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Coordinates and distances

½ Δy

Δx = v Δt

t = ½ Δt t = Δtt = 0

Measure the speed of light

I Observer in rocket: c =
∆y
∆τ

I Observer on Earth: c2 =
(∆x)2 + (∆y)2

(∆t)2 =
(∆x)2 + (c∆τ)2

(∆t)2

c2(∆τ)2 = c2(∆t)2 − (∆x)2



Coordinates and distances

Let ds be the distance between neighboring events
I Curved spacetime:

ds2 = gµν(xα)dxµdxν

I Flat spacetime:

ds2 = ηµνdxµdxν

= −c2dt2 + dx2 + dy2 + dz2

(rectilinear coordinates)

I Equivalence principle:
A freely-falling frame defines locally-flat neighborhood of an event in
spacetime.



Coordinates and distances

I General coordinate transformation:

x ′α(xµ) ⇒ dx ′α =
∂x ′α

∂xµ xµ

ds2 = gµνdxµdxν = g ′
αβdx ′αdx ′β

g ′
αβ = gµν

∂xµ
∂x ′α

∂xν
∂x ′β

I Infinitesimal coordinate transformation:

x ′α = xα + ξα(xµ) ⇒ dx ′α = dxα +
∂ξα

∂xµ dxµ

g ′
αβ = gαβ − gαµ

∂ξµ

∂xβ − gµβ

∂ξµ

∂xα



Vectors and connections

xα(t )

t  =  0

t  =  Δt
u

xα(t )

t  =  0

t  =  Δt
uv

vOn a curve xα(t) define a function

f(t) = F
(
xα(t)

)
where F(xα) is some function on spacetime.

df
dt =

dxµ
dt

∂F
∂xµ uµ ∂F

∂xµ

u =
d
dt is the tangent vector to the curve with

components

uα =
dxα
dt along curve



Vectors and connections

xα(t )

t  =  0

t  =  Δt
u

xα(t )

t  =  0

t  =  Δt
uv

v Parallel transport v along curve
defined by u:

1. Go into a locally flat reference
frame

2. Take an infinitesimal step by
parallel transport in the usual
sense of flat space

3. Repeat steps 1 and 2 until final
point is reached



Vectors and connections

xα(t )

t  =  0

t  =  Δt
u

xα(t )

t  =  0

t  =  Δt
uv

v For each step, require

0 = lim
∆t→0

vα(t + ∆t) − vα(t)
∆t

=
dvα
dt

= uµ∇µvα

∇µ is the covariant derivative



Vectors and connections

xα(t )

t  =  0

t  =  Δt
u

xα(t )

t  =  0

t  =  Δt
uv

v

I In locally inertial reference frame

∇µ =
∂

∂xµ

I In other coordinates

∇µvα =
∂vα
∂xµ + Γαµνvν

Γαµν are connection coefficients

Γαµν =
∂xα
∂x ′β

∂2x ′β

∂xµ∂xν

where x ′α(xµ) is the transformation to
an inertial reference frame



Vectors and connections

xα(t )

t  =  0

t  =  Δt
u

xα(t )

t  =  0

t  =  Δt
uv

v
Parallel transport preserves the inner
product v · w = gαβvαwβ

0 =
d
dt (v · w)

= uµ∇µ(gαβvαwβ)

so ∇µgαβ = 0

This gives

Γαµν =
1
2gαβ

(
∂gβν

∂xµ +
∂gµβ

∂xν −
∂gµν

∂xβ
)



Vectors and connections

A curve is a geodesic if its tangent vector is parallel-transports itself
along the curve:

0 = uµ∇µuα

=
dxµ
dt

(
∂

∂xµ
dxα
dt + Γαµν

dxν
dt

)
Geodesic is defined by four coupled ordinary differential equations:

d2xα
dt2 = −Γαµν

dxµ
dt

dxν
dt

Specify dxµ/dt at a point xµ and integrate to generate a geodesic



Vectors and connections

u(�) Δt

�
�

� �

�

u(�) Δt

v(�) Δs

v(�) Δ
s w Δ

t Δ
s

Vector fields do not necessarily
commute:

I Move ∆t along u and then ∆s
along v to get to B

I Move ∆s along v and then ∆t
along u to get to A

wα = lim
∆s→0

lim
∆t→0

{[uα(P)∆t + vα(R)∆s] − [vα(P)∆s + uα(Q)∆t]}
∆t∆s

= lim
∆t→0

vα(R) − vα(P)
∆t − lim

∆t→0

uα(Q) − uα(P)

