Review of General Relativity

Jolien Creighton

University of Wisconsin-Milwaukee

July 16, 2012

Whirlwind review of differential geometry

Coordinates and distances Vectors and connections Lie derivative Curvature

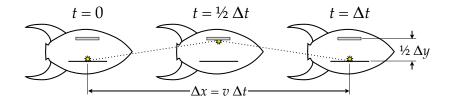
Formulation of General Relativity

Weak gravity and slow motion Matter Einstein field equations

Linearized gravity

Newtonian limit Plane wave solution

Coordinates and distances



Measure the speed of light

Observer in rocket: $c = \frac{\Delta y}{\Delta \tau}$ Observer on Earth: $c^2 = \frac{(\Delta x)^2 + (\Delta y)^2}{(\Delta t)^2} = \frac{(\Delta x)^2 + (c\Delta \tau)^2}{(\Delta t)^2}$ $c^2 (\Delta \tau)^2 = c^2 (\Delta t)^2 - (\Delta x)^2$

Coordinates and distances

Let ds be the distance between neighboring events

Curved spacetime:

$$ds^2 = g_{\mu\nu}(x^{\alpha}) dx^{\mu} dx^{\nu}$$

Flat spacetime:

$$\begin{split} ds^2 &= \eta_{\mu\nu} dx^{\mu} dx^{\nu} \\ &= -c^2 dt^2 + dx^2 + dy^2 + dz^2 \\ & (\text{rectilinear coordinates}) \end{split}$$

 Equivalence principle: A freely-falling frame defines locally-flat neighborhood of an event in spacetime.

Coordinates and distances

General coordinate transformation:

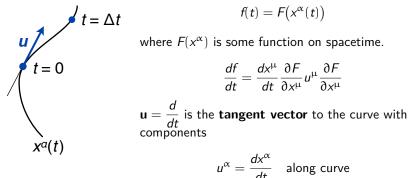
$$x^{\prime\alpha}(x^{\mu}) \Rightarrow dx^{\prime\alpha} = \frac{\partial x^{\prime\alpha}}{\partial x^{\mu}} x^{\mu}$$
$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = g_{\alpha\beta}^{\prime} dx^{\prime\alpha} dx^{\prime\beta}$$
$$g_{\alpha\beta}^{\prime} = g_{\mu\nu} \frac{\partial x^{\mu}}{\partial x^{\prime\alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime\beta}}$$

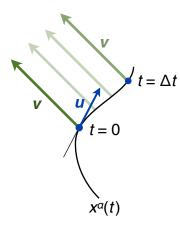
Infinitesimal coordinate transformation:

$$x'^{lpha} = x^{lpha} + \xi^{lpha}(x^{\mu}) \Rightarrow dx'^{lpha} = dx^{lpha} + \frac{\partial \xi^{lpha}}{\partial x^{\mu}} dx^{\mu}$$

$$g'_{\alpha\beta} = g_{\alpha\beta} - g_{\alpha\mu} \frac{\partial \xi^{\mu}}{\partial x^{\beta}} - g_{\mu\beta} \frac{\partial \xi^{\mu}}{\partial x^{\alpha}}$$

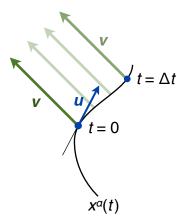
On a curve $x^{\alpha}(t)$ define a function

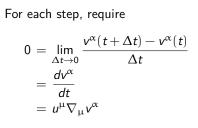




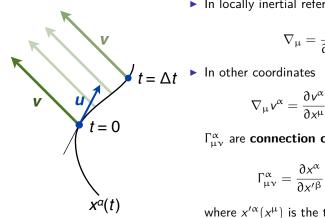
Parallel transport \mathbf{v} along curve defined by \mathbf{u} :

- 1. Go into a locally flat reference frame
- 2. Take an infinitesimal step by parallel transport in the usual sense of flat space
- 3. Repeat steps 1 and 2 until final point is reached





 ∇_{μ} is the covariant derivative



In locally inertial reference frame

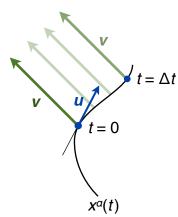
$$\nabla_{\mu} = \frac{\partial}{\partial x^{\mu}}$$

$$\nabla_{\mu}v^{\alpha} = \frac{\partial v^{\alpha}}{\partial x^{\mu}} + \Gamma^{\alpha}_{\mu\nu}v^{\nu}$$

