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Part 1: General Relativity

Bibliography:
C. Boyer, A History of Mathematics”
H. Lorentz, A. Einstein, H. Minkowski & H. Weyl, "The Principle of Relativity”
S. Weinberg, "Gravitation and Cosmology” (notations/conventions!)

Special Relativity: the fundamental object is the light cone

Light cone:

ds® = —Adt? +di°? = 0




Special Relativity: invariance of the light cone under boosts

time

time’
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dz# — dz'™™ = A" dz”
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Worldline of observer with
dx/d=0 , dx’/d’=-v

Worldline of observer with
dx’/d’=0 , dx/dt=v
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1. General Relativity

2. Einsteins equations

3. Kinematics of FLRW

4. Dynamics of FLRW

5. Thermal history

6. Big Bang, horizons, inflation, and all that
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Preamble: The pre-history of Differential Geometry

After Newton, physicists focused on Mechanics, Optics, Thermodynamics; Mathematics
became obsessed with Analysis; Geometry was considered a second-rate subject.

Geometry's comeback started c. 1806, when Charles J. Brianchon (21 at the time) and
Gaspard Monge ("Comte de Péluse”) proved the following theorem:

The six sides of a hexagon circumscribes a conic section IFF the three lines
common to the three pairs of opposite vertices have a point in common

This was immediately recognized to be the dual (the “projective dual”) to Pascals
theorem of 1639 (Pascal was 16 at the time!), which states that:

If an arbitrary hexagon is inscribed in a conic
section, then the three pairs of the continuations
of opposite sides meet in points that lie on a line.




These results helped Karl Feuerbach, in 1822, to re-discover the properties
of the 9-poin1' circle (Brianchon did this first)...

.. and then to prove the Feuerbach Theorem...

“the most beautiful
theorem in Geomeftry
since Euclid”

AE=EC
CD=DB
BF=FA

SI=LE
SK=KB
SI=JA

S: Orthocenter
AG, BH, CI: Altitudes



.. Which, in turn, inspired Jakob Steiner (Steiner/Geometry :: Gauss/Analysis)
to discover, c. 1824, the laws of “inversive geometry”: to every point inside
(outside) a circle, corresponds another, outside (inside) that circle, found by
the transformation (for unit radius):

/ & / Y

7 T ] T
332_|_y2 Y 332_|_y2

This is a conformal transformation - it leaves the angles of crossing lines invariant.
(These types of transformations were later re-discovered by others, including Lord
Kelvin, in the context of Electrostatics - as in the method of images.)



The study of coordinate transformations and dualities (e.g., points/lines) boosted
interest in Geometry, turning it into a more respectable field. @

Then, c. 1826 Nicolai Lobachevski (and, independently, C. F. Gauss and Janos
Bolyai) addressed one of the pillars of Euclids geometry: the “parallel postulate”:

given a line L and a point P, there can be only one line through P
that do not cross L.

Lobachevski showed this to be false, by constructing 2D, infinite "curved” spaces
(he called them “imaginary geometries”) where more than one such lines exist.

Gauss-
Lobachesvki-
Bolyai
space

1. Flat, infinite 2. Curved, finite 3. Curved, infinite
(Euclidean) (closed/elliptical) (open/hyperbolic)



The flat (Euclidean), closed (i.e., spherical) and open (GLB) spaces are the only
manifolds which obey a very simple principle: they are homogeneous and isotropic.

Homogeneity: space has the Isotropy: space looks the
same properties at all points same in all directions
Homogeneity without isotropy Isotropy without homogeneity

Cosmological principle: space is the same everywhere, looks the same in all directions

* Ehlers, Gehren & Sachs (1968): if all freely falling observers measure the same properties of matter
(e.g., the cosmic microwave background), then the Universe is homogeneous and isotropic.

(Stoeger, Maartens & Ellis 1995 extended this result to approximately homog. and isotropic spaces)



Lobachevskis work was one of the motivations for Georg Bernard Riemann,
in 1854, to propose in his thesis a global view of Geometry as a study of
manifolds of any number of dimensions, in any kind of space.

These geometries are essentially non-Euclidean: the distance between two points is
given in tferms of a metric, which can itself be an arbitrary, differentiable function.

