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Part 1: General Relativity

Special Relativity: the fundamental object is the light cone
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S. Weinberg, “Gravitation and Cosmology” (notations/conventions!)
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Special Relativity: invariance of the light cone under boosts
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Einstein’s equivalence principle rehabilitates accelerated observers
➠ covariance under general coordinate transformations

time

space

Stationary observer 
in gravitational field

Accelerated
observer (free fall)

=
inertial observer

ds2 = −c2 dt2 + d�x2

⇒ ds2 = gµν dx
µ dxν

metric: geometry 
of spacetime
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Generally covariant theories of gravity (including General Relativity) 
are based on the equivalence principle.

In these theories, the metric of spacetime (i.e., its geometry) has a dual role: 
    it both causes the motions of bodies...            and it is affected by them.

• What is the geometry of spacetime?
• What causes it?
• How can we make measurements to test our theories?
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This was immediately recognized to be the dual (the “projective dual”) to Pascal’s 
theorem of 1639 (Pascal was 16 at the time!), which states that:

If an arbitrary hexagon is inscribed in a conic 
section, then the three pairs of the continuations
of opposite sides meet in points that lie on a line.

Preamble: The pre-history of Differential Geometry
After Newton, physicists focused on Mechanics, Optics, Thermodynamics; Mathematics 
became obsessed with Analysis; Geometry was considered a second-rate subject.

Geometry’s comeback started c. 1806, when Charles J. Brianchon (21 at the time) and 
Gaspard Monge (“Comte de Péluse”) proved the following theorem:

The six sides of a hexagon circumscribes a conic section IFF the three lines 
common to the three pairs of opposite vertices have a point in common
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These results helped Karl Feuerbach, in 1822, to re-discover the properties 
of the 9-point circle (Brianchon did this first)...

SL=LC
SK=KB
SJ=JA

AE=EC
CD=DB
BF=FA

“the most beautiful 
theorem in Geometry 

since Euclid”

... and then to prove the Feuerbach Theorem...

S: Orthocenter
AG, BH, CI: Altitudes
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... which, in turn, inspired Jakob Steiner (Steiner/Geometry :: Gauss/Analysis) 
to discover, c. 1824, the laws of “inversive geometry”: to every point inside 
(outside) a circle, corresponds another, outside (inside) that circle, found by 
the transformation (for unit radius):

x� =
x

x2 + y2
, y� =

y

x2 + y2

This is a conformal transformation - it leaves the angles of crossing lines invariant.
(These types of transformations were later re-discovered by others, including Lord 
Kelvin, in the context of Electrostatics - as in the method of images.)
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The study of coordinate transformations and dualities (e.g., points/lines) boosted 
interest in Geometry, turning it into a more respectable field.
Then, c. 1826 Nicolai Lobachevski (and, independently, C. F. Gauss and János 
Bolyai) addressed one of the pillars of Euclid’s geometry: the “parallel postulate”:

     given a line L and a point P, there can be only one line through P
     that do not cross L.

Lobachevski showed this to be false, by constructing 2D, infinite “curved” spaces 
(he called them “imaginary geometries”) where more than one such lines exist.

1. Flat, infinite
(Euclidean)

2. Curved, finite
(closed/elliptical)

3. Curved, infinite
(open/hyperbolic)

L

P

Gauss-
Lobachesvki-

Bolyai 
space
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The flat (Euclidean), closed (i.e., spherical) and open (GLB) spaces are the only 
manifolds which obey a very simple principle: they are homogeneous and isotropic.

Homogeneity: space has the 
same properties at all points

* Ehlers, Gehren & Sachs (1968): if all freely falling observers measure the same properties of matter 
(e.g., the cosmic microwave background), then the Universe is homogeneous and isotropic.

(Stoeger, Maartens & Ellis 1995 extended this result to approximately homog. and isotropic spaces)

Homogeneity without isotropy

Isotropy: space looks the 
same in all directions

Isotropy without homogeneity

Cosmological principle: space is the same everywhere, looks the same in all directions
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Curvature!

Lobachevski’s work was one of the motivations for Georg Bernard Riemann, 
in 1854, to propose in his thesis a global view of Geometry as a study of 
manifolds of any number of dimensions, in any kind of space.

