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A collection of properties of observers and particles

An observer with 4-velocity uα measures local quantities with respect to
her orthonormal tetrad (e0̂, e1̂, e2̂, e3̂)

eα
0̂

= uα ⇒ (uµ̂) = (1, 0, 0, 0).

Energy of a particle with 4-momentum pα: E = −pαuα

A stationary, asymptotically flat spacetime has an asymptotically timelike
Killing vector tα.

A stationary observer at infinity has 4-velocity uα = tα.

In a spacetime with a Killing vector ξα, pαu
α is a constant of motion.

In a stationary axisymmetric spacetime with Killing vectors tα and φα,
the conserved quantities are E∞ = −pαtα and J = pαφ

α. (The
subscript ∞ means energy measured by an observer at infinity.)
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II. Relativistic stars: equilibria 
Quick review of nonrotating stars. 
A static spacetime is a spacetime with a timelike Killing vector tα that 
is orthogonal to a spacelike hypersurface.  Translating the 
hypersurface along tα gives a family of hypersurfaces that we can 
label by a coordinate t for which                .   
Theorem (Masood-ul-Alam):    
A static, asymptotically flat  spacetime with a perfect-fluid source is 
spherically symmetric.   
(1-parameter EOS, minimal assumptions) 
 
Equilibria of nonrotating neutron stars are accurately modelled as 
static, spherically symmetric, asymptotically flat perfect-fluids.  They 
satisfying the TOV equation with which you are all familiar.  Here’s a 
check that we get the equilibrium equation from the general form of 
the Euler equation  
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The                           and                            equations then give λ and Φ  in  
the form    
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Equating the two expressions for Φ ‘we recover the TOV equation 
 
 
 
One can obtain a star by integrating this equation, together with the 
defining equation for m(r) and an equation of state, until the pressure 
drops to zero.  Φ  is fixed outside the star by  
Φ =-λ , inside by 
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 Rotating relativistic stars 
 
The metric gαβ of a stationary axisymmetric rotating fluid has two 
commuting Killing vectors, tα and φα ,  generating time translations 
and rotations.   
Remark:  Although in realistic stellar models, tα is everywhere timelike, 
within a horizon or in an ergosphere of an exceptionally compact 
rotating star,  tα will be spacelike. The ergosphere is by definition the 
region in which an an asymptotically timelike Killing vector becomes 
spacelike. 
 
  As before, the fluid velocity has the form                                     and the 
equation of hydrostatic equilibrium has the first integral 
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Geometry of a rotating star 
 
The metric gαβ can be written in terms of dot-products of the Killing 
vectors, tα and φα  
 
and a conformal factor          that characterizes the geometry of the 
orthogonal 2-surfaces. 
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where      (script pi) is a cylindrical coordinate  
(in flat space                     ). 
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Because of the choice of an overall conformal factor e2µ to describe the
geometry of the surfaces, the exterior of a spherical star is the
Schwarzschild geometry in isotropic coordinates,

eν =
1−M/2r

1 + M/2r
, eψ = $(1 + M/2r)2, eµ = (1 + M/2r)2

Asymptotically, the relations
hold for the potentials, because any stationary, asymptotically flat
spacetime agrees with the Schwarzschild geometry to order r−1.

eψ = $
(
e−ν + O(r−2)

)
, eµ = e−ν + O(r−2),
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The angular velocity 
                                
measures the dragging of inertial frames in the sense that particles with 
zero angular momentum move along trajectories whose angular velocity 
relative to infinity is  
 
In describing the fluid, it is helpful to introduce  a family of zero-angular-
momentum-observers (ZAMOs) \cite{Bardeen70,Bardeen73}, observers 
whose velocity has at each point the form (for circular, axisymmetric 
motion) 
 
The worldlines of these observers are normal to the  t= constant 
hypersurfaces.   Because spacetime is locally flat, the local observers 
can express velocities in the way one does in flat space, in terms of an 
orthonormal tetrad.  