N
ds? = g,,dz"dx” N ]
: R \
The metric has a dual role: (\ \ \\

i) it can be used to measure the invariant distances \ AC\x\rva’r&re!j
between any two points; and | ~T J b
i) it determines (through the affine connections) how 1

to transport geometrical data along any smooth path o /‘/ /
on the manifold - e.g. |
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The freedom to choose coordinates means that, on any given point, we can always use

the “Einstein elevator” and go to a system where the metric is locally Minkowski, and

the connections vanish:

Guv =7 Mpv

\
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However, if space is

curved, the derivatives of
the connections cannot be
made to vanish...

0TS, #£0 !

Hence, curvature cannot be
"gauged away”



However, suppose we are given a space with some metric. What defines a Freely falling

(“inertial”) observer at any point in that space?

= Acceleration over paths that go through that point should vanish:

(s @iuc]\o)ﬂ

Notice that the geodesic equation determines both the spatial coordinates and the

time coordinate of the inertial observer.

= “Proper time” is the X°=17 along a geodesic!

Newtonian limit

Small velocities dz® 4 re dzh dz”  d*z° 4 dt dt
54, d7_2 uv dT dT ~ dT2 OO dT d7-
Static, nearly A A, =
Minkowski metric... IR 5 [ —§Vzgoo L
d2$0

dr?2

X"m)
=0 9004
%Vzgoo( 1 )2
0



We can also ask how any two geodesics that pass through the same point deviate from
each other:

0 D26 X dXP dXV
o O X
/oX D772 A dr dr

This is the geodesic deviation equation. A closely related result is the Raychaudhuri
Equation. Let u(7) be a timelike geodesic, u#u,=-1 , and its 4-divergence:

£ G T
H—Duu = u’,

This divergence then obeys the Raychaudhuri equation:

d_é’_ 1
d TR

where the rotation tensor is: Wur = 9 (u,u;V o Uz/;p,)

and the shear tensor is: Ouv — 5 (uu;v T uv;u) T o



Problem #1

Let u be a geodesic curve. Show that: ut Uy sy = 0

Problem #2

Let u(z,s) be a family of geodesic curves, and v(z,s) the deviation vector for this family,

- dXH[Ess)
A

Lo S )
£ ds

ut

)
o e

which implies that: |u,v]" = u"v, —v"ul, =0 .

Use this to compute the acceleration of v over f:
D?yH
D t?

and derive the geodesic deviation equation.

= u*D,(u’Dg v*)

(N.B.: here t is just a parameter, it is not x0!)




Problem #3

Take a timelike geodesic, U+ U,= -1 , in a spacetime described by the metric g.» .

Show that hy = guww + U, Uy is the genuine metric of the spacelike hypersurfaces, as
defined by this geodesic - and that /., is a projection operator into that subspace.

Problem #4

(a) Solve Raychaudhuris equation for 0, assuming w=0=R=0. - i.e., flat spacetime.

(b) Show that the family of timelike geodesics Ut=y(v)[1, v] , with v=r/t, yields the
solution for 6 found in (a)

(c) What is the interpretation of 6? Is this well-defined for any r and any ?




Part 2: Einsteins Equations |

Matter curves space,
determines metric...

Matter and metric jointly determine the dynamics

Matter and gravity must be locked into a self-consistent dynamics

= Fundamental symmetries imply conservation laws (Noether’s theorem)



Symmetries and conservation laws

Invariance under time translations/reparametrizations = Energy conservation
Invariance under spatial translations/reparametrizations » Momentum conservation

Invariance under spatial rotations " Angular momentum conservation

But what about boosts (t-x rotations)? They are a symmetry as well...

ox'H
Moreover, they mix energy and momentum! e e D 8:5304 i
Energy conservation for classical point particle (non-relativ.): t —t+ ot
q—q-+qot
T /dtL(q, R e o s T G — G+ Got + ot
oL OL e S av .
5S:/dt —30q + —90¢ :/dt {q(q&—l—q&)——q&
dq 04 dq

Energy = conserved “charge”

f
Fo M on AT d |1 5 B
0. S [q//ﬂz _/Z, dt% [5(1 i V(Q)] ot =0 t — t+ Ot : “global” symmetry



Gauge (local) symmetry of covariant theories: coordinate transformations

ot — gt = g -

Under a coordinate transformation, the metric changes by:

ox'* ox'v

58 RS (11 ;v v 2

vV v
gl S

d0gH”

In particular, if the metric is invariant under such a transformation, then & is a Killing
vector field.

