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Equations of motion for a fluid ball

r

dr

P P + dP

dm = ρ A dr

m(r )

dm d2r
dt2 = gravity + buoyancy

= Fg + dFP

= −
Gm(r)

r2 dm − A dP

ρ
d2r
dt2 = −

Gm(r)
r2 ρ −

dP
dr



Equations of motion for a fluid ball

r

dr

P P + dP

dm = ρ A dr

m(r )

ρ
d2r
dt2 = −

Gm(r)
r2 ρ−

dP
dr

m(r) =
∫ r

0
4πr ′2 dr ′ ρ(r ′)
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Homologous collapse of a dust cloud

Dust: pressure is negligible... no buoyancy!∣∣∣∣dP
dr

∣∣∣∣ ≪ Gm(r)
r2 ρ

d2r
dt2 = −

Gm(r)
r2

Assume mass within shell is constant as shell collapses.
“Homologous collapse”: m(r) = constant in time



Homologous collapse of a dust cloud

Solve:
d2r
dt2 = −

Gm(r)
r2

First multiply by integrating factor dr/dt:

dr
dt

d2r
dt2 = −Gm(r) × 1

r2
dr
dt︸ ︷︷ ︸

1
2

d
dt

(
dr
dt

)2
︸ ︷︷ ︸
constant

︸ ︷︷ ︸
d
dt

(
−

1
r

)
Then integrate:

1
2

(
dr
dt

)2
=

Gm(r)
r − kc2



Homologous collapse of a dust cloud

Initial conditions are r = r0, dr/dt = 0, m(r0) =
4
3πr3

0ρ0, so

kc2 =
4
3πGρ0r2

0

(
dr
dt

)2
=

(
8
3πGρ0

)( r3
0
r − r2

0

)
1
r0

dr
dt = −

√(
8
3πGρ0

)( r0
r − 1

)



Homologous collapse of a dust cloud

Change of variables: r = r0 cos2 θ, 0 6 θ 6 π/2
Also let: χ = ( 8

3πGρ0)1/2

−2 sin θ cos θdθ
dt = −χ tan θ

2 cos2 θ
dθ
dt = χ

(1 + cos 2θ)dθ
dt = χ

d
dt (θ+ 1

2 sin 2θ) = χ

Integrate:
θ+ 1

2 sin 2θ = χt



Homologous collapse of a dust cloud

Free-fall time: time to reach r = 0 or θ = π/2

tff =
π

2χ =

√
3π
32

1
Gρ0

Note: free-fall time independent of r0 so all shells collapse in the same
amount of time!
This justifies m(r) = constant in time
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Cosmological expansion

Homogeneous universe: dP/dr = 0
Co-moving radial coordinate: m(r) = constant in time
Again have:

1
2

(
dr
dt

)2
=

Gm(r)
r − kc2



Cosmological expansion

Write: m(r) = 4
3πr3ρ

1
2

(
dr
dt

)2
=

4π
3 Gρr2 − kc2

3
[

1
c2

(
1
r

dr
dt

)2
+

k
r2

]
=

8πG
c2 ρ

︸ ︷︷ ︸
Gt̂̂t

︸ ︷︷ ︸
= 8πG

c4 Tt̂̂t

Friedmann equation



Cosmological expansion

Multiply Friedmann equation by r3/3…

r
c2

(
dr
dt

)2
+ kr = 8πG

3c2 ρr3

…and take a time derivative:

1
c2

(
dr
dt

)3
+

2r
c2

dr
dt

d2r
dt2 + kdr

dt =
8πG
3c2

d
dt (ρr3)

Assume expansion is adiabatic:

0 = d̄Q = dE + P dV =
4
3π

[
d(ρr3) c2 + P d(r3)