These geometries are essentially non-Euclidean: the distance between two points is 
given in terms of a metric, which can itself be an arbitrary, differentiable function.

ds2 = gµνdx
µdxν

The metric has a dual role:

i) it can be used to measure the invariant distances 
between any two points; and

ii) it determines (through the affine connections) how 

to transport geometrical data along any smooth path 
on the manifold - e.g.:

d Vµ

dλ
= Γα

µν
d xν

dλ
Vα ∆Vµ =

1

2
Rα

βµνVα

�
dxµxν
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 ,

 c=1

However, if space is 
curved, the derivatives of 
the connections cannot be 
made to vanish...

Hence, curvature cannot be 
“gauged away”

The freedom to choose coordinates means that, on any given point, we can always use 
the “Einstein elevator” and go to a system where the metric is locally Minkowski, and 
the connections vanish:

gµν → ηµν Γα
µν → 0

∂β Γ
α
µν �= 0 !

Rα
βµν =

∂Γα
βµ

∂xν
−

∂Γα
βν

∂xµ
+ Γα

σνΓ
σ
βµ − Γα

σµΓ
σ
βν

Γα
µν =

1

2
gαβ

�
∂ gβµ
∂xν

+
∂ gβν
∂xµ

− ∂ gµν
∂xβ

�
DV α

Dxβ
= V α

;β =
∂ V α

∂ xβ
+ Γα

µβV
µ

DVα

Dxβ
= Vα ; β =

∂ Vα

∂ xβ
− Γµ

αβVµ
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Newtonian limit
Small velocities...

Static, nearly 
Minkowski metric...

Geodesic equation

However, suppose we are given a space with some metric. What defines a freely falling 
(“inertial”) observer at any point in that space?

➟ Acceleration over paths that go through that point should vanish:

D2Xα

Dλ2
= 0 ⇒ d2 Xα

dλ2
+ Γα

µν
dXµ

dλ

dXν

dλ
= 0 Xα(λ)

Notice that the geodesic equation determines both the spatial coordinates and the 
time coordinate of the inertial observer.
➟ “Proper time” is the X0 = τ along a geodesic!

d2xα

dτ2
+ Γα

µν
dxµ

dτ

dxν

dτ
≈ d2xα

dτ2
+ Γα

00
dt

dτ

dt

dτ
= 0

Γα
µν → Γi

00 = −1

2
∇ig00 ⇒






d2xi

dτ2 = 1
2∇

ig00
�

dx0

dτ

�2

d2x0

dτ2 = 0

g00 = 1 - 2
φ

1
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This is the geodesic deviation equation. A closely related result is the Raychaudhuri 
Equation. Let u(τ) be a timelike geodesic, uμuμ=-1 , and its 4-divergence:

This divergence then obeys the Raychaudhuri equation:

where the rotation tensor is:

      and the shear tensor is:

We can also ask how any two geodesics that pass through the same point deviate from 
each other:

D2 δXα

Dτ2
= Rα

βµν δX
µ dXβ

dτ

dXν

dτδXα

θ = Dµu
µ = uµ

;µ

d θ

d τ
= −1

3
θ2 + ωµνω

µν − σµνσ
µν −Rµνu

µuν

ωµν =
1

2
(uµ;ν − uν;µ)

σµν =
1

2
(uµ;ν + uν;µ)−

1

3
θ(gµν + uµuν)

Rµν = Rα
µαν
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Problem #1

Let u be a geodesic curve. Show that: uµ uν ;µ = 0

Problem #2

Let u(t,s) be a family of geodesic curves, and v(t,s) the deviation vector for this family,

which implies that:                                           .

Use this to compute the acceleration of v over t:

and derive the geodesic deviation equation. 

(N.B.: here t is just a parameter, it is not x0 !)

uµ =
dXµ(t, s)

dt
, vµ =

dXµ(t, s)

ds

t

s

[u, v]µ = uνvµ;ν − vνuµ
;ν = 0

D2vµ

D t2
= uαDα(u

βDβ v
µ)
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Problem #3
Take a timelike geodesic, Uμ Uμ = -1 , in a spacetime described by the metric gμν . 

Show that hμν = gμν + Uμ Uν is the genuine metric of the spacelike hypersurfaces, as 
defined by this geodesic - and that hμν is a projection operator into that subspace.

Problem #4
(a) Solve Raychaudhuri’s equation for θ, assuming ω=σ=R=0. - i.e., flat spacetime.
(b) Show that the family of timelike geodesics Uμ=γ(v)[1, v] , with v = r/t , yields the 
solution for θ found in (a)
(c) What is the interpretation of θ? Is this well-defined for any r and any t?
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Part 2: Einstein’s Equations

Matter and gravity must be locked into a self-consistent dynamics

➟ Fundamental symmetries imply conservation laws (Noether’s theorem) 

Matter curves space, 
determines metric...