Problem #5
Take the 3-dimensional space with constant curvature (GLB) in spherical coordinates:
dr?
435 = 2d?
I =gking 78

How many Killing vector fields does this space allow? What's their meaning?




The dynamics of matter should be independent of !

Vi = \/——_g o (\/__QVM)
the coordinate system, and therefore the matter

: il : i = [ d*zx/—qgV* = (/=g VHIN,
action should remain invariant under a coordinate /V VS )N :5(V)
transformation:

S e /d4x —q e Why is it safe to assume

that this vanishes??...

= [ s [ALT g 2T g

0t Sm = /d4x ” 2_9 ToolC G = /d4x v g L

1
But since: THNE, 5 = (480 |0 Nl ST = \/—_—gau (\/ —g Tqu) i ey

SeSm = [ da [0, (VERAE,) = THE,] 0

Therefore, we get the conservation law: 7" =0



The energy-momentum tensor (or stress-energy tensor)

In general, it turns out to be more instructive to construct the EMT from first
principles.

For a continuous media, the relevant quantities are: the 4-velocity, the energy density,
the isotropic pressure, and the shear stress.

Consider a fluid element:

Ut - 4-velocity:

/—-) displacement of

the fluid element

energy density

T;i - pressure p:
forces normal to surface

e Symm., traceless part:

Ti; - shear stress Ojj: shear

To; - energy flow: forces Pardllel to surface * Anti-symm. part:
flux of energy/momentum anisotropic stress

across surface i



In Minkowsky spacetime a fluid at rest, without any stresses, is given completely in
terms of its energy density and pressure:

TOO — TOi B
T :p&ij Ut =(1,0,0,0)
Or, in terms of the 4-velocity: T"" = (p+ p)U*U" + pn*”

A fluid in motion is still given by the same expression, if we replace the 4-velocity by:

U} — ~v(v)(1, )

We then get that:

PPy
T =0 (o HDE e el ®
o p DRy ooy 9 (p+p)
T v’ = 9, T = .
1 — v? S ot 1 —? +5’xz 1 — 92
Ti = LD i | g



The non-relativistic limit [i.e., neglect O(v?) terms], the conservation of the stress-
energy tensor is the so-called continuity equation:

5’T“’0 9, —I—W (p+p)v

8751%’ 8:137/1/%‘

~p+V(p+p) o] ~p+(p+p) V7

But this is simply the well-known thermodynamic equation for energy conservation:

dE+pdV =0
1 d(pV) 1dV  dp 1 dV
TV @ PVd ik
where the volume changes according to the divergence of the velocity, Vcii_v

* Energy conservation
Conservation of the stress-energy tensor:
* Euler equation

V-9



Problem #6

(a) A scalar field has the Lagrangean:

L=+v-g |59 0.00.¢ — V(¢)
e : 1 - | V
Find its stress-energy tensor. Hint: d(\/—¢g) = 5 V= 0.0"20q,, = o V=9 9,,0g"
(b) Find the Klein-Gordon equation as a result of stress-energy conservation.

(c) Find the Klein-Gordon equation from the variational principle in terms of the scalar
field itself.

(d) Can you write this stress-energy tensor in terms of that for a “fluid”,

175 o - pilBE U0 e . 1 49




Problem #7
(a) Starting from the Lagrangean for EM:

1
Ley = ZFW/FMV 9 F,ul/ Ty aVAu e a,uAu

find the stress-energy tensor for the EM field.

(b) Show that this stress-energy tensor is conserved because of Maxwells vacuum
equations in curved spacetime.

(c) Show that, in 4D, vacuum EM is “conformally invariant”, i.e., the solutions of Maxwells
equations in vacuum are invariant under the transformation:

Juv — g,uv i) Q2g,u1/




Einsteins equations, finally!

The metric counterpart of the stress-energy tensor must be conserved as well.

