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Part I: General relativistic perfect fluids 



Mathematical prerequisites:  Symmetries and Killing vectors 
 
Symmetry under translations 
 
A function f on flat space is symmetric under time translations  if                 
  
The equation can be written in the form                     , where tα is the 
vector field with components     
                                                                  

t f∂ = 0
t fα

α∇ = 0
( , , , )tµ = 1 0 0 0



Mathematical prerequisites:  Symmetries and Killing vectors 
 
Symmetry under translations 
 
A function f on flat space is symmetric under time translations  if                 
  
The equation can be written in the form                     , where tα is the 
vector field with components     
                                                                  

t f∂ = 0
t fα

α∇ = 0

 tα  generates a family of translations T(t) :   It is tangent at each point P 
to the orbit  T(t)P of P.   

P 

( )( , , , ) ( , , , )θ φ θ φ= +0 0 0 0 0 0 0 0T t t r t t r

( , , , )tµ = 1 0 0 0



y xx yφ∂ = ∂ − ∂= −φ jx yi

Symmetry under rotations  
 
A function f on flat space is symmetric under rotations  if                 
  
The equation can be written in the form                      , where φα is the 
vector field whose components in coordinates (t,r,θ,φ) are 
                                                                                                  .   
 
In terms of a Cartesian basis,                        and                                . 
 
       
                                                                  

fφ∂ = 0

or ( ) ( , , , )µ µ µ
φφ δ φ= = 0 0 0 1

fα
αφ ∇ = 0



φ  generates a family of rotations R(φ) :   It is tangent at each point P to 
the circular orbit  R(φ) P of P   

P 

( )( , , , ) ( , , , )φ θ φ θ φ φ= +0 0 0 0 0 0 0 0R t r t r

Symmetry under rotations  
 
A function f on flat space is symmetric under rotations  if                 
  
The equation can be written in the form                      , where φα is the 
vector field whose components in coordinates (t,r,θ,φ) are 
                                                                                                  .   
 
In terms of a Cartesian basis,                        and                                . 
 
       
                                                                  

fα
αφ ∇ = 0

y xx yφ∂ = ∂ − ∂= −φ jx yi

fφ∂ = 0

or ( ) ( , , , )µ µ µ
φφ δ φ= = 0 0 0 1



The Euler equation 
 
The Euler equation is just F=ma written for a fluid element, shown 
here as a small box with density ρ and velocity v. 

The pressure on the left face is P(x);  
the pressure on the right face is  P(x+∆x) .  
 
  



With ∆A the area of each face of the box, The net force in the
x-direction is

Fx = P (x)∆A− P (x + ∆x)∆A

= −∂P

∂x
∆V,

where ∆V = ∆x∆A is the volume of the fluid element. Thus

F = −∇P ∆V.
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We want to write F = ma or

−∇P ∆V = ρ∆V a,

and we need to find a in terms of the velocity field v(t,x). The
vector field v(t,x) has the meaning that at time t the fluid
element at x has velocity v(t,x). Thus at time t + ∆t that same
fluid element is at x + v(t,x)∆t and has velocity
v(t + ∆t,x + v(t,x)∆t). The fluid element has changed its
velocity by

∆v = v(t + ∆t,x + v(t,x)∆t)− v(t,x)

=
(

∂v
∂t

+ v · ∇v
)

∆t

in time ∆t, and its acceleration is therefore

a = (∂t + v · ∇)v. (1)
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In this way we obtain Euler’s equation of motion

ρ
(
∂t + vj∇j

)
va = −∇aP

In the presence of a gravitational field, with potential Φ satisfying
∇2Φ = 4πGρ, there is an additional force −ρ∆V ∇Φ on each
fluid element; and the equation of motion becomes

ρ(∂t + v · ∇)v = −∇P − ρ∇Φ.
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Conservation of mass may also be derived in this prosaic fashion:
In the figure in your notes, the left face is at x at time t and at
x + vx(t,x)∆t at t + ∆t. The right face is at x + ∆x at t and at
x + ∆x + vx(t, x + ∆x)∆t at t + ∆t.
Then at t + ∆t the distance between left and right faces is

∆x = x + ∆x + vx(x + ∆x)∆t− (x + vx(x)∆t)

= ∆x

(
1 +

∂vx

∂x
∆t

)
. (2)

Similarly,∆y = ∆y

(
1 +

∂vy

∂y
∆t

)
∆z = ∆z

(
1 +

∂vz

∂z
∆t

)
.