... metric determines the 
kinematics of matter...

Matter and metric jointly determine the dynamics
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Symmetries and conservation laws

Invariance under time translations/reparametrizations ➟ Energy conservation

Invariance under spatial translations/reparametrizations ➟ Momentum conservation

Invariance under spatial rotations ➟ Angular momentum conservation

But what about boosts (t-x rotations)? They are a symmetry as well...
Moreover, they mix energy and momentum! Pµ = mUµ , P �µ =

∂x�µ

∂xα
Pα

Energy conservation for classical point particle (non-relativ.):

S =

�
dtL(q, q̇) , L(q, q̇) =

1

2
q̇2 − V (q)

t → t+ δt

q → q + q̇ δt

q̇ → q̇ + q̈δt+ q̇δṫ

δS =

�
dt

�
∂L

∂q
δq +

∂L

∂q̇
δq̇

�
=

�
dt

�
q̇(q̈ δt+ q̇ δṫ)− dV

dq
q̇ δt

�

Energy = conserved “charge”

t → t + δt : “global” symmetryδSf
i =

�
q̇2δt

�f
i
−

� f

i
dt

d

dt

�
1

2
q̇2 + V (q)

�
δt = 0
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Gauge (local) symmetry of covariant theories: coordinate transformations

xµ → x�µ = xµ + ξµ

Under a coordinate transformation, the metric changes by:

gµν → g�µν =
∂x�µ

∂xα

∂x�ν

∂xβ
gαβ = gµν + ξµ;ν + ξν;µ +O(ξ2)

δgµν

In particular, if the metric is invariant under such a transformation, then ξ is a Killing 
vector field.

Problem #5
Take the 3-dimensional space with constant curvature (GLB) in spherical coordinates:

How many Killing vector fields does this space allow? What’s their meaning?

dΣ2
3 =

dr2

1− kr2
+ r2dΩ2
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But since:

The dynamics of matter should be independent of 
the coordinate system, and therefore the matter 
action should remain invariant under a coordinate 
transformation:

V µ
;µ =

1√
−g

∂µ
�√

−g V µ
�

⇒
�

V
d4x

√
−g V µ

;µ =
�√

−g V µNµ

�
Nµ:S(V)

Sm =

�
d4x

√
−gLm

δξSm =

�
d4x

�
∂
√
−gLm

∂gµν
δgµν +

∂
√
−gLm

∂(∂αgµν)
∂αδg

µν

�

δξSm =

�
d4x

√
−g

2
Tµν(ξ

µ;ν + ξν;µ) =

�
d4x

√
−g Tµνξµ;ν

� �� � � �� �

Tµνξµ;ν = (Tµνξµ);ν − Tµν
;νξµ

Why is it safe to assume 
that this vanishes??...

Therefore, we get the conservation law: Tµν
;ν = 0

Tμν :
• Energy
• Momentum
• Stresses/energy flows

=
1√
−g

∂ν
�√

−g Tµνξµ
�
− Tµν

;νξµ

δξSm =

�
d4x

�
∂ν

�√
−g Tµνξµ

�
− Tµν

;νξµ
�
→ 0
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The energy-momentum tensor (or stress-energy tensor)

In general, it turns out to be more instructive to construct the EMT from first 
principles. 

For a continuous media, the relevant quantities are: the 4-velocity, the energy density, 
the isotropic pressure, and the shear stress.
Consider a fluid element:

Tii - pressure p:
forces normal to surface

T0i - energy flow:
flux of energy/momentum 

across surface i

T00:
energy density

Tij - shear stress σij:
forces parallel to surface

�
• Symm., traceless part: 
    shear

• Anti-symm. part: 
    anisotropic stress

Uμ - 4-velocity:
displacement of 

the fluid element
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In Minkowsky spacetime a fluid at rest, without any stresses, is given completely in 
terms of its energy density and pressure:

T 00 = ρ T 0i = 0

Uµ = (1, 0, 0, 0)T ij = p δij

Or, in terms of the 4-velocity: Tµν = (ρ+ p)UµUν + p ηµν

A fluid in motion is still given by the same expression, if we replace the 4-velocity by:

Uµ → γ(v)(1,�v)

We then get that:

T 00 = γ2(ρ+ p)− p =
ρ+ p v2

1− v2

T 0i =
ρ+ p

1− v2
vi

T ij =
ρ+ p

1− v2
vi vj + pδij

⇒ ∂µT
µ0 =

∂

∂t

ρ+ p v2

1− v2
+

∂

∂xi

(ρ+ p) vi

1− v2
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The non-relativistic limit [i.e., neglect O(v2) terms], the conservation of the stress-
energy tensor is the so-called continuity equation:

∂µT
µ0 =

∂

∂t

ρ+ p v2

1− v2
+

∂

∂xi

(ρ+ p) vi

1− v2

� ρ̇+ �∇[(ρ+ p)�v] � ρ̇+ (ρ+ p) �∇�v

Why is it OK to 
neglect                 ?�∇(ρ+ p) · �v

But this is simply the well-known thermodynamic equation for energy conservation:

dE + p dV = 0

⇒ 1

V

d(ρV )

dt
+ p

1

V

dV

dt
=

dρ

dt
+ (ρ+ p)

1

V

dV

dt
= 0

where the volume changes according to the divergence of the velocity, 1

V

dV

dt
= �∇ · �v

Conservation of the stress-energy tensor:
• Energy conservation
• Euler equation{

Later!
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Problem #6
(a) A scalar field has the Lagrangean:

Find its stress-energy tensor. Hint:

(b) Find the Klein-Gordon equation as a result of stress-energy conservation.

(c) Find the Klein-Gordon equation from the variational principle in terms of the scalar 
field itself.

(d) Can you write this stress-energy tensor in terms of that for a “fluid”,

                                                                        ?

δ(
√
−g) =

1

2

√
−g gµνδgµν = −1

2

√
−g gµνδg

µν

L =
√
−g

�
1

2
gµν ∂µφ∂νφ − V (φ)

�

Tµν = (ρ+ p)Uµ Uν + p gµν
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Problem #7
(a) Starting from the Lagrangean for EM:

find the stress-energy tensor for the EM field.

(b) Show that this stress-energy tensor is conserved because of Maxwell’s vacuum 
equations in curved spacetime.

(c) Show that, in 4D, vacuum EM is “conformally invariant”, i.e., the solutions of Maxwell’s 
equations in vacuum are invariant under the transformation:

LEM =
1

4
FµνFµν , Fµν = ∂νAµ − ∂µAν

gµν → ḡµν = Ω2gµν
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The metric counterpart of the stress-energy tensor must be conserved as well. 
In fact, the Einstein-Hilbert action satisfies this constraint, and we have that:

Einstein’s equations, finally!

Because of the Cosmological Principle, to first approximation the left- and the right-
hand sides of this equation must be functions of time only.

The only free parameters are spacetime constants:

Metric:

Spatial curvature
Cosmological constant

Matter:

Masses
Coupling constants

(and, e.g., ratios of densities)

S =

�
d4x

√
−g

�
R

16πG
+ Lm

�
−→ Gµν = Rµν − 1

2
gµνR = −8πGTµν
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Spatial sections of constant curvature:

A. Friedmann (1922-24), G. Lemaitre (1927), H. P. Robertson (1935-36), A. G. Walker(1937)

ds2 = −dt2 + a2(t) dΣ2

k=0

k=-1

k=1

Part 3: Kinematics of FLRW spacetimes

dΣ2 = dr2 + r2dΩ2

dΣ2 =
dr2

1 + r2
+ r2dΩ2

dΣ2 =
dr2

1− r2
+ r2dΩ2

(r/R0)2

(r/R0)2

Def.: a(t0)=1
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Some other popular coordinates used to express FLRW spatial sections:

Polar coordinates: dΣ2 =
dr2

1− kr2
+ r2 dΩ2

k = ± (R0)-2

Hyperspherical coordinates:

r =
1√
k

sin
�√

k χ
�

⇒ dΣ2 = dχ2 +
1

k
sin2

�√
k χ

�
dΩ2

Conformal-Cartesian coordinates:

r =
R

1 + k
4R

2
⇒ dΣ2 =

dR2 +R2dΩ2

(1 + k
4R

2)2

The most common choice is the second one, since in hyperspherical coordinates the 
radial geodesics are trivial.

Spatial 
sections are 
homogeneous, 

isotropic 
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Problem #8
Show that the 3D metric of FLRW spatial sections in conformal-Cartesian coordinates, 

has a Riemann tensor given by:

Rijkl = k (γilγjk − γikγjl)

Problem #9
The 3D volume can be defined as:

What is the volume of a 3-sphere? Show that it reduces to the usual result when the 
spatial curvature is small.