 $\Gamma_{\mu\nu}^{\alpha}$ are connection coefficients

$$\Gamma^{\alpha}_{\mu\nu} = \frac{\partial x^{\alpha}}{\partial x'^{\beta}} \frac{\partial^2 x'^{\beta}}{\partial x^{\mu} \partial x^{\nu}}$$

where $x'^{\alpha}(x^{\mu})$ is the transformation to an inertial reference frame



Parallel transport preserves the inner product $\mathbf{v} \cdot \mathbf{w} = g_{\alpha\beta} v^{\alpha} w^{\beta}$

$$0 = \frac{d}{dt} (\mathbf{v} \cdot \mathbf{w})$$
$$= u^{\mu} \nabla_{\mu} (g_{\alpha\beta} v^{\alpha} w^{\beta})$$

so
$$abla_{\mu}g_{lphaeta}=0$$

This gives

$$\Gamma^{lpha}_{\mu
u} = rac{1}{2} g^{lphaeta} \left(rac{\partial g_{eta
u}}{\partial x^{\mu}} + rac{\partial g_{\mueta}}{\partial x^{
u}} - rac{\partial g_{\mu
u}}{\partial x^{eta}}
ight)$$

A curve is a **geodesic** if its tangent vector is parallel-transports itself along the curve:

$$0 = u^{\mu} \nabla_{\mu} u^{\alpha}$$
$$= \frac{dx^{\mu}}{dt} \left(\frac{\partial}{\partial x^{\mu}} \frac{dx^{\alpha}}{dt} + \Gamma^{\alpha}_{\mu\nu} \frac{dx^{\nu}}{dt} \right)$$

Geodesic is defined by four coupled ordinary differential equations:

$$\frac{d^2 x^{\alpha}}{dt^2} = -\Gamma^{\alpha}_{\mu\nu} \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt}$$

Specify dx^{μ}/dt at a point x^{μ} and integrate to generate a geodesic

Vectors and connections WATAS R. V(R) DS B A $u(Q) \Delta t$ $u(\mathcal{P}) \Delta t$ Q v(𝒫) ∆s P

Vector *fields* do not necessarily *commute*:

 Move Δt along u and then Δs along v to get to B

 Move Δs along v and then Δt along u to get to A

$$w^{\alpha} = \lim_{\Delta s \to 0} \lim_{\Delta t \to 0} \frac{\{ [u^{\alpha}(\mathcal{P})\Delta t + v^{\alpha}(\mathcal{R})\Delta s] - [v^{\alpha}(\mathcal{P})\Delta s + u^{\alpha}(\mathcal{Q})\Delta t] \}}{\Delta t \Delta s}$$
$$= \underbrace{\lim_{\Delta t \to 0} \frac{v^{\alpha}(\mathcal{R}) - v^{\alpha}(\mathcal{P})}{\Delta t}}_{u^{\mu}\nabla_{\mu}v^{\alpha}} - \underbrace{\lim_{\Delta t \to 0} \frac{u^{\alpha}(\mathcal{Q}) - u^{\alpha}(\mathcal{P})}{\Delta t}}_{v^{\mu}\nabla_{\mu}u^{\alpha}}$$

 $\mathbf{w} = [\mathbf{u}, \mathbf{v}]$ is the *commutator* of \mathbf{u} and \mathbf{v}

$$w^{\alpha} = u^{\mu} \frac{\partial v^{\alpha}}{\partial x^{\mu}} - v^{\mu} \frac{\partial u^{\alpha}}{\partial x^{\mu}}$$

If two vectors commute, $[\boldsymbol{u},\boldsymbol{v}]=0,$ then

• going Δt along **u** and then going Δs along **v** arrives at the same point as

• going Δs along **v** and then going Δt along **u**

We can use (s, t) to label the points ("coordinates"): **u** and **v** are *coordinate basis* vectors

Lie derivative

Consider a fluid flow with velocity field $\mathbf{u}(\mathbf{x})$

A scalar field $\rho(\mathbf{x})$ is *dragged along* by the flow if the value remains constant on a fluid element:

$$0 = \frac{d}{dt} \rho \big(\mathbf{x}(t) \big) = \mathbf{u} \cdot \boldsymbol{\nabla} \rho$$