In fact the Einstein-Hilbert action satisfies this constraint, and we have that:

/d‘le [mu

| —

4 R
],

G’uy — RMV == §gul/R — —SWGTMV

\_ v

Because of the Cosmological Principle, to first approximation the left- and the right-

hand sides of this equation must be functions of time only.

The only free parameters are spacetime constants:

r

Metric:

Spatial curvature
Cosmological constant

~N

& A

Matter:

Masses
Coupling constants

(and, e.g., ratios of densities)




Part 3: Kinematics of FLRW spacetimes

A. Friedmann (1922-24), G. Lemaitre (1927), H. P. Robertson (1935-36), A. G. Walker(1937)

Spatial sections of constant curvature: [dSQ e i (1) dZQJ

d p
a2 = — 4 1240
] — 12
2
BTy g
| ated

AT dF S £ d0)




Some other popular coordinates used to express FLRW spatial sections:

dr?
1 — kr?

Polar coordinates: dZ? = + r? dO?

&
Hyperspherical coordinates:

P a—

(fx) B st (fx)dm

7 k

Conformal-Cartesian coordinates:

R , dR?+ R*d0?
= e 05— Tere
L2 (e
The most common choice is the second one, since in hyperspherical coordinates the
radial geodesics are trivial.



Problem #8

Show that the 3D metric of FLRW spatial sections in conformal-Cartesian coordinates,

SRS 1 =
d22 = ’Yij d:L‘Z dxj ] %j = 51']' (1 o Z ka>

has a Riemann tensor given by:

Riisi.— B (Yast ey il

Problem #9
The 3D volume can be defined as: V = /de \/det v

What is the volume of a 3-sphere? Show that it reduces to the usual result when the
spatial curvature is small.




Geodesics in FLRW spacetime

Lets take the FLRW metric in conformal-Cartesian coordinates:
diie s dfe el

—2
Nl 1
dZQ = /Yz'j dZIJZ dZIZ] , ’Vij = 5@' (1 S Z k 52 )

; 0 : 0
The connections are: o= Ljge—1 =
; 78 e
e Lo
[y = aayg o = )

a J

k 1 . ;
I’fj — 0 ( = ) X (51-3-:1311C — 0’ — jkxz)

1—|—§:1:2

Problem #10

Compute the Riemann tensor of FLRW in this coordinate system. How many independent
components does it have?




A particle initally at rest in these coordinates has the 4-velocity:

dxt
Fe =i 00
0 dr > (7 bty <5 )
0
The geodesic equation is: ddi o8 FZBUO‘Uﬁ — ()
7

which means the following set of equations:

dU" el
= 07 e S S i)
dT J
dU” kE 170774 k 177177

The solution to this set of equations is: U* = U = (1,0,0,0)

Hence, a particle at rest in any point in this spacetime will remain in the same
position! This is the kinematic meaning of “homogeneity and isotropy”!



Problem #11

Consider a particle moving with some initial “peculiar” velocity vo :
U(’SL R V(UO)(L 770)

Find the solution fo the geodesic equation in this case. Make approximations if
absolutely necessary. What happens with the peculiar velocity as a function of time?




FLRW and expansion

Consider two particles at rest on different spatial locations.

The (spacelike) distance between them is given, at a t=constant hypersurface, by:

As? = A2(t) = a®()(Zo — 71)2 = a2(t) AZ2

:: :: ‘»‘ ““
Saeall) =
The speed with which these particles “at rest” are moving is given by:
d : a
pet e “ ———
dt a a

Consider now a light ray propagating in the radial direction - and lets use the
hyperspherical coordinates. We have:

dsg = —dt* +a*(t)dx* =0

to+At dt
~ s /t a(t) fo+At ©

0



Cosmological redshift

Suppose we have a light source emmitting radiation with a frequency 7o at the radial
position ro, and at the instant 7o. A time T later, f0+70 , the light source will be
emmitting radiation at the same phase (+27) as in 1o .

The light ray which was emmitted at 7o is then observed at a position 7 .