]
d
dt (ρr3) = −

3
c2 Pr2 dr

dt



Cosmological expansion

1
c2

(
dr
dt

)3
+

2r
c2

dr
dt

d2r
dt2 + kdr

dt =
8πG
c4 Pr2 dr

dt

Divide by −r2 dr/dt to get

−

[
1
c2

2
r

d2r
dt2 +

1
c2

(
1
r

dr
dt

)2
+

k
r2

]
=

8πG
c4 P

︸ ︷︷ ︸
Gr̂̂r

︸ ︷︷ ︸
= 8πG

c4 Tr̂̂r

acceleration equation



Cosmological expansion

We have two ordinary differential equations:

3
[

1
c2

(
1
r

dr
dt

)2
+

k
r2

]
=

8πG
c2 ρ

−

[
1
c2

2
r

d2r
dt2 +

1
c2

(
1
r

dr
dt

)2
+

k
r2

]
=

8πG
c4 P

To solve, must specify an equation of state: P = P(ρ)

P(ρ) =


0 “dust”: matter era

1
3ρc2 “radiation”: radiation era

−ρc2 “dark energy”: inflation; now



Cosmological expansion
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Simple stellar model

Recall:
ρ

d2r
dt2 = −

Gm(r)
r2 ρ−

dP
dr

Equilibrium: d2r/dt2 = 0

dP
dr = −

Gm(r)
r2 ρ

hydrostatic equilibrium

To solve, must specify an equation of state: P = P(ρ,T)
I Barytropic equation of state: P = P(ρ)
I Polytropic equation of state: P = Kργ



Simple stellar model: polytropic equation of state

Rewrite hydrostatic equilibrium equation as

r2

ρ

dP
dr = −Gm(r)

= −4πG
∫ r

0
ρ(r ′)r ′2dr ′

Take derivative with respect to r:

1
r2

d
dr

(
r2

ρ

dP
dr

)
+ 4πGρ = 0

Assume a polytropic equation of state, P = Kργ:

γK 1
r2

d
dr

(
r2ργ−2 dρ

dr

)
+ 4πGρ = 0



Simple stellar model: polytropic equation of state

Change of variables: let
ρ = ρcθ

n

where
I 0 6 θ 6 1, θ = 1 at center of star, θ = 0 at edge of star
I ρc is central density
I n is the polytropic index n = 1/(γ− 1)

Obtain: (
n + 1

n

)
Kρ1/n

c
1
r2

d
dr

(
r2θ1−n d

drθ
n
)
+ 4πGρcθ

n = 0

[
(n + 1)Kρ(1−n)/n

c
4πG

]
1
r2

d
dr

(
r2 dθ

dr

)
+ θn = 0



Simple stellar model: polytropic equation of state

Now let
r = λξ

where
I ξ is a dimensionless radial variable
I λ is a constant with dimensions of length

λ =

√
(n + 1)Kρ(1−n)/n

c
4πG =

√
(n + 1)Pc

4πGρ2
c

Result is

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
+ θn = 0

Lane-Emden equation



Simple stellar model: Lane-Emden equation

Solve Lane-Emden equations with boundary conditions:
I θ = 1 at ξ = 0
I dθ/dξ = 0 at ξ = 0

Let ξ1 be the first zero of θ(ξ). This is the surface of the star.
I Radius of star is R = λξ1

I Mass of star is
M = 4πλ3ρc

∫ξ1

0
θnξ2dξ

but since
θnξ2 = −

d
dξ

(
ξ2 dθ

dξ

)

M = 4πλ3ρc

(
−ξ2

1
dθ
dξ

∣∣∣∣
ξ1

)



Simple stellar model: Lane-Emden equation

Recall that λ ∼ ρ
(1−n)/2n
c

R ∼ λ ∼ ρ(1−n)/2n
c

M ∼ λ3ρ ∼ ρ(3−n)/2n
c

M ∼ R(3−n)/(1−n)

I When n = 0, ρ = ρc = const and M ∼ R3 (of course!)
I When n = 1, R is independent of M and ρc
I When n = 3, M is independent of R and ρc