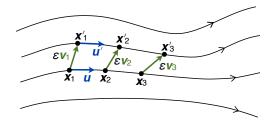
where $\mathbf{u} = d\mathbf{x}/dt$

The scalar field ρ is then said to be *Lie-derived* by the vector field **u**; the **Lie derivative** of ρ , defined by

$$\mathcal{L}_{\mathbf{u}} \rho = \mathbf{u} \cdot \boldsymbol{\nabla} \rho$$

is the rate of change of ρ measured by a co-moving observer

Lie derivative



Consider now a vector $\boldsymbol{\epsilon} \mathbf{v}$ that joins two nearby fluid elements, $\boldsymbol{\epsilon} \mathbf{v} = \mathbf{x}'(t) - \mathbf{x}(t)$. This vector is *dragged along* by the fluid flow.

$$\mathbf{u}' = \frac{d}{dt}\mathbf{x}'(t) = \frac{d}{dt}\Big(\mathbf{x}(t) + \epsilon\mathbf{v}\big(\mathbf{x}(t)\big)\Big) = \mathbf{u}(\mathbf{x}) + \epsilon\mathbf{u}\cdot\nabla\mathbf{v}(\mathbf{x})$$
$$\mathbf{u}' = \mathbf{u}(\mathbf{x}') = \mathbf{u}(\mathbf{x} + \epsilon\mathbf{v}) = \mathbf{u}(\mathbf{x}) + \epsilon\mathbf{v}\cdot\nabla\mathbf{u}(\mathbf{x}) + O(\epsilon^2)$$

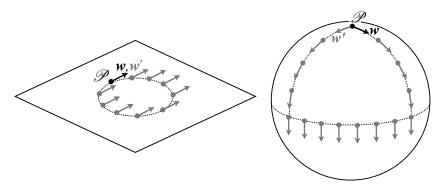
so

$$[\mathbf{u},\mathbf{v}] = \mathbf{u} \cdot \boldsymbol{\nabla} \mathbf{v} - \mathbf{v} \cdot \boldsymbol{\nabla} \mathbf{u} = \mathbf{0}$$

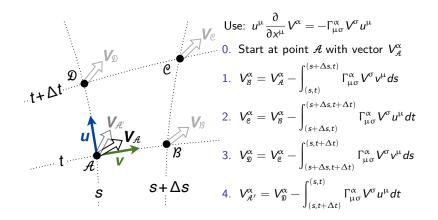
Lie derivative

The Lie derivative of the vector ${\bf v}$ along the vector ${\bf u}$ is the commutator:

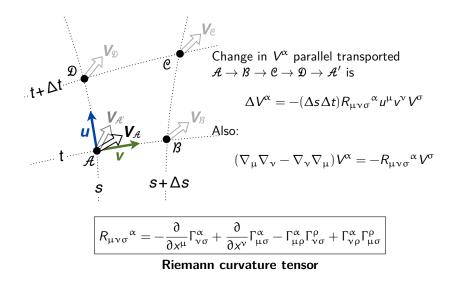
$$\begin{split} \mathbf{\pounds}_{\mathbf{u}}\mathbf{v} &= [\mathbf{u},\mathbf{v}] \\ \mathbf{\pounds}_{\mathbf{u}}v^{\alpha} &= u^{\mu}\nabla_{\mu}v^{\alpha} - v^{\mu}\nabla_{\mu}u^{\alpha} = u^{\mu}\frac{\partial v^{\alpha}}{\partial x^{\mu}} - v^{\mu}\frac{\partial u^{\alpha}}{\partial x^{\mu}} \end{split}$$



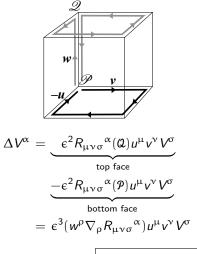
- In flat space: parallel transport of a vector about a closed path leaves the vector unchanged
- In curved space: vector is generally different after parallel transport about a closed path