1o ri
Io O
to+1o o
/tl dt /t1+T1 dt
X == S e Ll
to a’(t) t0—|—T0 a’(t) Z.O_l_Al. o
to+At+T, o
t0—|—T() t1‘|‘T1 T T t
= i=/ o = e B e o)
£ a(t) iy a(t) a(to)  a(t1) vy < afto)



In terms of the wavelength of the light, we have: Aobs _ lfobs)

emim CL( emm)
W I/ W o N )\obs Vemm
The “redshift” (or “blueshift”) is defined as: 1+ z = X —
emm Vobs

Any emmission or absorption line can be

used fo compui'e the redshift! Absorption lines Same lines at a
at the Sun distant galaxy



Typically, we observe here on Earth (r=x=0,1=0) the light emmitted by distant galaxies
at time f.

Since by convention the scale factor today is ao=a(fp)=1, we have that the redshift of
those distant galaxies is given by:

>\obs = agp 1

Example: SDSS galaxy at z=0.1003

At rest some of these lines are:

80

H., : 6563 A4
Hg : 4861 A b
OIl : 3727 A )

6000 7000

Wavelength [£]



Another example: quasar (“quasi-stellar object”)

[O 111] 224959, 3007
Mg 1122798

[Ne V] 23426

Z
<
=
=
-
>
=
=
[
—
=
=
=
=
> -~
~
~

Hy 74340
Hs

24101 ‘

| He 11 21640 C 1) 22326 |

R (O 11] 23727
O V121035

[Ne 111] 23869 H} 74861

Rest wavelength (A) Yavelength (1)

Cosmological redshift and Doppler effect are manifested in the same way!



Alternative derivation of the redshift

Since light is a null geodesics, we have:

with:  1#1, = g, 1M1 =0

a0

=30 = T ) E

ap

:1+§X2

Let's use the conformal-Cartesian coordinates, and assume that the light ray is

propagating in the direction X:

dl’

dt

+ L) P =0

=

dE_I_da 1 7 iy

e a S

dh 4T 1HExe
dE_|_dadT 1 M
S PN 1) __a/ e
dr dr dT 1—|-§X2p

dE 8 da 11

ey SR B Reee ()
dT+dTEa

dES R 1
= Lt ) ==l oo
da a a

VBT

A\~ a




Problem #12

A quasar has a broad MgII emmission line at 5310 A. The observed width (FWHM - full
width at half maximum) of that line is 70 A.

Given that, at rest, the MqII line lies at 2798 A, and its width is negligible, find:

(a) The quasars cosmological redshift.

(b) The averaged rotation velocity of the accretion disk near the region that emmits the
MgII line.




Cosmological distance measurements

Angular distance (aka: angular diameter distance)

We can employ an object of known transversal length to estimate the distance to it
from its angular size:

O Ad

da

In FLRW these two distances are related. In polar and hyperspherical coordinates:

dr?
1 — kr?

&
1+ z

ds*= —dig -G [ + r2dQ2] = h2 = ar =

dszz—dtQ—l—a(){dX —|—Esm (fx)dQQI = b2 dA:lJlrz\/E&n(\/_X)



Luminosity distance

We can employ an object of known luminosity to estimate the distance.

N ERt & L
S “! i f=r :
o >

dr,

In FLRW the photons from the light source suffer two nontrivial effects:
1. Their energy falls (redshifts) as E~l/a , and
2. The frequency with which they arrive is also “redshifted” by a factor of 1/a.

Hence, the observed flux (power) is given by:

2
f():(%) : = dL:L:(l—I—z)r

ag A7t 72 Qo



Proper motion distance

If a source is moving with speed Vi, transverse to the line of sight, then over some
time interval 4t it will move a distance Ad:

-

“p
t
Ad = Verst =16 @ Atg O A6 AV, Ad
00

ago

The angular distance that this source will travel in that time is given by the same
reasoning used in the angular-diameter distance:

AN/ _%At()/(l—l—Z) _%Ato

A9:7'/(14—2) r/(14 z) r

This relation allow us to define the proper motion distance as:

Vi
d T T ey
M =S ROIAT, 1




Distance “duality” relations

From their definitions, we have that, for instance (Etherington, 1933):

What are the conditions under which this is true? (Bassett & Kunz 2004)
(a) photon number is conserved (“transparency”)
(b) metric theory of gravity

(c) photons travel on unique null geodesics

Check?...
(e.g., Avgoustidis, Jimenez & Verde, 2009)

dr,

A 1 2+e€
% 0%




Distance “consistency” relations (Clarkson, Bassett & Hui-Ching Lu, PRL 2008)

Suppose we can measure independently H(z) and, e.g., di(z) . Then:

dr(2)="11 20— (1\—/%7;) sin (\/EX) =3 (1\;%2) Sin [\/E / %]

:(1+z)sin[@/ da]

VEk a’ H WA
55 1+ z

(14 2) . [\/—/O dz’ } o

so o sin |V k da = —
Vk S () g (1+ 2)2
(1+2) . {\/_ /Z dz’ ]

= sin |V k

Vk o H(2')

Therefore, it should be true that: The derivative should be zero!

