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Newtonian Fluid Spheres
Relativistic Stars

Review of General Relativity
Gravitational Waves |
Gravitational Waves I



Equations of motion for a fluid ball



Equations of motion for a fluid ball
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Equations of motion for a fluid ball
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First warm up: homologous collapse



Homologous collapse of a dust cloud

Dust: pressure is negligible... no buoyancy!

dP < Gm(r)
dr r
Fr_ Gm(r)
dr P

Assume mass within shell is constant as shell collapses.
“Homologous collapse”: m(r) = constant in time



Homologous collapse of a dust cloud

Solve:

a2~ P
First multiply by integrating factor dr/dt:

Pr Gm(r)

dr Pr 1 dr

drag ~ M) X G
—— ~—— ~——

1d dr 2 constant g <_1)
S dr (dt) dt \ 7

Then integrate:




Homologous collapse of a dust cloud

Initial conditions are r=ro, dr/dt =0, m(ry) = §7rpo, so

4
kS = gﬂGporg




Homologous collapse of a dust cloud

Change of variables: r=ry cos’B,0< 0 < /2
Also let: x = (3mGpo)!/?

do
—25sin 0 cos SE = —xtan®

do
2c0s?0— =
cos dt X

do
1+ cos20)— =
(14 cos20) ;= X

d
dt(e + %sin 20) = x

Integrate:
0+ % sin20 = xt



Homologous collapse of a dust cloud

Free-fall time: time to reach r=0 or 6 = 7t/2

oo T 31
T2 —\/ 32 Gpo

Note: free-fall time independent of ry so all shells collapse in the same
amount of time!
This justifies m(r) = constant in time




Second warm up: cosmological expansion



Cosmological expansion

NE

Homogeneous universe: dP/dr=10
Co-moving radial coordinate: m(r) = constant in time

Again have:
1 (dr>2 _ Gm(r) 2

2 \ dt r




Cosmological expansion

Write: m(r) = 3mrp

8nG
Ga =a Ta

Friedmann equation



Cosmological expansion

Multiply Friedmann equation by r3/3..

2
r (dr) +kr:@p’3

2\ dt c?

..and take a time derivative:

(pr)

1(dr>3 2rdrd’r  dr  8nG d
dt

2 2dtde K@ T 3@ @

Assume expansion is adiabatic:

0=dQ=dE+ PdV= ch [d(pr) @+ Pd(F)]

d 3

dr
dt



Cosmological expansion

Divide by —r dr/dt to get

L (dr\* 2rdrdr  dr_ 8nG,dr
2 \ dt &2 dt d? dt & dt
124 1 (1dr\® k 8nG
—|S===+5==] +5| = —P
crd2 2 \rdt r? foud
~——
8nG
7 =—Tn
G foud

acceleration equation




Cosmological expansion

We have two ordinary differential equations:

3| L(1dr)* k| _8nG
2\ rdt 2l T2 ?

12#r 1 (1dr\*> k| 8nG
| Z-gat3z\>%) T3 = = P
Ard2 & \rdt r foud
To solve, must specify an equation of state: P = P(p)
0 “dust”: matter era

P(p) = %pc2 “radiation": radiation era

—p “dark energy”: inflation; now



Cosmological expansion
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A simple stellar model



Simple stellar model

Recall:
d2r7 Gm(r) _dpP

P P
Equilibrium: d?r/d?2 =0

dP Gm(r)
dr r

hydrostatic equilibrium

To solve, must specify an equation of state: P = P(p, T)

» Barytropic equation of state: P = P(p)
» Polytropic equation of state: P = KpY



Simple stellar model: polytropic equation of state

Rewrite hydrostatic equilibrium equation as

P dP
= —47-[GJ p(r')r?dr
0

Take derivative with respect to r.

P dP
r2dr(pdr>+47TG =0

Assume a polytropic equation of state, P = KpY:

1
YKﬂjr('z Y- 22p> +4nGp =0



Simple stellar model: polytropic equation of state

Change of variables: let
p=pcH”
where
» 0< 0 <1, 0=1 at center of star, 8 =0 at edge of star
> pc is central density
» nis the polytropic index n=1/(y — 1)
Obtain:

n+1 1
Kpd/" retr 4nGp 0" =
(n) Crzd( d)+”pc 0

(n+ )K" 1 d (d0N |,
AnG P dr r2 +o7=0




Simple stellar model: polytropic equation of state

Now let
r=A§g
where
» & is a dimensionless radial variable

> A is a constant with dimensions of length

\ (n+1)Kplt=—/n (n+1)P,
B 4nG 47t Gp2

Result is

1d [, ,do .
wa(%)*e =0

Lane-Emden equation




Simple stellar model: Lane-Emden equation

Solve Lane-Emden equations with boundary conditions:
»0=1até&=0
» dB/dé, =0at & =0

Let &1 be the first zero of 8(&). This is the surface of the star.