/tα β
α βω φ φ φ≡ −

d
dt
φ ω=

ZAMO ( ) ( )tu u t e tα α α ν α αωφ ωφ−= + = +



A natural tetrad is the frame of zero-angular-momentum-observers
(ZAMOs), with basis covectors

ω0̂ = eνdt, ω1̂ = eψ(dφ− ωdt), ω2̂ = eµd$, ω3̂ = eµdz,

and the corresponding contravariant basis vectors are

e0̂ = e−ν(∂t + ω∂φ), e1̂ = e−ψ∂φ, e2̂ = e−µ∂$, e3̂ = e−µ∂z.

The nonzero components of the four velocity uα along these frame
vectors can be written in terms of a fluid 3-velocity v in the manner

u0̂ =
1√

1− v2
, u1̂ =

v√
1− v2

.
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ut = uα∇αt =
e−ν√
1− v2

, uφ = uα∇αφ = Ωut, (1)

where Ω is the angular velocity of the fluid relative to infinity (measured
by an asymptotic observer with 4-velocity along the asymptotically
timelike Killing vector tα). The 3-velocity v, written in terms of Ω, is

v = eψ−ν(Ω− ω).

Note that 2πeψ is the circumference of a circle centered about the axis of
symmetry (the z-axis); that is, eψ agrees for spherical stars with r sin θ,
where r and θ are the usual Schwarzschild coordinates (not the isotropic
coordinates introduced above).
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The nonvanishing tetrad components of Tαβ are

T 0̂0̂ =
ε + pv2

1− v2
, T 0̂1̂ = (ε + p)

v

1− v2
,

T 1̂1̂ =
εv2 + p

1− v2
, T 2̂2̂ = T 3̂3̂ = p.

The four potentials are determined by four components of the field
equation

Gαβ = 8π Tαβ , (2)

whose selection is a matter of taste. Following Bardeen and Wagoner
(1971), Butterworth and Ipser (1976) and several subsequent authors
based their code on the following four equations:pdfl
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In these equations, ∇ is the flat 3-dimensional covariant derivative
operator of the metric d$2 + dz2 + $2dφ2. The equations are simplified
by writing eψ = $Be−ν . This defines a potential B, and B = 1 to first
post-Newtonian order.

∇ · (B∇ν) =
1
2
r2 sin2 θB3e−4ν∇ω ·∇ω

+4πBe2µ−ν
[
(ε + p)(1 + v2)

1− v2
+ 2p

]
, (3)

∇ · (r2 sin2 θB3e−4ν∇ω) = −16πr sin θB2e2µ−3ν (ε + p)v
1− v2

, (4)

∇ · (r sin θ∇B) = 16πr sin θBe2µ−2νp, (5)

(these are, respectively the R0̂0̂, R0̂1̂, and R0̂0̂ −R1̂1̂ field equations),
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As a final equation, for µ, one can take (with eβ = $B),

e2µG2̂3̂ = G$z :
µ,$ β,z +µ,z β,$ = β,$z +β,$ β,z +2ν,$ ν,z −β,z ν,$

+
1
2
e2β−4ν−2µω,$ ω,z .

Alternatively can use a 4th elliptic equation for µ.

Living Reviews: Nick Stergioulas
Rotating relativistic stars, JF and Nick Stergioulas, Cambridge, in press.

Codes by Wilson; Bonazzola & Schneider; Butterworth & Ipser; JF, Ipser,
Parker; Lattimer et al; Bonazzola, Gourgoulhon, Salgado, Marck; Ansorg,
Kleinwachter, Meinel; Komatsu, Eriguchi, Hachisu; Cook, Shapiro,
Teukolsky;
Stergioulas: rns, a public domain code, available at

http://www.gravity.phys.uwm.edu/rns.