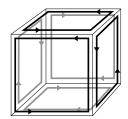


$$\begin{split} \Delta V^{\alpha} &= V^{\alpha}_{\mathcal{A}'} - V^{\alpha}_{\mathcal{A}} \\ &= \int_{(s,t)}^{(s,t+\Delta t)} \Gamma^{\alpha}_{\mu\sigma} V^{\sigma} u^{\mu} dt - \int_{(s+\Delta s,t+\Delta t)}^{(s+\Delta s,t+\Delta t)} \Gamma^{\alpha}_{\mu\sigma} V^{\sigma} u^{\mu} dt \\ &\quad + \int_{(s,t+\Delta t)}^{(s+\Delta s,t+\Delta t)} \Gamma^{\alpha}_{\mu\sigma} V^{\sigma} v^{\mu} ds - \int_{(s,t)}^{(s+\Delta s,t)} \Gamma^{\alpha}_{\mu\sigma} V^{\sigma} v^{\mu} ds \\ &\approx - \int_{t}^{t+\Delta t} \Delta s \, v^{\nu} \frac{\partial}{\partial x^{\nu}} (\Gamma^{\alpha}_{\mu\sigma} V^{\sigma}) u^{\mu} dt + \int_{s}^{s+\Delta t} \Delta t \, u^{\nu} \frac{\partial}{\partial x^{\nu}} (\Gamma^{\alpha}_{\mu\sigma} V^{\sigma}) v^{\mu} ds \\ &\approx \Delta s \Delta t \left[-u^{\mu} v^{\nu} \frac{\partial}{\partial x^{\nu}} (\Gamma^{\alpha}_{\mu\sigma} V^{\sigma}) + v^{\mu} u^{\nu} \frac{\partial}{\partial x^{\nu}} (\Gamma^{\alpha}_{\mu\sigma} V^{\sigma}) \right] \\ &= \Delta s \Delta t \left[-\frac{\partial}{\partial x^{\nu}} \Gamma^{\alpha}_{\mu\sigma} + \Gamma^{\alpha}_{\mu\rho} \Gamma^{\rho}_{\nu\sigma} + \frac{\partial}{\partial x^{\mu}} \Gamma^{\alpha}_{\nu\rho} - \Gamma^{\alpha}_{\nu\rho} \Gamma^{\rho}_{\mu\sigma} \right] u^{\mu} v^{\nu} V^{\sigma} \\ &- R_{\mu\nu\sigma}^{\alpha} \end{split}$$



Bianchi identity



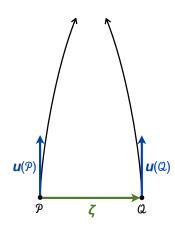


$$0 = \Delta V^{\alpha} \text{ (all faces)} \\ = \epsilon^{3} (\nabla_{\rho} R_{\mu\nu\sigma}{}^{\alpha} + \nabla_{\mu} R_{\nu\rho\sigma}{}^{\alpha} \\ + \nabla_{\nu} R_{\rho\mu\sigma}{}^{\alpha}) u^{\mu} v^{\nu} w^{\rho} V^{\sigma}$$

$$\nabla_{\rho}R_{\mu\nu\sigma}{}^{\alpha}+\nabla_{\mu}R_{\nu\rho\sigma}{}^{\alpha}+\nabla_{\nu}R_{\rho\mu\sigma}{}^{\alpha}=0$$

Bianchi identity

Geodesic deviation



Let $\zeta = d/dx$ be the separation vector between two geodesics

Relative velocity of the two bodies

$$\mathbf{v} = rac{d\zeta}{dt} = \mathbf{u} \cdot \mathbf{\nabla} \boldsymbol{\zeta} = \boldsymbol{\zeta} \cdot \mathbf{\nabla} \mathbf{u}$$

Relative acceleration of the two bodies

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \mathbf{u} \cdot \boldsymbol{\nabla} (\boldsymbol{\zeta} \cdot \boldsymbol{\nabla} \mathbf{u})$$

Use geodesic equation and definition of Riemann tensor to obtain

$$a^{\alpha} = -R_{\mu\sigma\nu}{}^{\alpha}u^{\mu}\zeta^{\sigma}u^{\nu}$$

geodesic deviation equation

Whirlwind review of differential geometry

Coordinates and distances Vectors and connections Lie derivative Curvature

Formulation of General Relativity

Weak gravity and slow motion Matter Einstein field equations

Linearized gravity

Newtonian limit Plane wave solution

Weak gravity and slow motion

Linear perturbation to flat spacetime:

$$g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta} + O(h^2)$$

4-velocity of slowly moving particle, $v \ll c$:

$$\mathbf{u} = \frac{d\mathbf{x}}{dt} = [1, 0, 0, 0] + O(v/c)$$

Geodesic equation:

$$rac{d^2 x^i}{dt^2}pprox -\Gamma^i_{00}pprox rac{1}{2}rac{\partial}{\partial x^i}h_{00}$$

where we assume a nearly stationary background, $\partial h_{\alpha\beta}/\partial t \approx 0$ Geodesic deviation equation:

$$\frac{d^2\zeta^i}{dt^2}\approx -R_{0i0j}\xi^j\approx -\frac{1}{2}\frac{\partial^2 h_{00}}{\partial x^i\partial x^j}\,\zeta^j$$