Thus the volume of the fluid element at t + ∆t is

∆V = ∆x ∆y ∆z = ∆x ∆y ∆z(1 +∇ · v∆t)
= ∆V (1 +∇ · v ∆t). (3)
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Now the statement that the mass of the fluid element is constant is

ρ ∆V = ρ ∆V, (4)

where ρ̄ is the density of the fluid element at t + ∆t. At that time
the fluid element is at x + v∆t; thus

ρ̄ = ρ(t + ∆t,x + v ∆t) = ρ(t,x) + (∂t + v · ∇)ρ ∆t (5)

Finally from (3), (4), and (5)

[ρ + (∂t + v · ∇)ρ ∆t][1 +∇ · v ∆t]∆V = ρ∆V

∂tρ + v · ∇ρ + ρ∇ · v = 0, or

∂tρ +∇ · (ρv) = 0 (6)

To summarize: in the absence of external forces, a Newtonian fluid
is characterized by its pressure P , density ρ and 3-velocity v which
satisfy

∂ρ

∂t
+∇ · (ρv) = 0

ρ(∂t + vb∇b)va + ρ∇aP +∇aΦ = 0. (7)
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 Stress-energy tensor  
 
A perfect fluid is a model for a large assembly of particles in which a 
continuous energy density     can reasonably describe the 
macroscopic distribution of mass.  One assumes that the microscopic 
particles collide frequently enough that their mean free path is short 
compared with the scale on which the density changes – that the 
collisions enforce a local thermodynamic equilibrium.   



General Relativistic Perfect Fluids 
energy density (including rest-mass density)

baryon rest-mass density

baryon number density

Then , where  is the rest mass per baryon.B B

n
m n m

ρ

ρ

=
=
=

=





In particular,  one assumes that a mean velocity field      and a mean 
stress-energy tensor         can be defined  in boxes –fluid elements –  
small compared to the macroscopic length scale but large compared 
to the mean free path; and that on scales large compared to the size 
of the fluid elements, the 4-velocity and thermodynamic quantities 
can be accurately described by continuous fields.  An observer 
moving with the average velocity      of the fluid will see the collisions 
randomly distribute the nearby particle velocities so that the particles 
will look locally isotropic.   
 
Because a comoving observer sees an anisotropic distribution of 
particles, the components of the fluid's stress-energy tensor in his 
frame must have no preferred direction:  
             must be invariant under rotations that fix      .    
Denote by 
 
the projection operator orthogonal to       . 

T αβ

uα

T uαβ
β

uα

q g u uαβ αβ α β= +

uα

uα



A comoving observer’s orthonormal frame {eµ}  has e0 = u  

implying that the components of  u and q in this frame are  

   
 
 
 

( )

( )

(1,0,0,0)

0

1

1

1

u

q

µ

µ
ν

=

 
 
 =
 
 
 

,

(

for

)q u u u u u u

q v v v u

α β α α β α α
β β β

α β β α α
β

δ= + = − =

= ⊥

0



Similarly, the symmetric tracefree tensor 
 
 
 transforms as a j=2 representation of the rotation group and can be 
invariant only if it vanishes. 