Simple stellar model: incompressible star
Solve Lane-Emden equation with n = 0: ρ = ρcθn = const.
Lane-Emden equation becomes:

d
dξ

(
ξ2 dθ

dξ

)
= −ξ2

Integrate:
ξ2 dθ

dξ = a −
1
3ξ

3

Boundary condition: dθ/dξ = 0 at ξ = 0 so a = 0, and

dθ
dξ = −

1
3ξ

Integrate:
θ = b −

1
6ξ

2

Boundary condition: θ = 1 at ξ = 0 so b = 1, and

θ = 1 −
1
6ξ

2



Simple stellar model: incompressible star

θ = 1 −
1
6ξ

2 =⇒


θ|ξ1

= 0 for ξ1 =
√

6
dθ
dξ

∣∣∣∣
ξ1

= −
1
3ξ1 = −

√
6

3

R = λξ1 =
√

6λ

M = 4πλ3ρc

(
−ξ2

1
dθ
dξ

∣∣∣∣
ξ1

)
= 8

√
6πρcλ

3

=⇒ M = 4
3πR3ρc

λ =

√
Pc

4πGρ2
c

=⇒ Pc =
3

8π
GM2

R4



Simple stellar model: white dwarfs

Other interesting equations of state:
I Non-relativistic degenerate matter:

P ∝ ρ5/3 =⇒ n =
3
2

E.g., low-mass white dwarfs
I Relativistic degenerate matter:

P ∝ ρ4/3 =⇒ n = 3

E.g., high-mass white dwarfs
These need to be solved numerically.



Simple stellar model: numerical solution

Lane-Emden
d2θ

dξ2 +
2
ξ

dθ
dξ + θn = 0

Introduce auxiliary variable ω = dθ/dξ and write as a first-order system

dθ
dξ = ω

dω
dξ = −θn − 2ω/ξ

Boundary conditions: near ξ = 0, θ = 1 and ω = 0



Simple stellar model: module odeint.py..
1 def rk4(f, y, x, h):
2 """ Fourth order Runge−Kutta integration step. """
3 k1 = f(y, x) * h
4 k2 = f(y + 0.5 * k1, x + 0.5 * h) * h
5 k3 = f(y + 0.5 * k2, x + 0.5 * h) * h
6 k4 = f(y + k3, x + h) * h
7 return y + k1 / 6.0 + k2 / 3.0 + k3 / 3.0 + k4 / 6.0

Integrates
dy
dx = f (y, x)

from x to x + h using the 4th-order Runge-Kutta

Returns: y(x + h)



Simple stellar model: program lanemden.py..
1 import pylab, odeint
2

3 # the Lane−Emden ODE
4 def lanemden(y, xi):
5 global n
6 theta = y[0]
7 omega = y[1]
8 domega = −theta**n − 2.0*omega/xi
9 return pylab.array([omega, domega])

to be continued…

First-order form of Lane-Emden equations with auxiliary variable
ω = dθ/dξ and y = [θ,ω]

Returns: dy
dξ =

[
dθ/dξ
dω/dξ

]
=

[
ω

−θn − 2ω/ξ

]



Simple stellar model: program lanemden.py..

continued from previous page
11 # perform integration for various values of n
12 dx = 0.1
13 xi = pylab.arange(dx, 10.0, dx)
14 for n in range(6):
15 y = pylab.array([1.0, 0.0])
16 theta = []
17 for x in xi:
18 y = odeint.rk4(lanemden, y, x, dx)
19 theta = theta + [y[0]]
20 pylab.plot(xi, theta, label='n=%d'%n)

to be continued…



Simple stellar model: program lanemden.py..

continued from previous page
22 # plot results
23 pylab.axhline(color='black')
24 pylab.legend()
25 pylab.xlabel('xi')
26 pylab.ylabel('theta')
27 pylab.ylim(ymin=−0.3, ymax=1.1)
28 pylab.grid()
29 pylab.show()



Simple stellar model: program lanemden.py
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ξ
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n=3
n=4
n=5



Simple stellar model: zeros of the Lane-Emden equation

n ξ1 −ξ2
1

dθ
dξ

∣∣∣∣
ξ1

0.0 2.449 490 4.898 983

1.5 3.653 753 2.714 058

3.0 6.896 845 2.018 236
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