V =

�
d3x

�
det γ

dΣ2 = γij dx
i dxj , γij = δij

�
1 +

1

4
k �x 2

�−2
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Geodesics in FLRW spacetime

Let’s take the FLRW metric in conformal-Cartesian coordinates:

ds2 = −dt2 + a2(t) dΣ2

dΣ2 = γij dx
i dxj , γij = δij

�
1 +

1

4
k �x 2

�−2

The connections are: Γ0
00 = Γi

00 = Γ0
i0 = 0

Γ0
ij = ȧ a γij , Γi

0j =
ȧ

a
δij

Γk
ij =

k

2

�
1

1 + k
4�x

2

�
×
�
δijx

k − δikx
j − δjkx

i
�

Problem #10
Compute the Riemann tensor of FLRW in this coordinate system. How many independent 
components does it have?
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The solution to this set of equations is: Uµ = Uµ
0 = (1, 0, 0, 0)

A particle initally at rest in these coordinates has the 4-velocity:

Uµ
0 =

dxµ

dτ

����
0

= (1, 0, 0, 0)

The geodesic equation is: dUµ

dτ
+ Γµ

αβU
αUβ = 0

which means the following set of equations:

µ = k → dUk

dτ
+ 2Γk

0i U
0U i + Γk

ij U
iU j = 0

µ = 0 → dU0

dτ
+ Γ0

ij U
iU j = 0

Hence, a particle at rest in any point in this spacetime will remain in the same 
position! This is the kinematic meaning of “homogeneity and isotropy”!
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Problem #11

Consider a particle moving with some initial “peculiar” velocity v0 :

Find the solution to the geodesic equation in this case. Make approximations if 
absolutely necessary. What happens with the peculiar velocity as a function of time?

Uµ
0 = γ(v0)(1,�v0)
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The speed with which these particles “at rest” are moving is given by:

v =
d

dt
∆l =

ȧ

a
∆l

FLRW and expansion

Consider two particles at rest on different spatial locations. 

The (spacelike) distance between them is given, at a t=constant hypersurface, by:

ds20 = −dt2 + a2(t) dχ2 = 0

Consider now a light ray propagating in the radial direction - and let’s use the 
hyperspherical coordinates. We have:

⇒ χ =

� t0+∆t

t0

dt

a(t)

∆s2 = ∆l2(t) = a2(t)(�x0 − �x1)
2 = a2(t)∆�x 2

xi
0 xi

1

a(t)constant!

t0

t0+Δt

ȧ

a
≡ H

Hubble parameter
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Cosmological redshift

Suppose we have a light source emmitting radiation with a frequency ν0 at the radial 
position r0, and at the instant t0. A time T0 later, t0+T0 , the light source will be 
emmitting radiation at the same phase (+2π) as in t0 .

The light ray which was emmitted at t0  is then observed at a position r1 . 

t0

t0+Δt

r0 r1

t0+T0

t0+Δt+T1

χ =

� t1

t0

dt

a(t)
=

� t1+T1

t0+T0

dt

a(t)

⇒
� t0+T0

t0

dt

a(t)
=

� t1+T1

t1

dt

a(t)
⇒ T0

a(t0)
� T1

a(t1)
⇒ ν0

ν1
=

a(t1)

a(t0)

emmitted 
here

observed 
here
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In terms of the wavelength of the light, we have: λobs

λemm
=

a(tobs)

a(temm)

The “redshift” (or “blueshift”) is defined as: 1 + z =
λobs

λemm
=

νemm

νobs

⇒ z =
λobs − λemm

λemm
=

νemm − νobs
νobs

z =
∆λ

λ
ambiguous!

λ

Absorption lines 
at the Sun

Same lines at a 
distant galaxy

Any emmission or absorption line can be 
used to compute the redshift!
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Typically, we observe here on Earth (r=χ=0, t=0) the light emmitted by distant galaxies 
at time t.