It follows that the only nonzero parts of          are the rotational scalars 
  
 
and  
 

Because the momentum current                 is a vector in the 3-
dimensional subspace orthogonal to  uα  , it is invariant under 
rotations of that subspace only if it vanishes.   
(That is, the spatial vector  (      )  is invariant under rotations only if it 
vanishes.)  

u q Tα βγ
β γ

3 31 1
3 3

T q T q q T q q Tαβ αβ α β γδ αβ γδ
γ δ γδ− ≡ −

1
3

P q T γδ
γδ≡

T αβ

T u uαβ
α β≡

0iT



More concretely, the components         and                       must 
vanish, implying that          has components 
 
 
 
 
 
in the orthonormal frame of a comoving observer.   
Summary: 
 
The condition of local isotropy suffices to define a perfect fluid  
by enforcing a stress-energy tensor of the form 
 
 

0iT 1
3

ij ij k
kT Tδ−

T αβ

( ) P
T

P
P

µν

 
 
 =
 
 
 



T u u Pqαβ α β αβ= +



Departures from a perfect fluid 
 
In neutron stars, departures from perfect-fluid equilibrium due to a 
solid crust are expected to be of order 10-3 or smaller, corresponding to 
the maximum strain that an electromagnetic lattic can support.  
 
On a submillimeter scale, superfluid neutrons and protons in the 
interior of a neutron star have velocity fields that are curl-free outside 
a set of quantized vortices.  On larger scales, however, a single, 
averaged, velocity field uα accurately describes a neutron star (Baym 
and Chandler 1983; Sonin 1987; Mendell and Lindblom 1991).  
Although the approximation of uniform rotation is not valid on scales 
shorter than 1 cm, the error in computing the structure of the star on 
larger scales is negligible.  In particular, with Tαβ approximated by a 
value <Tαβ> averaged over several cm, the error in computing the 
metric is of order 2

111cm
~ ~ 10g

Rαβδ − 
 
 



For equilibria, these are the main corrections.  For dynamical 
evolutions -- oscillations, instabilities, collapse, and binary inspiral, 
however, one must worry about the microphysics governing, for 
example viscosity, heat flow, magnetic fields, superfluid modes, and 
turbulence.  



B. The Einstein-Euler equations  
 
A perfect-fluid spacetime is a spacetime M, gαβ whose source is a 
perfect fluid.  That is, its metric satisfies 
 
 
with                                          .   
 
The Bianchi identities imply 
 
 
 
and this equation, together with an equation of state, determines 
the motion of the fluid.    
The projection of the equation                         along uα  is an energy 
conservation law, while the projection orthogonal to uα  is the 
relativistic Euler equation.  For an intuitive understanding of these 
equations, it is helpful to look first at conservation  of baryons. 

8G Tαβ αβπ=

T u u Pqαβ α β αβ= +

0,T αβ
β∇ =

0T αβ
β∇ =



( )M Vρ= ∆ = ∆00
( )

.
V V

V V
ρ ρ ρ∆ ∆

= = ∆ +0

Conservation of baryons 
 
The baryon mass M0 of a fluid element is conserved by the motion of 
the fluid. The proper volume of a fluid element is the volume V of a slice   
perpendicular to uα  through the history of the fluid element; and 
conservation of baryons can be written in the form                                or  
                                                                                                                           
                                                                                                                          (1.1) 

First term of (1): With τ  the proper time along each fluid trajectory, the 
change in ρ  in a proper time  ∆τ  is given by   .

d u
d

α
αρ ρ τ ρ τ

τ
∆ = ∆ = ∇ ∆

Second term: the  fractional change in V  in a proper time ∆τ  is given by 
the 3-dimensional divergence of the velocity, in the subspace 
orthogonal to uα : .

