
S

C
with the boundary of the square traversed counterclockwise as seen from above
the square.
Gauss’s theorem,

/VaAad3x:/AadSa, (53)
1% S

with S a surface bounding the volume V' again has a simple generalization to
curved space. Although the divergence V,A® does not have components 0; A%,
the divergence of A* := A“,/g does: V,A* = §;A’. Again the flat-space proof
of Gauss’s theorem follows from an integration over a coordinate cube using the
fundamental theorem of calculus for the integral over each coordinate; and again
the integration over a coordinate cube has the identical form in curved space. If V'
is a coordinate cube

/ O A dz’ da? da® = /(Aldx2dx3 + A%dx'da? + APdx'da?);
v s

and any volume is approximated by an arbitrarily fine division into coordinate
cubes.
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3.1 Gauss’s theorem (divergence theorem)

In R", in Cartesian coordinates, the integral of a divergence over an n-cube can
be expressed as a surface integral after an integration by parts:

/ ;A " = / oA dxtda? - da + -+ / O, Atdx"dzt - - - g™
1% 1% 1%

= Aldx? - da" — Alde? - da™ + - -
81+V oh_V

+/ Ardxt - da™ T — / Ardat - da™
OnsV OV

= / A'dS;  (OV means the boundary of 1) (54)
1%
, 1
where dSZ = :l:Eij...kdl’J cee dl’km ,With
dS; = +dz?- - - dx™ for x! increasing outward,

dS, = —dx*---dx" , for 2" increasing inward.

More generally the integral over any volume V' in R" of a divergence is related
to a surface integral by

\% ov ov

where n; is the unit outward normal to S (along the gradient of an outwardly
increasing scalar) and dS the area element of S. In curved space the analogous
result follows immediately from the form of the divergence of a vector density:

/ V, Ay = / ) (\/@AZ) d"z. (55)
Q Q

To generalize Gauss’s theorem to an n-dimensional manifold A with metric
Jap, let €2 be an n-dimensional submanifold with smooth boundary 0€). Define a

surface element d.S, on OS2 by requiring that, in any chart z*, . .., 2™ for which x!
is constant on 0f2 and increasing outward,
dS; = Viz'/|g| dx? - - - dx™ = 6} +\/|g| dx® - - - da". (56)

This definition involves no choice of orientation (in fact 2 need not be ori-
entable, as long as the outward normal to 0f is well-defined.)
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Gauss’s Theorem in Curved Space. For any smooth vector field A* on M,

/VaAad”V:/ AdS,. (57)
Q o9

Sketch of proof. When (1 is a coordinate cube the steps in Eq. (54) go through as
written, with A’ replaced by A" = A’\/|g|:

/ A = Alda? - da™ — Avdz? - da™ + - -
0 81+V -V

—l—/ Ardxt - dae™ !t — / Ardxt - da™ !
OtV OV

o0

Decomposing the volume of integration into a set of coordinate cubes and taking
the limit as the size of each cube shrinks to zero, yields

/ VA"V = AdS,; (58)
Q o9

as usual, surface terms from cubes that share a surface cancel, because the out-
ward normal to one cube is the inward normal to the adjacent cube.

This form is correct for a region in a space with a metric, independent of the
signature of the metric. When 0¢ has a unit outward normal n, (along the gradient
of a scalar that increases outward), one can write d.S, in the form dS, = n,dS. In
this case,

/VQA“d”V = /A“nadS. (59)

Example: The integral form of baryon mass conservation V, (pu®) = 0 is

0 = /Va(puo‘)d4V:/ pu®dS,
Q o9

= /puo‘dSa— / pu®dS,
1%} 1%

Here the fluid is taken to have finite spatial extent, and the spacetime region {2 is
bounded by the initial and final spacelike hypersurfaces V; and V5. In a coordinate
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system for which V) and V5, are surfaces of constant ¢, with ¢ increasing to the
future, we have dS,, = V ,t+\/|g|d’x = 6,,\/|g|d*z on V5, dS,, = —0},/|g|d*z on

Vi, and
/Va(pua)d4V:/ put\/|g|d3x—/ pu'+/|gldx. (60)
Q Va Vi

If, on a slicing of spacetime one chooses on each hypersurface 1 a surface element
dS,, along +V ,t, the conservation law is then

My = / pudS, = constant. (61)
1%

Note that the fact that one can write the conserved quantity associated with a
current 7 in the form,

/ dSa = / Vgl dé.
\% 1%

means that there is no need to introduce n,, and /3¢ to evaluate the integral. This
fact is essential if one is evaluating an integral [ j*dS,, over a null surface, where
there is no unit normal. The flux of energy or of baryons across the horizon of a
Schwarzschild black hole, for example, can be computed in Eddington-Finkelstein
or Kruskal coordinates: In ingoing Eddington-Finkelstein coordinates v, r, ¢, ¢,
the horizon is a surface of constant », and we have

/ §*dS, = / i"v/|g] dvdode.