_ 1 - [HEZ)e@

2(2) Clz)="1 —I—HQ(XXN —X/Q) + HH' vy 270
X\

k




Angular and Luminosity distances: examples

dt
a(t)

Using the null radial geodesic, X = /




Problem #13

Consider a universe where the scale factor is a=(#/ty)? . Take fo=1 for simplicity.

(a) A light ray travels from an initial position y. at f., and arrives at the origin at 7. Do
all light rays arrive at the origin, independently of y. and of £.?

(b) Compute ¥.(?) in this model.
(c) Compute di(z) in this model.
(d) Compute da(z) in this model.
(e) Make (qualitative) plots for these three quantities.

(f) A light ray observed today was emmitted at z=1000 . At what time (relative to 7o)
was it emmitted? And what was the comoving radius at the place where it was
emmitted?

(g) A spherical galaxy at z=1 has proper radius R. What angle in the sky does it
subtend, when the spatial section has curvature k=+1, -1 and 07




Cosmography

Lets write the comoving radius as: ke 1
[ieses
/ dt dt da / da dz dz
X o, e e— _— = — da, p——
a(t) da a a’H H(z) (14 2)?
1
CL(t) =1+ Hg(t ST to) ne 5(]0[‘]3(?5 ot to)z e Ho: Hubble

parameter now
H(t) = Ho [l — Ho(l + qo)(t —to) + ...

: deceleration
Inverting, we obtain: qo0 leratio

parameter
1
(t — o) :—HO_1 [z— (1—|—§q0) z2—|—...]
Substituting back into the first expression and integrating, we obtain:
ik 1 1/Ho: cosmological
~ H; | e z2+...] - 9
¢ : [ 2 1+ %) length scales



The luminosity-distance is therefore expanded as:
L 1 2
di [z Vi EH z+§(1—q0)z + ...

Or, in terms of the flux measured from an object of known luminosity, we have:

f

S e W [1 1

:47Td%(2) L Agne +§(QO_1)Z+'“]

The people that actually measure these fluxes (that would be the astronomers) have
chosen (since Hipparchus, 2000 years ago!) to use a kind of logarithmic scale, called
magnitudes. The relative magnitude (or brightness) of two objects is defined as:

fi

Amlg — M1 — Mo — —2.9 10%10 g

f2



As in the "decibel” scale, there is a “standard object” whose luminosity serves as the
standard magnitude, relative to which all other magnitudes are measured.

This object is the star Vega (a very stable, very bright star).

Here are some of these "apparent magnitudes”:

=494 Jog /
f Vega
Apparent magnitude (m) Object

=27 Sun
-13 Full Moon

-5 Venus

0 Vega®, Saturn

6 Limit of human eye

8 Neptune

14 Pluto

20 Galaxy at z=1

27 Visible light limit of 8m telescope
32 Visible light limit of the HST telescope

" To be precise, the modern standard is a “theoretical” Vega. The real Vega was much better observed in
recent times, and in terms of this modern definition, mveca = 0.03 !



Absolute magnitude

We can also define an “absolute” brightness, by placing any object at a single distance
from us. In Astronomy, the “standard” distance is 10 pc, where 1 pc=3.26 light-years.

We have, then:

M = m + 2.5 log;, ff =m — 5 [logyodr(pc) — 1]
10 pc
)
u

distance modulus

M

Hence, if the distance is known and the relative magnitude is measured, we can
compute the absolute magnitude of an astronomical object.

Conversely, if the absolute magnitude of an object is known, and we measure its
relative magnitude, we can infer its distance modulus - and its luminosity distance!