» Radius of star is

» Mass of star is

&1
M= 4m3pcj 0"E2dE,
0

en‘£2 _ _i <£2d9>

but since




Simple stellar model: Lane-Emden equation

Recall that A ~ pf(:l*n)/zn

R~A~ p(lfn]/Qn

c
M ~ )\3p - p£3fn)/2n

M ~ RB—n)/(1=n)

» When n =0, p = p. = const and M~ R® (of course!)
» When n=1, Ris independent of M and p,
» When n =3, M is independent of R and p.



Simple stellar model: incompressible star

Solve Lane-Emden equation with n =0: p = p.0" = const.
Lane-Emden equation becomes:

d (2d0) _
&(E&>_E

Integrate:
do 1
209 0 13
& r a 35,
Boundary condition: d8/dé =0 at §, =0 so a=0, and
do 1
&~ 3t
Integrate:
1
0=b— &>
65’

Boundary condition: 8 =1at £ =0so b=1, and

1
0=1-—-¢?
6&




Simple stellar model: incompressible star

1 0], =0 for & =6
2
0=1- & =

do 1& V6
i) I P A
d& | ¢ 3 3
R = A& = V6A
M = 471?\3pc< 2 — d ) = 8v6rp A
= M = inR%p.
P. 3 GM?

et _
47t Gp2 ° 8t R



Simple stellar model: white dwarfs

Other interesting equations of state:

» Non-relativistic degenerate matter:
3
Pxp®?® = n= 5

E.g., low-mass white dwarfs

» Relativistic degenerate matter:
Pxp*? = n=3

E.g., high-mass white dwarfs

These need to be solved numerically.



Simple stellar model: numerical solution

Lane-Emden

AL
AN

Introduce auxiliary variable w = d8/dé& and write as a first-order system

do
di
dw
dE,

= w

=—0"-2w/§

Boundary conditions: near £ =0, 0 =1and w =0



Simple stellar model: module odeint.py

1 def rk4(f, y, x, h):
2 """ Fourth order Runge-Kutta integration step. """
3 k1l = f(y, x) * h
4 k2 = f(y + 0.5 x k1, x + 0.5 % h) *x h
5 k3 = f(y + 0.5 x k2, x + 0.5 % h) *x h
6 k4 = f(y + k3, x + h) x h
7 return y + k1 / 6.0 + k2 / 3.0 + k3 / 3.0 + k4 / 6.0
Integrates
dy
— = f(y, x
2 T

from x to x+ h using the 4th-order Runge-Kutta

Returns: y(x+ h)



Simple stellar model: program lanemden.py

import pylab, odeint

1

2

3 # the Lane—-Emden ODE

4+ def lanemden(y, xi):

5 global n

6 theta = y[0]

7 omega = yl[1]

8 domega = -thetaskn - 2.0xomega/xi

9 return pylab.array([omega, domegal)

to be continued...

First-order form of Lane-Emden equations with auxiliary variable
w=do/dé and y = [0, w]

i [ o 1 l - ]
Returns: — = =
d§, dw/d§ —0" —2w/&



Simple stellar model: program lanemden.py

continued from previous page
11 # perform integration for various values of n
12 dx = 0.1
13 xi = pylab.arange(dx, 10.0, dx)
14 for n in range(6):

15 y = pylab.array([1.0, 0.0])

16 theta = []

17 for x in xi:

18 y = odeint.rk4(lanemden, y, x, dx)
19 theta = theta + [y[0]]

20 pylab.plot(xi, theta, label='n=%d'%n)

to be continued...



Simple stellar model: program lanemden.py

continued from previous page

2 # plot results

23 pylab.axhline(color="black"')

24 pylab.legend()

25 pylab.xlabel('xi")

26 pylab.ylabel('theta')

27 pylab.ylim(ymin=-0.3, ymax=1.1)
28 pylab.grid()

20 pylab.show()



Simple stellar model: program lanemden.py




Simple stellar model: zeros of the Lane-Emden equation

, do

n &1 —51 E,
&1

0.0 2.449490 4.898 983

1.5 3.653753 2.714 058

3.0 6.896 845 2.018236
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