3.1.1 Generalized divergence theorem

The key to Gauss’s theorem is the fact that the divergence of a vector density has
the form 0; (\/ lg] Ai> or 9;A". This is true of any g-index antisymmetric tensor

density, Aot = pab \/m, and an analogous theorem holds. Because the text
uses only the case of a two-index antisymmetric tensor, the electromagnetic field
F°8_ and because the way one extends the proof will be clear, we will give the
generalization in detail for this case. The theorem now relates an integral over an
n — 1-dimensional submanifold S of M to an integral over its n — 2-dimensional
boundary 05"

/ V,A%dS, = / A®dS,,, (62)
S oS
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where the sign of dS, and the meaning of d.S,;, are defined as follows.
Let 21, ..., 2" be a positively oriented chart on a subset of M for which 2! is
constant on S, and with 2 constant on S and increasing outward. Choose the

sign of dS, by dS, = €a....dS"  or, equivalently, by requiring dS, = V,z'+/|g|dz?*- -

The volume element dS,;, is similarly chosen to satisfy, in our oriented chart,
dSu = V(uz' Vya?/|glda® - - - da”. (63)

Then in the coordinates’ domain,
/ V,A™dS, = / Vi(AY 2t/ |g))da? - - - da™. (64)
S S

But the last integrand is just the divergence of the vector density A® = A%V 2! lgl,
and we have already proved Gauss’s law for this case:

/ VAN Jglda? o da = [ AvdS,, (65)
S oS

where, in each chart, dS, = V,a2y/|g|dz?- - - dz". Finally, A’dS, = A®dS,,
whence Eq. (65) is identical to the generalized divergence theorem, Eq. (62).
Example (Electric charge). Let V' be a ball containing a charge Q. The 4-dimensional
form of Gauss’s law relates the charge () = fv j¢dS, in V to the electric flux

[ F*?dS,,5 through the 2-dimensional surface of V:

1 1
Q= / §%dS, = — / VaEdSy = — [ F*PdS,p. (66)
v a7 |y 4

™ Jov

Pick positively oriented coordinates ¢, 7,6, ¢ for which V' is a t =constant
surface and OV an r = constant surface. Then

1
Q=1 / F'"\/|gldode. (67)

Flat space:

tr T Q e 1 Q : Q
F :E:r_22> /Vj dSa:E/(T—Q)(TQSmQ)dﬁd(b:E/dQ:Q.

For a ¢-index antisymmetric tensor A% %, the generalized divergence theorem
takes the form [ V. A""*dS,., = [, AY"dS,...be.
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3.2 Stokes’s theorem

The divergence V,A® of a vector on an n-dimensional manifold is dual to the
exterior derivative (dw)qp...c. = NV [qWp...q) Of the (n — 1)-form w dual to A®. That
1s, with

Wh.o = A%qpec (68)

we have
€apcVaAL = (dw)gp...c. (69)
Because both sides of the equation are n-forms, one need only check one com-
ponent: nVws...,) = Vi(A%..n) — Va(A%iizm) — - — Vi (A%€hom_11) =

€12..nV¢A? The corresponding dual of the generalized divergence theorem above
is called
Stokes’s Theorem. Let w be an n — 1-form on an n-dimensional manifold S with

boundary 0. Then
/ dw = / w. (70a)
S s

/ (dw)gp...cdS™P e = / WhedS” . (70b)
S oS

In index notation,

The theorem implicitly assumes an orientation for 95 obtained from that of
S by requiring that, if a!,--- 2" is a positively oriented chart on S with 95 a
surface of constant 2! and 2! increasing outward, then 22, --- , 2" is a positively
oriented chart for 0S.
Proof. This dual of Gauss’s theorem follows quickly from Eq. (55), in the form

/ VA% .dS? ¢ = / A%dS,. (71)
S oS

Define A® by Eq. (68), and note that, with the orientation chosen above, dS, =
€ab.cdSY¢. Then

/ VaA%q..cdS™ ¢ = / A% gp.cdS” (72)
s oS
and, from Egs. (68) and (69), the result follows:
/ (dw) ap....dS™ ¢ = / Wp.edSPC O (73)
s oS
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Example: Stokes’s theorem in three dimensions.
Let A, be a 3-vector. (dA)y, = VoA — VA,

/ (Vo Ay — VpA,)dS™ = / Agdl®,
S

[

c the curve bounding S. As noted at the beginning of this section, this is equivalent
to the usual form of Stokes’s theorem in vector calculus:

/ VxA.-dS = / (e°V,A,) €aaedS™ = / (VoAp — VyA,)dS™ = / A-dl.
S S

S c
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