V q u
V

αβ
α β τ∆

= ∇ ∆

∆τ uα uα 
V 

V+∆V 



Because uα uα
 = -1, we have                                           implying 

 
 
and conservation of baryons takes the form 
 
 

( ) ,u u u uβ β
α β α β∇ = ∇ =

1
0

2
,

Vq u u u
V

αβ α α
α β α α τ∆

∇ = ∇ = ∇ ∆ ,

( )
V u u

V
α α

α αρ ρ ρ ρ τ∆
= ∆ + = ∇ + ∇ ∆0

) .( uα
α ρ∇ = 0

A more formal derivation is given below, in part to introduce a perturbation formalism 
that one needs to discuss the Hamiltonian formalism, stellar oscillations and stability, 
the virial theorem, and thermodynamics of neutron stars and black holes.  

or 
                                                                                                                    (1.2) 



Conservation of energy 
 
 
 
 
 
 
 
 
                                                                                                                   (1.3) 
 

u T αβ
α β∇ = 0

[ ]

( ) ( )

( ) ·

u T

u T u u u Pq

u Pu g u u

u P u

αβ
α β

αβ α β αβ
α β α β

β αβ α β
β α β

β
β

= ∇

= ∇ = ∇ +

= −∇ + ∇ +

= −∇ − ∇







0

( ) · or ( ) ·u P u u P uβ β
β β∇ = − ∇ ∇ = − + ∇  

The equation means that the energy        of a fluid element decreases 
by the work,  
 
it does in proper time dτ . 
 
Prob. 1:  Check that this is the meaning of Eq. (1.3), by following steps 
analogous to those in the heuristic derivation of baryon conservation. 

·P dV P u Vdτ= ∇

V



Relativistic Euler equation 

q Tα βγ
γ β∇ = 0

[ ]

( )

q u u Pq

q u u q P q P u u

u u q P Pu u

α β γ βγ
γ β

α β γ αβ α β γ
γ β β γ β

β α αβ β α
β β β

= ∇ +

= ∇ + ∇ + ∇

= ∇ + ∇ + ∇







0

. . )( ) (P u u q Pβ α αβ
β β+ ∇ = − ∇ 1 3



Newtonian limit:   
Let ε be a small parameter of order v/c or vsound/c, whichever is larger. 
Then   ( ,v ) ( )

/ ( )

( )

iu
P

µ ε

ε

ρ ε

= +

=

= +





2

2

2

1 0

0

0

( ) ( ) ( )

( v ) ( )

t i t i
t i t i

i
t i

u u P u u
e

ρ ρ

ρ ρ

∂ + ∂ = − ∂ + ∂

∂ + ∂ = + 20 0

Conservation of energy coincides to lowest order with 
conservation of baryons:   

Then becom

( )

.

 

( v )v

es

tt

i
tt i tt i

i i

j
t j i i i

g

g

u u P

P

µ
µρ

ρ ρ

= − + Φ

Γ = − ∂ = ∇ Φ

∇ = −∇

∂ + ∇ + ∇ Φ = −∇

1 2

1
2

To recover the Euler equation, we need 
   



C. Barotropic flows: enthalpy, the Bernoulli equation, injection 
     energy, and conservation of circulation 
 
A fluid with a one-parameter EOS is called barotropic. Neutron-star 
matter is accurately described by a one-parameter EOS because it is 
approximately isentropic: It has nearly constant (nearly zero) entropy 
per baryon. (There is, however, a composition gradient in neutron stars, 
with the density of protons and electrons ordinarily increasing outward, 
and this dominates a departure from a barotropic equation of state in 
stellar oscillations). 
Recall that, that enthalpy H is defined by H=E+PV . The specific 
enthalpy – enthalpy per unit rest mass— is then 
 
 
 
In the Newtonian approximation,                                              ,  
 
with u = e/ρ  the internal energy per unit rest mass. 
    
   

E PV Ph
M ρ
+ +

= =
0



P Ph uρ
ρ ρ ρ
−

− = + = +1




A stationary flow is described by a spacetime with a timelike Killing 
vector, tα, the generator of time-translations that leave the metric and 
the fluid variables fixed: 
                                                                                                                  (1.4) 

t t t t£ £ £ £α
αβ = = = = 0g u P

Bernoulli’s law 
In the Newtonian approximation, Bernoulli’s law is conservation of 
enthalpy for a stationary flow, and its relativistic form is 
 
 
 
  
 
 
 