Since by convention the scale factor today is a0 =a(t0)=1, we have that the redshift of 
those distant galaxies is given by:

Example: SDSS galaxy at z=0.1003

At rest, some of these lines are:

OII : 3727 Å
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z =
λobs − λ

λ
=

a0
a(t)

− 1 =
1

a(t)
− 1

Hα : 6563 Å

Hβ : 4861 Å



Another example: quasar (“quasi-stellar object”)

Model (average quasar, restframe) Actual quasar (2dF survey)

Cosmological redshift and Doppler effect are manifested in the same way!
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Alternative derivation of the redshift

Since light is a null geodesics, we have:

with:

lµ = (E = hν , �p)

lµlµ = gµν l
µ lν = 0

Let’s use the conformal-Cartesian coordinates, and assume that the light ray is 
propagating in the direction X:

dl0

dτ
+ Γ0

ij l
ilj = 0

⇒ E =
a p

1 + k
4X

2

E =
dT

dτ
, �p =

d �X

dτ

⇒ dE

dτ
+

da

dτ

1

E

1

a
E2 = 0

⇒ dE

da
+

E

a
= 0 ⇒ E ∼ 1

a

ν ∼ 1

a
λ ∼ a

⇒ dE

dτ
+

da

dT
a

1

1 + k
4X

2
p2 = 0

⇒ dE

dτ
+

da

dτ

dτ

dT
a

1

1 + k
4X

2
p2 = 0
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Problem #12
A quasar has a broad MgII emmission line at 5310 A. The observed width (FWHM - full 
width at half maximum) of that line is 70 A.
Given that, at rest, the MgII line lies at 2798 A, and its width is negligible, find: 
(a) The quasar’s cosmological redshift.
(b) The averaged rotation velocity of the accretion disk near the region that emmits the 
MgII line.
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Cosmological distance measurements

Angular distance (aka: angular diameter distance)

We can employ an object of known transversal length to estimate the distance to it 
from its angular size:

dA

∆θ b

In FLRW these two distances are related. In polar and hyperspherical coordinates:

dA =
b

∆θ

ds2 = −dt2 + a2(t)

�
dχ2 +

1

k
sin2

�√
k χ

�
dΩ2

�

ds2 = −dt2 + a2(t)

�
dr2

1− kr2
+ r2dΩ2

�

= b2

= b2 dA = a r =
r

1 + z

dA =
1

1 + z

1√
k
sin

�√
k χ

�
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Luminosity distance

We can employ an object of known luminosity to estimate the distance.

Lf f =
L

4π d2L

dL

In FLRW the photons from the light source suffer two nontrivial effects:
1. Their energy falls (redshifts) as E~1/a , and
2. The frequency with which they arrive is also “redshifted” by a factor of 1/a .
Hence, the observed flux (power) is given by:

f0 =

�
ae
a0

�2 L

4π r2
⇒ dL =

r

ae
= (1 + z) r
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Proper motion distance

If a source is moving with speed Vt , transverse to the line of sight, then over some 
time interval Δt it will move a distance Δd: 

∆d = Vt ∆t = Vt
a(t)

a0
∆t0

The angular distance that this source will travel in that time is given by the same 
reasoning used in the angular-diameter distance:

∆θ =
∆d

r/(1 + z)
=

Vt ∆t0/(1 + z)

r/(1 + z)
=

Vt ∆t0
r

This relation allow us to define the proper motion distance as:

dM =
Vt

∆θ/∆t0
(= r)

∆θ ∆dVt

To use this, we 
have to know the velocity!
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Distance “duality” relations
From their definitions, we have that, for instance (Etherington, 1933):

dL
dA

= (1 + z)2

What are the conditions under which this is true?    (Bassett & Kunz 2004)
(a) photon number is conserved (“transparency”)
(b) metric theory of gravity
(c) photons travel on unique null geodesics

Check?...
(e.g., Avgoustidis, Jimenez & Verde, 2009)

dL
dA

= (1 + z)2+�
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Distance “consistency” relations            (Clarkson, Bassett & Hui-Ching Lu, PRL 2008)

Suppose we can measure independently H(z) and, e.g., dL(z) . Then:

dL(z) = (1 + z) r =
(1 + z)√

k
sin

�√
kχ

�
=

(1 + z)√
k

sin

�√
k

�
dt

a(t)

�

=
(1 + z)√

k
sin

�√
k

�
da

a2 H

�

a =
1

1 + z

da = − dz

(1 + z)2
= − (1 + z)√

k
sin

�√
k

� 0

z

dz
�

H(z�)

�

=
(1 + z)√

k
sin

�√
k

� z

0

dz
�

H(z�)

�

Therefore, it should be true that:

k =
1− [H(z)χ�(z)]2

χ2(z)

The derivative should be zero!