Cosmography in real life:

Standard candle: objects whose absolute luminosities are known (or can be
calibrated with ancillary data, such as periodicity).

Ex.: Cepheid variable stars, Tully-Fisher relation, surface brightness
fluctuations, fundamental plane, supernovas

Standard ruler: objects whose sizes are known (or can be calibrated with
ancillary data, such as periodicity)

Ex.: Baryon Acoustic Oscillations, redshift distortions (see Caldwells talk)



Cosmography example #1: The Hubble diagram and the HST Key Project

Hubble was the first (1929) to employ Cepheid variable stars to map redshift v. distance:
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Compare Hubbles original plot with Freedmans...

C e~
O
o

-

g

X

~
-
-
O
A,
o
—

Z-l

DISTANCE -.

©* PARSECS 2210° PARSECS
FIGURE 1

10 20
Distance (Mpc)

Present constraints on the Hubble parameter (HST Key Project only):

Hy =72+ 8Km/s/Mpc




As everyone here knows, the Hubble diagram
implies that the Universe is expanding!

Not only that: the Universe

appears to have started at a i W v
certain point in time in the 2. 0 R T
past (~13.7 Billion years ago)! b .;;j_;',..- ==l iR
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1. General Relativity 2. Einsteins equations 3. Kinematics of FLRW 4. Dynamics of FLRW 5. Thermal history 6. Big Bang, horizons, inflation, and all that
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1. General Relativity 2. Einsteins equations 3. Kinematics of FLRW 4. Dynamics of FLRW 5. Thermal history 6. Big Bang, horizons, inflation, and all that

SN 1994D




Supernovas come in several types, but basically:

Type I - explosion of a CO white dwarf Type II - core-collapse

%

A ¥
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(Explossion triggered at approx. same masses)
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o ® ‘ ‘\’".

‘ ...which spills gas onto the
Two normal stars The more massive secondary star, causing it to
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gas onto the white dwarf. critical mass and explodes... star to be ejected away.



Supernovas are further categorized in terms of their light curves (i.e., how the

explosion happens in time), and also in terms of their spectra (or SEDs - Spectral
Energy Distributions).

Light curves of several types of SNs Typical SED of a Type Ia SN
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Bright: ~10 billion suns, peak in optical

>Ni -> ¢Co -> ¢Fe decay is the fuel that powers SN

Duration: a few weeks

Standardizable: <6% in distance

Brightness and homogeneity make them the best known
measure of distance

S Sk



In 1993, after observing several nearby Type Ia SNs, M. Phillips (Ap. J. Lett. 413: L105-
L108) noticed a curious relationship between their light curves and their absolute
magnitudes. According to this relationship:

Mp = —21.726 + 2.698 Am,5(B)

Phillips’
4o So original

DAYS SINCE /MAXImom diagram




The Phillips relation was further
refined, with corrections depending on : e
the “color” of the supernova. ' Wia

This relationship is entirely
phenomenological - there is no well-
understood theory behind it.

My =5 log(hl65)

However, it seems to work incredibly

well! Calan/Tololo SNe Ia

-15 : !
-20 0
Therefore, we can define a “distance
modulus” for Type Ia supernovas,
light-curve timescale

which is a measure of the luminosity : - R ————.
distance:

puB = mp —Mp -+ CANTE" =08

My =5 log(h/65)

dr,

pB — 9 logyg 10758

1
dr(z) = (14 z)x = Hy z+§(1—q0)22+...

Kim, et al. (1997)




So, we can use Type Ia supernovas to write a diagram of distance v. redshift - or,
better still, of the (corrected) distance modulus v. redshift:

dr,
10 pc

dr(z) =(1+2z)x=Hy

pB — 5 loggg

Offset: Mp-51lo

-> Shape of the
determine ¢o !

‘\ 3 Low-z SNe la
ST SNe la

\

Observations: \
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However, a simple measurement of go is far from ideal, since the next-order
term ("jerk”, jo) has already started to become important as the data became
more abudant, and more accurate, over the past ~7 years.

Although there are ways fo improve cosmographical methods, we really need to
have a dynamical description of the expansion, which can allow us to check the
expansion law against other observables, like the matter/energy content of the
Universe, the evolution of its large-scale structure, etc.

-> Next class: Dynamics of FLRW models
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