Identify $h_{00} = -2\Phi$

Matter

Perfect fluid **stress energy tensor** Locally-inertial frame:

$$\mathbf{T} = \begin{bmatrix} -\rho c^2 & & \\ P & & \\ & P & \\ & P & \\ & P & \\ & & P & \\ & P$$

Generally:

$$T^{\alpha\beta} = (\rho + P/c^2)u^{\alpha}u^{\beta} + Pg^{\alpha\beta}$$

Einstein field equations

$$G_{\alpha\beta}=\frac{8\pi G}{c^4}\,T_{\alpha\beta}$$

Einstein field equations

where the Einstein tensor, Ricci tensor, and Ricci scalar are

$$G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R \qquad R_{\alpha\beta} = R_{\alpha\mu\beta}^{\ \mu} \qquad R = g^{\mu\nu}R_{\mu\nu}$$

The Bianchi identity implies $\nabla_{\mu}G^{\mu\alpha}=0$ which yields the equations of motion for matter

$$\nabla_{\mu}T^{\mu\alpha}=0$$

Whirlwind review of differential geometry

Coordinates and distances Vectors and connections Lie derivative Curvature

Formulation of General Relativity

Weak gravity and slow motion Matter Einstein field equations

Linearized gravity

Newtonian limit Plane wave solution

Linearized gravity

Define trace-reversed metric perturbation

$$ar{h}_{lphaeta} = h_{lphaeta} - rac{1}{2} \eta_{lphaeta} h$$

Choose Lorenz gauge (harmonic coordinates)

$$\frac{\partial}{\partial x^{\mu}} \bar{h}^{\mu \alpha} = 0$$

via gauge transformation $x^{\alpha}_{\text{new}} = x^{\alpha}_{\text{old}} + \xi^{\alpha}$ where

$$\Box \xi^{\alpha} = \frac{\partial}{\partial x^{\mu}} \bar{h}_{\mathsf{old}}^{\mu\alpha}$$

$$\Box \bar{h}_{\alpha\beta} = -\frac{16\pi G}{c^4} T_{\alpha\beta}$$

linearized field equations

Newtonian limit

Leading order in $1/c^2$:



Non-trivial field equation is

$$abla^2 \bar{h}_{00} = 16\pi G
ho$$

Identify $\bar{h}_{00} = -4\Phi$ where Φ is the Newtonian potential

$$abla^2 \Phi = 4\pi G
ho$$

Poisson equation

Newtonian limit

Newtonian metric:
$$\mathbf{g} = \begin{bmatrix} -c^2 - 2\Phi & & \\ & 1 - \frac{2\Phi}{c^2} & \\ & & 1 - \frac{2\Phi}{c^2} \\ & & 1 - \frac{2\Phi}{c^2} \end{bmatrix}$$

Geodesic equation: $\frac{d^2x^i}{dt^2} = -\frac{\partial\Phi}{\partial x^i}$
Geodesic deviation equation: $\frac{d^2\zeta^i}{dt^2} = -\frac{\partial^2\Phi}{\partial x^i\partial x^j}\zeta^j$

Plane wave solution

Linearized vacuum field equations:

 $\Box \bar{h}_{\alpha\beta} = 0$

Plane wave solution travelling in z-direction is

$$\bar{h}_{\alpha\beta} = \bar{h}_{\alpha\beta}(t-z/c)$$

Lorenz gauge condition imposes four constraints:

$$ar{h}_{00}=-car{h}_{03}=c^2ar{h}_{33}, \quad ar{h}_{01}=-car{h}_{31}, \quad ar{h}_{02}=-car{h}_{32}$$

and thereby reduces independent degrees of freedom to six

 $\bar{h}_{00}, \ \bar{h}_{01}, \ \bar{h}_{02}, \ \bar{h}_{11}, \ \bar{h}_{12}, \ \bar{h}_{22}$

Plane wave solution

Remaining freedom within Lorenz gauge: $x_{new}^{\alpha} = x_{old}^{\alpha} + \xi^{\alpha}$ where

 $\Box \xi^{\alpha} = 0$

is used to set $\bar{h}_{00} = \bar{h}_{01} = \bar{h}_{02} = 0$ and $\bar{h}_{11} = -\bar{h}_{22}$ Resulting metric perturbation has two degrees of freedom:

$$\mathbf{h} = \left[egin{array}{ccccc} 0 & 0 & 0 & 0 \ 0 & h_+ & h_ imes & 0 \ 0 & h_ imes & -h_+ & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

where $h_+ = h_+(t-z/c)$ and $h_\times = h_\times(t-z/c)$ are the two transverse polarizations of the plane wave