C(z) = 1 +H
2(χχ�� − χ�2) +HH

�χχ� ?
= 0
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Angular and Luminosity distances: examples

Using the null radial geodesic,

a ∼ t2/3
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Problem #13

Consider a universe where the scale factor is a=(t/t0)2 . Take t0=1 for simplicity.

(a) A light ray travels from an initial position χe at te, and arrives at the origin at t0. Do 
all light rays arrive at the origin, independently of χe and of te ?

(b) Compute χe(t) in this model.
(c) Compute dL(z) in this model.
(d) Compute dA(z) in this model.
(e) Make (qualitative) plots for these three quantities.

(f) A light ray observed today was emmitted at z=1000 . At what time (relative to t0) 
was it emmitted? And what was the comoving radius at the place where it was 
emmitted?

(g) A spherical galaxy at z=1 has proper radius R. What angle in the sky does it 
subtend, when the spatial section has curvature k=+1, -1 and 0?
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Cosmography

Let’s write the comoving radius as:

χ =

�
dt

a(t)
=

�
dt

da

da

a
=

�
da

a2H

a(t) = 1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2 + . . .

a =
1

1 + z

da = − dz

(1 + z)2
=

�
dz

H(z)

Inverting, we obtain:

(t− t0) = −H
−1
0

�
z −

�
1 +

1

2
q0

�
z
2 + . . .

�

H(t) = H0 [1−H0(1 + q0)(t− t0) + . . .]

Substituting back into the first expression and integrating, we obtain:

Inv
er
t l

im
its

 

of 
int

eg
rat

ion

χ � H
−1
0

�
z − 1

2
(1 + q0) z

2 + . . .

�

H0: Hubble 
parameter now

q0: deceleration 
parameter

1/H0: cosmological 
length scales
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The luminosity-distance is therefore expanded as:

Or, in terms of the flux measured from an object of known luminosity, we have:

f =
L

4π d
2
L(z)

=
LH

2
0

4π z2

�
1 +

1

2
(q0 − 1)z + . . .

�

The people that actually measure these fluxes (that would be the astronomers) have 
chosen (since Hipparchus, 2000 years ago!) to use a kind of logarithmic scale, called 
magnitudes. The relative magnitude (or brightness) of two objects is defined as:

∆m12 = m1 −m2 = −2.5 log10
f1
f2
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dL(z) = H
−1
0

�
z +

1

2
(1− q0)z

2 + . . .

�



As in the “decibel” scale, there is a “standard object” whose luminosity serves as the 
standard magnitude, relative to which all other magnitudes are measured.

This object is the star Vega (a very stable, very bright star).
Here are some of these “apparent magnitudes”:

Apparent magnitude (m) Object
-27 Sun
-13 Full Moon
-5 Venus
0 Vega*, Saturn
6 Limit of human eye
8 Neptune
14 Pluto
20 Galaxy at z=1
27 Visible light limit of 8m telescope
32 Visible light limit of the HST telescope

* To be precise, the modern standard is a “theoretical” Vega. The real Vega was much better observed in 
recent times, and in terms of this modern definition, mVEGA = 0.03 !

m ≡ −2.5 log10
f

fVega
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μ
distance modulus

Absolute magnitude

We can also define an “absolute” brightness, by placing any object at a single distance 
from us. In Astronomy, the “standard” distance is 10 pc, where 1 pc=3.26 light-years. 
We have, then:

M ≡ m+ 2.5 log10
f

f10 pc
= m− 5 [log10 dL(pc)− 1]

� �� �

M = m− µ

Hence, if the distance is known and the relative magnitude is measured, we can 
compute the absolute magnitude of an astronomical object.

Conversely, if the absolute magnitude of an object is known, and we measure its 
relative magnitude, we can infer its distance modulus - and its luminosity distance!
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Cosmography in real life:

Standard candle: objects whose absolute luminosities are known (or can be 
calibrated with ancillary data, such as periodicity).
Ex.: Cepheid variable stars, Tully-Fisher relation, surface brightness 
fluctuations, fundamental plane, supernovas

Standard ruler: objects whose sizes are known (or can be calibrated with 
ancillary data, such as periodicity)
Ex.: Baryon Acoustic Oscillations, redshift distortions (see Caldwell’s talk)
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Cosmography example #1: The Hubble diagram and the HST Key Project

Hubble was the first (1929) to employ Cepheid variable stars to map redshift v. distance:

=
1000Km/s

2Mpc
= 500

Km

sMpc
!!!H0 → ∆v

∆χ
� cz

∆χ

wrong 
distances!
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More recently, the Hubble Space Telescope “Key Project” used basically all the available 
standard candles to draw the Hubble diagram with much higher precision.

