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Whirlwind review of differential geometry
Coordinates and distances
Vectors and connections
Lie derivative
Curvature



Coordinates and distances

t=0 t="1" At t=At

Measure the speed of light

» Observer in rocket: c = 2y
AT

. (Ax)2 + (Ay)?  (Ax)? + (cAT)?
» Observer on Earth: ¢ = Ao _ o

A(AT)? = A(At)? — (Ax)?



Coordinates and distances

Let ds be the distance between neighboring events

» Curved spacetime:
ds® = 8y (XF)dxtdx”

» Flat spacetime:

ds® = mydxtdx’
= —df + dX + dy’ + d7

(rectilinear coordinates)

» Equivalence principle:
A freely-falling frame defines locally-flat neighborhood of an event in
spacetime.



Coordinates and distances

» General coordinate transformation:

aX/OL
X' %M = dx'* = —x*
OxH

ds’ = g, dxdx = gl pdx'*dx'P

;o ox* oxY
8ap = Euv dx'* Ox'B

» Infinitesimal coordinate transformation:

lx X x /X X aE’CX
X' =x* 4+ EX(XM) = dX'* = dx* + —dx!
OxH

. QEM Q&M
Bup = 8ap _gocua? - g”ﬁa?



Vectors and connections

On a curve x*(t) define a function
f= At flt) = F(x*(1))
where F(x*) is some function on spacetime.

df _ & OF , OF

dt  dr oxtl oxt

d . :
u= p is the tangent vector to the curve with

components

xa(t)

X
« X
u® = —— along curve

dt



Vectors and connections

Parallel transport v along curve
defined by u:

1. Go into a locally flat reference
frame

2. Take an infinitesimal step by
parallel transport in the usual
sense of flat space

3. Repeat steps 1 and 2 until final
point is reached



Vectors and connections

For each step, require

0= Iim vE(t+ At) — v¥(t)

At—0 At
dv*

dt

= u"V v

V. is the covariant derivative



Vectors and connections

» In locally inertial reference frame

0
4 Vi

t= At » |n other coordinates

a X
Vv = a—)\iu + TV

I'Y, are connection coefficients

o Ox* 92x'P
WY T 3x/B OxHOxXY

where x’*(x*) is the transformation to
an inertial reference frame



Vectors and connections

Parallel transport preserves the inner
product v-w = g, vewh

d
0= Ft(v - w)
= UHVu(gogBVCXWB)
so Vygap =0
This gives

1 g 0g, 0g
re — - xB Bv e nv
wv = 8 <axu e OxP



Vectors and connections

A curve is a geodesic if its tangent vector is parallel-transports itself

along the curve:
0 =u"Vyu*
B b
dt \dx* dt HY dt

Geodesic is defined by four coupled ordinary differential equations:

x> g ot dxY

d? MY dt dt

Specify dx*/dt at a point x* and integrate to generate a geodesic



Vectors and connections

Vector fields do not necessarily
commute:
» Move At along u and then As
along v to get to B
» Move As along v and then At
along u to get to A

(™ (P)At + v*(R)As) — [v*(P)As + u*(@Q)Af]}

we= AlISQOAlltE:O AtAs
O VER) = vX(P)  u*(@) — u*(P)
= lm —— Im ———
At—0 At At—0 At

n [od i o
UtV v vV i



Vectors and connections

w = [u, V] is the commutator of u and v

X X
LLE)v uau

o oy
oxH oxH

w* =u
If two vectors commute, [u, v] =0, then
» going At along u and then going As along v
arrives at the same point as
> going As along v and then going At along u

We can use (s, t) to label the points (“coordinates”):
u and v are coordinate basis vectors



Lie derivative

Consider a fluid flow with velocity field u(x)
A scalar field p(x) is dragged along by the flow if the value remains
constant on a fluid element:

d

(x(t)) =u-Vp

where u = dx/dt

The scalar field p is then said to be Lie-derived by the vector field u; the
Lie derivative of p, defined by

2yp=u-Vp

is the rate of change of p measured by a co-moving observer



Lie derivative

X1 u X2 X3

Consider now a vector ev that joins two nearby fluid elements,
ev = x'(t) — x(t). This vector is dragged along by the fluid flow.

d d

u = th’(t) = a(x(t) + ev(x(t))) =u(x) + eu- Vv(x)

u’ = u(x’) =u(x+ev) =u(x)+ ev- Vu(x) + O(e?)

so
wvl]=u-Vv—v-Vu=0



Lie derivative

The Lie derivative of the vector v along the vector u is the commutator:
24V = [u, V]

ov™ ou”*
2V ="V v — WV =t — — v —
OxH OxH



Curvature

> In flat space: parallel transport of a vector about a closed path
leaves the vector unchanged

> In curved space: vector is generally different after parallel transport
about a closed path



Curvature

Use: u“% V= —To, Vot
X

0. Start at point #£ with vector V5

.'-. e : (s+As,t)
Dl Vg = \/;_J e, Vovids

(s+As t+At)
J I Voutdt

(s+Ast)

s t+At)
J I Vovids
(

s+As,t+At)