( )u u .£ £α α
α αρ

 +
= = 

 
0

Phu t u t
                                                                                                                    (1.5) 

or 

.t
Pu uµ

µ ρ
 +

∂ = 
 

0




A stationary flow is described by a spacetime with a timelike Killing 
vector, tα, the generator of time-translations that leave the metric and 
the fluid variables fixed: 
                                                                                                                  (1.4) 

t t t t£ £ £ £α
αβ = = = = 0g u P

Bernoulli’s law 
In the Newtonian approximation, Bernoulli’s law is conservation of 
enthalpy for a stationary flow, and its relativistic form is 
 
 
 
 To derive this equation, use the relation 
 
 
 
which follows from  conservation of energy and baryon number:    
 
 
 

( )u u .£ £α α
α αρ

 +
= = 

 
0

Phu t u t

,
u Pu h

α
α α

α ρ
∇

∇ =

                                                                                                                    (1.5) 



,
u uu

P

α α
αα α

α
ρ

ρ
∇ ∇

= −∇ =
+




That is, from 
 
 
 
we have   

( )
P Pu u u P uα α α α

α α α α ρ
ρ ρ ρ

 + +
∇ = ∇ + ∇ − ∇ 

 
2

1 


u Pα
α

ρ
∇

=

Because 
 
the Euler equation, (1.3), becomes 
 
                                                                                                                    (1.6) 

u ,£ β β β
α β α β α β α= ∇ + ∇ = ∇u u u u u u u

u( ) .£ α
α ρ

∇
= −

Phu

  Contracting this form of the Euler equation with tα and using Eq. (1.4),  
  we obtain the relativistic Bernoulli equation, (1.5). 



The derivation holds for any Killing vector that Lie-derives the fluid 
variables, and, for an axisymmetric flow, yields conservation of a fluid 
element’s angular momentum in the form 
    £u(huβ φβ) = 0.                                       (1.7) 

Check of Newtonian limit of the relativistic Bernoulli equation: 
Here’s an outline of the steps.  We need ut

  to order v2/c2. 
 
 
 
 
 
Next,   
Finally, (1.5) becomes 
         

( ) ( ) ( )

Newt

v Newt

( ) v ( )
v ( )

v

v

( )( v

.

)£

µ ν
µν ε

ρ
ρ

− = = − + Φ + + ⇒ =
− + Φ

= + − Φ

 = = − + + Φ 
 

− +
= = −

∂ + + + Φ =

2 22 4
2

2

2

2

1
1 1 2

1 1 2

1
1

2
1

1
2

1

1
0

2

t t

t

t
t tt

t

g u u u O u

u

u g u

Ph h

h





kk
£ £ β

α α β α= + ∇t
t t

u
u u u u k u

lnα= −∇ tu

Because 
 
we have   

,β β
β β∇ = ∇ = 0tu P u k P

log .

q P P

P
h

P

β
α β β

β
β

∇ = ∇

∇
= ∇

+
Euler's equation thus has the form, 
 
 
 
with first integral                                                                             (1.8)  
 
E   constant throughout the star.   

log log g

,

lot

t

t

h

h
h

u

u
uα β α−∇ = −∇ ⇒ ∇ =

=

0

E



                  is the (first-integral of the) equation of hydro-equilibrium for a 
 
uniformly rotating barotropic star.  E   is the injection energy per baryon, 
the energy needed to lower a collection of baryons at zero temperature 
from infinity, expand a volume to accommodate them, add kinetic 
energy to match the rotation of the star, and insert them in the star.  
         
Bernoulli’s law:   
hut is conserved along the fluid worldlines when entropy per baryon is 
conserved by the flow.   Newtonian limit  
 
Hydro equilibrium (Poincare-Wavre):  
  h/ut  is constant throughout a uniformly rotating barotropic star. 
                                             Newtonian limit  
 
This first integral of hydro-equilibrium is sometimes mistakenly called 
Bernoulli’s law in the relativity literature.     

t

h
u

=E

Newt v+ + Φ21
2

h

Newt v− + Φ21
2

h



Conservation of vorticity and circulation: Newtonian approximation 
 
In the Newtonian approximation, the vorticity of a fluid is defined by  
  
 
As we will quickly show in the full theory, it is preserved by the fluid 
flow:   
 
That is, vorticity is conserved in this Lie-derived sense.   
 