Freedman et al. 2001

(Cepheids only)
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Compare Hubble’s original plot with Freedman’s...

Present constraints on the Hubble parameter (HST Key Project only):

H0 = 72± 8Km/s/Mpc
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As everyone here knows, the Hubble diagram 
implies that the Universe is expanding!

t=0

Not only that: the Universe 
appears to have started at a 
certain point in time in the 
past (~13.7 Billion years ago)!
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In fact, the Universe could not be both infinite and eternal, otherwise the sky would 
be infinitely bright! This is known as Olbers’ paradox (1823) - although the idea dates 
back to Thomas Digges (16th century) and J. Kepler himself (c. 1610).         Ref.: Wikipedia

The way out was provided by, e.g., Lord Kelvin, 
and also by E. A. Poe, in his essay Eureka 
(1848):

“Were the succession of stars endless, then 
the background of the sky would present us 
a uniform luminosity, like that displayed by 
the Galaxy – since there could be absolutely 
no point, in all that background, at which 
would not exist a star. The only mode, 
therefore, in which, under such a state of 
affairs, we could comprehend the voids which 
our telescopes find in innumerable directions, 
would be by supposing the distance of the 
invisible background so immense that no ray 
from it has yet been able to reach us at all.”
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Cosmography example #2: Type Ia supernovas

Supernovas are the largest stellar explosions in the Universe.
The light from these explosions can easily outshine an entire galaxy!

SN 1994D

NGC 4526
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Supernovas come in several types, but basically:

Type I - explosion of a CO white dwarf                     Type II - core-collapse
(Explossion triggered at approx. same masses)
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Supernovas are further categorized in terms of their light curves (i.e., how the 
explosion happens in time), and also in terms of their spectra (or SEDs - Spectral 
Energy Distributions).

Light curves of several types of SNs Typical SED of a Type Ia SN
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Type Ia supernovas are especially interesting: they seem to have very similar 
brightnesses, indicating that the mass of the progenitors are similar

Bright: ~10 billion suns, peak in optical
56Ni -> 56Co -> 56Fe  decay is the fuel that powers SN

Duration: a few weeks

Standardizable: ≤6% in distance

Brightness and homogeneity make them the best known 
measure of distance
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In 1993, after observing several nearby Type Ia SNs, M. Phillips (Ap. J. Lett. 413: L105-
L108) noticed a curious relationship between their light curves and their absolute 
magnitudes. According to this relationship:

MB = −21.726 + 2.698∆m15(B)

Phillips’ 
original
diagram

“stretch” 
factor
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The Phillips relation was further 
refined, with corrections depending on 
the “color” of the supernova.

This relationship is entirely 
phenomenological - there is no well-
understood theory behind it.
However, it seems to work incredibly 
well!

Therefore, we can define a “distance 
modulus” for Type Ia supernovas, 
which is a measure of the luminosity 
distance:

µB = mb −MB + α∆m15 + β c

µB → 5 log10
dL

10 pc

dL(z) = (1 + z)χ = H0

�
z +

1

2
(1− q0)z

2 + . . .

�
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So, we can use Type Ia supernovas to write a diagram of distance v. redshift - or, 
better still, of the (corrected) distance modulus v. redshift:

µB → 5 log10
dL

10 pc

Conley et al. 2010

Offset: MB - 5 log10 (c/H0/10pc)

-> Shape of the curve can 
determine q0 !

242 SNLS SNe Ia, 123 Low-z SNe Ia

93 SDSS SNe Ia, 14 HST SNe Ia

472 SNe Ia total

Observations:

q0 = −0.5± 0.2

dL(z) = (1 + z)χ = H
−1
0

�
z +

1

2
(1− q0)z

2 + . . .

�

The Universe is not only 

expanding - it’s 

accelerating!
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However, a simple measurement of q0 is far from ideal, since the next-order 
term (“jerk”, j0) has already started to become important as the data became 
more abudant, and more accurate, over the past ~7 years.

Although there are ways to improve cosmographical methods, we really need to 
have a dynamical description of the expansion, which can allow us to check the 
expansion law against other observables, like the matter/energy content of the 
Universe, the evolution of its large-scale structure, etc.

-> Next class: Dynamics of FLRW models
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