John Friedman II. Rotating Relativistic Stars



Code Comparison

AKM Lorene/ SF BGSM KEH
rotstar (260x400)

p̄c 1
rp/re 0.7 1e-3
Ω̄ 1.41170848318 9e-6 3e-4 1e-2 1e-2
M̄ 0.135798178809 2e-4 2e-5 9e-3 2e-2
M̄0 0.186338658186 2e-4 2e-4 1e-2 2e-3
R̄circ 0.345476187602 5e-5 3e-5 3e-3 1e-3
J̄ 0.0140585992949 2e-5 4e-4 2e-2 2e-2
Zp 1.70735395213 1e-5 4e-5 2e-2 6e-2
Zf
eq −0.162534082217 2e-4 2e-3 4e-2 2e-2

Zb
eq 11.3539142587 7e-6 7e-5 8e-2 2e-1

|GRV3| 4e− 13 3e-6 3e-5 4e-3 1e-1

Table: Table adapted from Stergioulas et al. 03.
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Method:

1. Start with a guessed solution (e.g., for a spherical configuration).
Solve the 4 field equations by Newton-Raphson, putting the
linearized operator on the left side and the nonlinear terms on the
right. (KEH solve by keeping only a flat-space laplacian on the each
left side and solving by using the known Green’s function).

2. Update h from the first integral of the equation of hydrostatic
equilibrium, and use the EOS to find P, ε.

3. Find the new surface of the star.

4. Use the updated ε, P and the updated potentials to recompute the
right-hand sides of the field equations.

5 ≡ 1.
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Use spherical harmonics (Legendre polynomials) or Chebyshev
polynomials for the θ dependence. For r dependence, directly specify
function on the grid, using finite differences for radial derivatives, or use
spectral decomposition with Chebyshev polynomials.

Instead of representing a function of r by its values on the grid, on can,
as in the case of the angular dependence, write the function as a sum of
orthogonal polynomials (typically Chebyshev polynomials) and soving
numerically for the coefficients. This is called a spectral method. The
accuracy of spectral methods was initially limited by the Gibbs
phenomenon at the stellar surface, but the most recent spectral codes by
the Meudon group and by Ansorg et al. overcome the problem by using
two or three domains fitted to the stellar surface. Ansorg et al. obtain
near-machine accuracy with two domains and a Chebyshev expansion for
both r and θ.
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                             Meinel, Ansorg, Kleinwachter, Neugebauer, Petroff 
 
The solid curve shows the surface of a uniformly rotating, uniform-
density star rotating at maximum angular velocity  WK:   The star 
rotates at the angular velocity of a satellite in circular orbit at the 
equator.  The two dotted lobes mark the boundaries of the 
ergosphere.   Uniformly rotating stars with realistic equations of 
state, however,  reach WK before an ergosphere appears. 



The set of equilibrium configurations of a uniformly rotating star is
two-dimensional, specified, for example, by M0 and Ω. The 2-dimensional
surface of equilibria shown on the next page is ruled by lines of constant
J and M0. For fixed J , the maximum mass configuration accurately
approximates the onset of instability to collapse. As we discuss in the
next part of these notes, it is exact only for spherical stars.
(JF, Ipser, Sorkin; Katami, Rezzolla, Yoshida.)
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Although not shown in the figure, at low density there is a similar line of
minimum mass configurations. Below the minimum mass, configurations
are unstable to explosion - they are unbound.
Candidates for realistic equations of state typically have maximum
masses for uniform rotation below 2.5M�. (See, e.g. Cook, Shapiro,
Teukolsky, for a representative sample of candidate EOSs).
A hard upper limit on the mass of uniformly rotating, self-gravitating
stars is found by using the stiffest EOS consistent with causality
(vsound = dP/dε = 1), matching at a density εm to a known low-density
EOS.

M < 6.1M�

(
2× 1014g/cm3

εm

)1/2

(6)

JF,Ipser; Koranda, Stergioulas, JF
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M and J for a rotating star

For an axisymmetric system the angular momentum current jα = Tαβ φβ

is conserved: Killing’s equation implies

∇αjα = 0.