The meaning of the conservation law is easier to understand using the 
integral form of vorticity: circulation.   If S is a surface bounded by a 
curve c, then the circulation of the fluid about c is  

or a
ab a b b aω ω= ∇× = ∇ −∇v v v

[ ]( ) .t a b£ v∂ + ∇ = 0v

circulation := ( ) .a ab
a a b b ac S

v d v v dS= ∇ −∇∫ ∫



Let ct be the curve c moved along with the fluid flow for a time t: 
Move each point of c for a time t along the fluid trajectory through 
that point.  

Then 
    
 
 
It turns out to be quicker and, I hope, clearer, to derive these laws in 
the full theory, where the derivative along the 4-velocity is not split 
into                 .     
 

.
t

a
ac

d
v d

dt
=∫ 0

t £∂ + v

ct 

c 
S 



Conservation of vorticity and circulation in GR 
 
The vorticity ωαβ is  
 
 
the differential conservation law is the curl of the Euler equation, 
  
 
 

( ) ( ),hu huαβ α β β αω = ∇ −∇

.u£ αβω = 0

Again, because the vorticity is the curl (exterior derivative) of  the vector 
field huα, Stokes’  theorem relates the integral of vorticity over a  
2-surface S to the line integral of huα around its boundary c.     

( ) ( )circulation := [ ] .
c S
hu d hu hu dSα αβ

α α β β α= ∇ −∇∫ ∫



From the form (1.6)                                       of the Euler equation and the 
relation                            the differential form of the conservation law is 
immediate.  
 
The curl of the Euler equation is 
 
 
 
 
or  
     
 
 
 

u( ) ln£ α α= −∇hu h
[ ], ,£ d = 0u

u u

u

u

( ) ( ) ln ln

[ ( ) ( )]

.

£ £

£

£

α β β α α β β α

α β β α

αβω

∇ −∇ = −∇ ∇ + ∇ ∇ =

∇ −∇ =

=

0

0

0

hu hu h h
hu hu



cτ 

c 

τ τ 
τ 

Σ 

The corresponding integral law again involves the circulation along a 
curve moving with the fluid.  Let c be a closed curve in the fluid, 
bounding a 2-surface S; and let cτ be the curve obtained by moving 
each point of c a proper time τ along the fluid trajectory through that 
point.   

Claim:   .
c

d
hu d

d τ

α
ατ

=∫ 0

The proof involves two of the main properties of integrals:  
invariance of an integral under a diffeo (active version of invariance 
under change of coordinates)  and Stokes’ theorem.   And it uses the 
geometrical definition of Lie derivative.   



Here it is:  
Start with the curl of the Euler equation in its original form: 
 
 
Integrate over the surface Sτ  , and write the integral of the curl as a 
line integral over cτ : 

u u( ) ( ) .£ hu £ huα β β α∇ −∇ = 0

u u u[ ( ) ( )] ( )
c

S

£ hu £ hu dS £ hu d
τ

τ

αβ α
α β β α α∇ −∇ =∫ ∫ 

Use the geometrical definition of Lie derivative of a vector along u as   
 the rate of change of a vector dragged along by the fluid flow    

u( ) ( )
d

£ hu hu
dα τ αψ
τ −=

( )
c c

c c c c

d d
hu d hu d

d d

d d d d

τ

τ τ

α α
τ α α

α α α α
τ α α τ α αψ ψ

ψ
τ τ

ψ σ σ ψ σ σ

−

−

= =

 = ⇒ =  

∫ ∫

∫ ∫ ∫ ∫

0  

   

Finally, use the invariance of an integral under a diffeo 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36