∆t︸ ︷︷ ︸
uµ∇µvα

︸ ︷︷ ︸
vµ∇µuα



Vectors and connections

w = [u, v] is the commutator of u and v

wα = uµ ∂vα
∂xµ − vµ ∂uα

∂xµ

If two vectors commute, [u, v] = 0, then
I going ∆t along u and then going ∆s along v

arrives at the same point as
I going ∆s along v and then going ∆t along u

We can use (s, t) to label the points (“coordinates”):
u and v are coordinate basis vectors



Lie derivative

Consider a fluid flow with velocity field u(x)
A scalar field ρ(x) is dragged along by the flow if the value remains
constant on a fluid element:

0 =
d
dtρ

(
x(t)

)
= u ·∇ρ

where u = dx/dt
The scalar field ρ is then said to be Lie-derived by the vector field u; the
Lie derivative of ρ, defined by

Luρ = u ·∇ρ

is the rate of change of ρ measured by a co-moving observer



Lie derivative

εv1 εv2 εv3
x1 x2 x3

xʹ1 xʹ2 xʹ3uʹ

u

Consider now a vector ϵv that joins two nearby fluid elements,
ϵv = x ′(t) − x(t). This vector is dragged along by the fluid flow.

u ′ =
d
dtx ′(t) = d

dt
(

x(t) + ϵv
(
x(t)

))
= u(x) + ϵu ·∇v(x)

u ′ = u(x ′) = u(x + ϵv) = u(x) + ϵv ·∇u(x) + O(ϵ2)

so
[u, v] = u ·∇v − v ·∇u = 0



Lie derivative

The Lie derivative of the vector v along the vector u is the commutator:

Luv = [u, v]

Luvα = uµ∇µvα − vµ∇µuα = uµ ∂vα
∂xµ − vµ ∂uα

∂xµ



Curvature

w,w!
P

ww!
P

I In flat space: parallel transport of a vector about a closed path
leaves the vector unchanged

I In curved space: vector is generally different after parallel transport
about a closed path



Curvature

�
�

� �

s + Δss 

t 

t + Δt

V� 
V� 

V� 
V� 

V�ʹ
u

v

Use: uµ ∂

∂xµ Vα = −ΓαµσVσuµ

0. Start at point A with vector Vα
A

1. Vα
B = Vα

A −

∫ (s+∆s,t)

(s,t)
ΓαµσVσvµds

2. Vα
C = Vα

B −

∫ (s+∆s,t+∆t)

(s+∆s,t)
ΓαµσVσuµdt

3. Vα
D = Vα

C −

∫ (s,t+∆t)

(s+∆s,t+∆t)
ΓαµσVσvµds

4. Vα
A′ = Vα

D −

∫ (s,t)

(s,t+∆t)
ΓαµσVσuµdt



Curvature

∆Vα = Vα
A′ − Vα

A

=

∫ (s,t+∆t)

(s,t)
ΓαµσVσuµdt −

∫ (s+∆s,t+∆t)

(s+∆s,t)
ΓαµσVσuµdt

+

∫ (s+∆s,t+∆t)

(s,t+∆t)
ΓαµσVσvµds −

∫ (s+∆s,t)

(s,t)
ΓαµσVσvµds

≈ −

∫ t+∆t

t
∆s vν ∂

∂xν (Γ
α
µσVσ)uµdt +

∫ s+∆t

s
∆t uν ∂

∂xν (Γ
α
µσVσ)vµds

≈ ∆s∆t
[
−uµvν ∂

∂xν (Γ
α
µσVσ) + vµuν ∂

∂xν (Γ
α
µσVσ)

]
= ∆s∆t

[
−

∂

∂xν Γ
α
µσ + ΓαµρΓ

ρ
νσ +

∂

∂xµ Γ
α
νσ − ΓανρΓ

ρ
µσ

]
uµvνVσ

︸ ︷︷ ︸
−Rµνσ

α



Curvature

�
�

� �

s + Δss 

t 

t + Δt

V� 
V� 

V� 
V� 

V�ʹ
u

v

Change in Vα parallel transported
A → B → C → D → A ′ is

∆Vα = −(∆s∆t)Rµνσ
αuµvνVσ

Also:

(∇µ∇ν −∇ν∇µ)Vα = −Rµνσ
αVσ

Rµνσ
α = −

∂

∂xµ Γ
α
νσ +

∂

∂xν Γ
α
µσ − ΓαµρΓ

ρ
νσ + ΓανρΓ

ρ
µσ

Riemann curvature tensor



Bianchi identity

–u
vP

w

Q

∆Vα = ϵ2Rµνσ
α(Q)uµvνVσ︸ ︷︷ ︸

top face

−ϵ2Rµνσ
α(P)uµvνVσ︸ ︷︷ ︸

bottom face

= ϵ3(wρ∇ρRµνσ
α)uµvνVσ

0 = ∆Vα (all faces)
= ϵ3(∇ρRµνσ

α +∇µRνρσ
α

+∇νRρµσ
α)uµvνwρVσ

∇ρRµνσ
α +∇µRνρσ

α +∇νRρµσ
α = 0

Bianchi identity



Geodesic deviation

� �

u(�) u(�)

ζ

Let ζ = d/dx be the separation vector
between two geodesics
Relative velocity of the two bodies

v =
dζ
dt = u ·∇ζ = ζ ·∇u

Relative acceleration of the two bodies

a =
dv
dt = u ·∇(ζ ·∇u)

Use geodesic equation and definition of
Riemann tensor to obtain

aα = −Rµσν
αuµζσuν

geodesic deviation equation
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Weak gravity and slow motion
Linear perturbation to flat spacetime:

gαβ = ηαβ + hαβ + O(h2)

4-velocity of slowly moving particle, v ≪ c:

u =
dx
dt = [1, 0, 0, 0] + O(v/c)

Geodesic equation:
d2xi

dt2 ≈ −Γ i
00 ≈ 1

2
∂

∂xi h00

where we assume a nearly stationary background, ∂hαβ/∂t ≈ 0
Geodesic deviation equation:

d2ζi

dt2 ≈ −R0i0jξ
j ≈ −

1
2
∂2h00
∂xi∂xj ζ

j

Identify h00 = −2Φ



Matter

Perfect fluid stress energy tensor
Locally-inertial frame:

T =



−ρc2

P

P

P


Generally:

Tαβ = (ρ+ P/c2)uαuβ + Pgαβ



Einstein field equations

Gαβ =
8πG
c4 Tαβ

Einstein field equations

where the Einstein tensor, Ricci tensor, and Ricci scalar are

Gαβ = Rαβ −
1
2gαβR Rαβ = Rαµβ

µ R = gµνRµν

The Bianchi identity implies ∇µGµα = 0 which yields the equations of
motion for matter

∇µTµα = 0
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Linearized gravity

Define trace-reversed metric perturbation

h̄αβ = hαβ −
1
2ηαβh

Choose Lorenz gauge (harmonic coordinates)

∂

∂xµ h̄µα = 0

via gauge transformation xα
new = xα

old + ξα where

�ξα =
∂

∂xµ
h̄µα

old

�h̄αβ = −
16πG

c4 Tαβ

linearized field equations



Newtonian limit

Leading order in 1/c2:

T ≈

−ρc2

�AP
�AP
�AP

 and � =
�
�
��Z

Z
ZZ

−
1
c2

∂2

∂t2 +∇2

Non-trivial field equation is

∇2h̄00 = 16πGρ

Identify h̄00 = −4Φ where Φ is the Newtonian potential

∇2Φ = 4πGρ
Poisson equation



Newtonian limit

Newtonian metric: g =


−c2 − 2Φ

1 −
2Φ
c2

1 −
2Φ
c2

1 −
2Φ
c2



Geodesic equation: d 2x i

dt2 = −
∂Φ

∂x i

Geodesic deviation equation: d 2ζi

dt2 = −
∂2Φ

∂x i∂x j ζ
j



Plane wave solution

Linearized vacuum field equations:

�h̄αβ = 0

Plane wave solution travelling in z-direction is

h̄αβ = h̄αβ(t − z/c)

Lorenz gauge condition imposes four constraints:

h̄00 = −ch̄03 = c2h̄33, h̄01 = −ch̄31, h̄02 = −ch̄32

and thereby reduces independent degrees of freedom to six

h̄00, h̄01, h̄02, h̄11, h̄12, h̄22



Plane wave solution

Remaining freedom within Lorenz gauge: xα
new = xα

old + ξα where

�ξα = 0

is used to set h̄00 = h̄01 = h̄02 = 0 and h̄11 = −h̄22
Resulting metric perturbation has two degrees of freedom:

h =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


where h+ = h+(t − z/c) and h× = h×(t − z/c) are the two transverse
polarizations of the plane wave
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