The angular momentum of an asymptotically flat, axisymmetric
spacetime is then given by

J =
∫
V

jαdSα =
∫
V

Tαβ φβdSα

For a Killing vector ξα, ∇βξβ = 0 ⇒

∇β∇αξβ = (∇β∇α −∇α∇β)ξβ = Rβ
α
βγξ

γ = Rα
βξβ .
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Now the Einstein equation implies

J =
1
8π

∫
V

Rα
βφβdSα =

1
8π

∫
V

∇β∇αφβdSα

and by Gauss’s theorem we have

J =
1
8π

∫
∞
∇αφβdSαβ

where dSαβ = 1
2εαβγδdSγδ
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The expression for the mass is similar. One of today’s problems is a short
calculation that gives

M = − 1
4π

∫
∞
∇αtβdSαβ ,

for a stationary, axymptotically flat spacetime. This is the Komar
expression for the mass. Then

M = − 1
4π

∫
V

∇β∇αtβdSα = − 1
4π

∫
V

Rα
β tβdSα

= −
∫
V

(2Tαβ −
1
2
δαβT )tβdSα
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Injection Energy (Thorne, Carter)

The quantity E has a natural physical interpretation, as the energy per
unit mass needed to inject matter into the star, with the injected fluid in
the same local state (same composition, density, and entropy per baryon
as the surrounding star). We will compute the initial energy δM needed
to inject a ring of fluid into a rotating star, after dropping it to its new
location, a circle C about the axis of symmetry.

Drop a box from infinity with energy δM1, rest mass δM0 = mBδN ,
entropy δS , and angular momentum δJ .
If the box has, at infinity, four-momentum p1α, then

δM1 = −p1αtα, δJ = p1αφα.

When the freely falling box reaches a point P in the star, its energy
measured by a comoving observer (at rest with respect to the fluid) is

δE1 = −p1αuα,

where uα = ut(tα + Ωφα) is the fluid four-velocity.

δE1 = −ut(p1αtα + Ωp1αφα)
= ut(δM1 − ΩδJ), .
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Now, following Thorne, we suppose the observer catches the box at P
and reversibly injects its contents into the fluid, imparting to the fluid an
energy

δE = TδS + µδN.

Because the initial entropy per baryon was already s, not all of the
available energy is used: Our active observer uses the remaining energy to
throw the empty box back up to infinity, on a trajectory with zero angular
momentum, so that the angular momentum δJ is retained by the fluid.
The returning box has energy δE2 = δE1 − δE = p2αuα, with p2α the
momentum with which it is thrown. Because its free trajectory conserves
p2αtα, the box reaches infinity with redshifted energy

δM2 = p2αtα =
δE2

ut
.
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The change in mass of the star is then related to the change in baryon
number, entropy, and angular momentum of the fluid by

δM = δM1 − δM2 =
1
ut

(δE1 − δE2) + ΩδJ =
δE

ut
+ ΩδJ

=
µ

ut
δN +

T

ut
δS + ΩδJ (7)

= EδM0 +
T

ut
δS + ΩδJ. (8)

The coefficient of δM0 is the energy E , the injection energy per unit rest
mass of matter with zero initial entropy and angular momentum. Eq. (7)
(or 8) is the first law of thermodynamics for relativistic stars (in two
equivalent forms).
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Why is E is constant in a star with constant entropy per baryon and
constant angular velocity Ω? An equilibrium configuration is an
extremum of mass at fixed angular momentum, entropy and baryon
number: Small changes in the structure of the star leave the mass fixed.
In particular, suppose one moves a ring of fluid from one location to
another in a uniformly rotating white dwarf or neutron star, stars that are
approximately barotropic because T is approximately zero (that is,
kT << εF ).
Changing the location of the ring is equivalent to moving it out to
infinity and back in to a new location in the star. According to Eq. (8)
with T = 0

δM = (E2 − E1)δM0 + (Ω2 − Ω1)δJ.

Uniform rotation: Ω1 = Ω2 Then δM = 0 =⇒

E2 = E1, (9)

and we conclude that E is constant throughout the star.
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When the spacetime includes a black hole – e.g., for a black hole and a
disk – the first law includes terms associated with the area and angular
momentum of the black hole:

δM = EδM0 +
T

ut
δS + ΩδJ

+κ δA + ΩBHδJBH.
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