= J re Vveutdt
(s, t+At)




Curvature

AV = VS — V2

(s,t+At) (s+As, t+At)
J FS‘GV“u”dt—J e, Vo utdt

(s,t) (s+As,t)

(s+As, t+At) (s+As,t)
+J Fﬁ‘gV‘jv“ds—J' Tio Vovids
(s, t+At) (s,t)
t+At a s+At a
—J Asvv—(rﬁ‘dvc)u“dt-i-J Atu’ — (T3, Vo )vtds
. oxY R oxv M

Q

1%

0 0
Y -4 nov x
AsAt{ u —axv(rwv")Jrv u aXv(rw\/")}

AsAt {—iﬂ‘fc wrere ¢ O pe _pape } UtV VO

Axv we've T iu vp'uo

3
_Ruvc



Curvature

"i """" @. .......... thange in V* parallel transported
9. ﬂﬁﬁ*}ei}g‘)ﬂ/is
g |
K DU ;
i : AV* = _(ASAt)RHVUau”VVVU
Ve
! Vﬂ . .............. AlSO:
............ 4
....... t ﬂ V (vp—vv - VVVH)VD‘ = —RLLVGO‘VG
: S+As
s .
R cx:_iroc —|—il‘cx X P L e
wvo oxH VO OxVv Ho ol Vo e

Riemann curvature tensor



Bianchi identity

2
| —
Al Z 4
w“ A 4
P v I [
Y, V%
AV = E@Ruve™(@Qu vV 0 = AV* (all faces)
top face = €3(VpRu-V0'o( +VuR’\/p0‘“
_€2Ruvgoc(7-_))uuvvvc -|—VVRPP_G‘X)UNVVW9VU

bottom face
= WPV, Ruve™)u*vY VO

VoRuve™ + VuRyos™ + VyRous™ =0
Bianchi identity




Geodesic deviation

Let { = d/dx be the separation vector
between two geodesics

Relative velocity of the two bodies

dc

V:E_

u-vVvc=¢-Vu

Relative acceleration of the two bodies

d
a:F‘;:u-V(C-Vu)
u(?) u(@) Use geodesic equation and definition of
Riemann tensor to obtain

x __ @ o,V
a%* = —Ryov urCu

geodesic deviation equation



Formulation of General Relativity
Weak gravity and slow motion
Matter
Einstein field equations



Weak gravity and slow motion
Linear perturbation to flat spacetime:
Bop = Nap + hocB + O(h2)

4-velocity of slowly moving particle, v < ¢

u= % =1[1,0,0,0] 4+ O(v/c)
Geodesic equation:
X ., 1

N T~ —h
dr2 00 ™ 5 9xi 0

where we assume a nearly stationary background, dhyp /0t~ 0
Geodesic deviation equation:

LA

1 92h
preiai 0i0j& ~ —2

- j
2 0x0X ¢

Identify hogg = —20@



Matter

Perfect fluid stress energy tensor
Locally-inertial frame:

—pc?

Generally:
B = (p+ P/A)u*uP + Pg*P



Einstein field equations

8nG
o
Einstein field equations

Gup = Tap

where the Einstein tensor, Ricci tensor, and Ricci scalar are
1 n [ThY
Goc[S = Roqg — Eg(xﬁR Roqg = Rocuﬁ R= g RHV

The Bianchi identity implies V. G** = 0 which yields the equations of
motion for matter
VuTH =0



Linearized gravity
Newtonian limit
Plane wave solution



Linearized gravity

Define trace-reversed metric perturbation

- 1

hocB = hoc[S - Enocﬁh

Choose Lorenz gauge (harmonic coordinates)

0

L o
ath 0

. H X X &
via gauge transformation x%, = xgy + &% where

d -

x __ Ho
DE’ - OxH old
- 16mG
Ohap = ——a Tap

linearized field equations



Newtonian limit

Leading order in 1/¢2:

Non-trivial field equation is
V27100 = 167'[Gp

Identify hgg = —4® where @ is the Newtonian potential

V20 = 4ntGp

Poisson equation




Newtonian limit

-2 20
Newtonian metric: g =
d?x’ 0D
Geodesic equation: —— = ——
quation a2 o
d?{

Geodesic deviation equation:

dt?

B 22D
Ox'0x/

Cj



Plane wave solution

Linearized vacuum field equations:
Ohep =0
Plane wave solution travelling in zdirection is
hap = hap(t—2z/c)
Lorenz gauge condition imposes four constraints:
7loo = —C/_703 = 62/_733, /_701 = —C/_731, /_702 = —C/_732
and thereby reduces independent degrees of freedom to six

7700: 7701! 77021 7711: F’l2v 7722



Plane wave solution

Remaining freedom within Lorenz gauge: xi,, = x5y + &% where

0&*=0

is used to set /_700 = /_701 = 7702 =0 and b1 = —hao
Resulting metric perturbation has two degrees of freedom:

where hy = hy (t— z/c) and hyx = hy(t— z/c) are the two transverse
polarizations of the plane wave
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