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Neglected:   

viscosity-driven instability 

bar-mode instability for slow but highly non-uniform 

rotation 



To obtain an action for the Euler equation, one 

introduces a Lagrangian displacement x, joining 

initial and perturbed fluid elements.   

x 

                                 x    and                      

                          specify the perturbation of  

                            fluid   and    metric.    
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Gauge freedom in x  associated by Noether’s 

theorem with conservation of circulation.  
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Time translation symmetry of the equilibrium star is 

associated with a conserved current j .  

The corresponding conserved energy is 

 

where   and   are the canonical momenta 

of x and h
 .    
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It follows that  

If E < 0 for some data on S preserving circulation 

and baryon number, the configuration is unstable 

or marginally stable: There exist perturbations on a 

family of asymptotically null hypersurfaces that do 

not die away in time. 

 

If E > 0 for all such data on S,  

|E| is bounded in time and only finite  

energy can be radiated. 



Local stability 
In GR: Thorne, Kovetz, Bardeen, Schutz, Seguin, Abramowicz 

• When a fluid element is displaced 

upward, if its density decreases 

more rapidly than the density of 

the surrounding fluid, then the 

element will be buoyed upward 

and the star will be unstable. 

Unstable if

| | | |
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   If the fluid element expands less 

than its surroundings it will fall 

back, and the star will be stable 

against convection. 
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Within minutes after their birth, neutron stars cool to a 

temperature below the Fermi energy per nucleon, 

below 1012 K.  Their neutrons are then degenerate, 

with a nearly isentropic equation of state:  

Convectively stable, but with convective modes 

having nearly zero frequency.   



INSTABILITY FROM DIFFERENTIAL ROTATION 
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Differential rotation is stable if a ring of fluid that 

is displaced outward, conserving angular 

momentum and mass, will fall back.  

The ring of fluid displaced from r to r +x  will 

continue to move outward if its centripetal 

acceleration is larger than the restoring force 

Marginal stability:  

If the displaced ring has the same value of v 2/r  as 

the surrounding fluid, then, like the surrounding 

fluid, it will be in equilibrium. 

   

Unstable if   

W(r) 

r 



                 Stable if j increases outward 

 

              Exactly the same criterion for GR 

(Bardeen, Seguin, Abramowicz, Prasanna)   
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This is a simplest example of the turning-point 

criterion that in general provides a sufficient condition 

for axisymmetric instability:  

An instability point along a sequence of circular orbits 

of a particle of fixed baryon mass is a point at which 

 j is an extremum. 

 



III. Axisymmetric Instability  

  (Instability to collapse) 
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In the Newtonian approximation, the canonical 

energy has the form (for            )  

Choosing as initial data x=r gives    

2

0

4
9

3

R

E dr r p
 

   
 



implying instability for  < 4/3.    
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By (in effect) deriving the relativistic version    

Chandra showed that the stronger gravity of the full theory 

implies an early onset of instability: 

 

 

 
Because a gas of photons has               , and massive stars are 

radiation-dominated, the instability can be important for stars 

with M/R >>1. 
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The criterion for dynamical instability to collapse is   

E < 0, with    

 

In an equilibrium neutron star,  

       

 

primarily because of a gradual change of 

composition (proton/neutron ratio) with radius.  

 

The dynamical timescale is too rapid to allow the 

composition of a perturbed fluid element to reach 

chemical equilibrium as its density is changed. bb 

fixed composition
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But a neutron star will be secularly unstable –  

unstable on a longer timescale –  

if there are lower energy equilibrium configurations 

with the same baryon number that can be reached by 

perturbations that change the entropy of a fluid 

element.    

For perturbations of this kind, governed by the 

equilibrium         ,  instability of a uniformly rotating 

star to collapse sets in at a turning point:  

The Chandrasekhar limit for white dwarfs and the 

corresponding upper mass limit for neutron stars.  

( )p 



(Thorne-Meltzer ’66) 

Chandrasekhar 

limit Upper mass limit of  

neutron stars  



             for more recent 

candidate equations of 

state.   

vs M

c

M1.97 0.04

Largest precisely 

measured mass is  



Sequences of neutron stars near minimum mass for two recent 

EOS candidates (Haensel, Zdunik, Douchin ’02) 

   

unstable 

side 

stable  

side 



No other instabilities of spherical stars:  

 

Stable against convection and  

stable against collapse implies 

 

 

(Lebovitz Newtonian,  Ipser-Detweiler GR)  

c 0.E 



The Detweiler-Ipser argument relies on completeness 

of normal modes and assumption that all modes are 

continuously joined to the modes of a Newtonian star.   

 

But this is not true:   There are outgoing modes 

analogous to the  outgoing modes of black holes – the 

w-modes that have no Newtonian counterparts. 

 

Research Problem:  Prove that perturbations of 

spherical stars are stable if they are stable against 

convection and against radial perturbations: Show that 

E is positive for nonradial perturbations if the 

Schwarzschild criterion satisfied. 

   

 



Rotating stars: Turning point theorem 

Along a sequence of uniformly rotating stars with constant 

angular momentum, the high-density side of the maximum 

mass configuration is unstable.   
 (JF, Ipser, Sorkin based on Sorkin’s theorem) 

 
Because viscosity takes a differentially rotating configuration to one with 

lower energy, and it takes differential rotation to uniform rotation, we 

argued that a differentially rotating star with the same baryon number 

had higher energy: 

  

Instability would not set in until a uniformly rotating configuration with 

the same baryon number has lower energy.   Then the turning point 

criterion would be not just sufficient for instability but also necessary.   

The maximum-mass ridge would, as in the spherical case,  

mark the onset of instability.   



   [g/cm3] 

M

M

c

K ("mass shedding")W  W

J=0 

KW  W



That argument is not right: 

 

Collapse, conserving angular momentum of each fluid ring,  

takes a star from a uniformly rotating configuration to one that is 

differentially rotating.  At and beyond the instability point, nearby 

configurations with smaller radius can have lower energy,  

despite the differential rotation.   

 

The increase in energy from differential rotation is overcome by 

the decrease due to the smaller radius.    

 

 



Takami, Rezzolla, Yoshida  ‘11 

Takami et al look at dynamical instability,  and the diagram 

overstates the difference, because it ignores the difference 

between the adiabatic index governing the perturbation and that 

governing the equilibrium star.    

But for secular instability (operating on a viscous timescale), 

where the turning point is exact for spherical stars and which is 

the relevant criterion for stability of long-lived stars, this diagram 

is likely to be a good approximation.    



Research Problem:  Find the secular instability points 

by finding line of equilibria where E first vanishes for 

perturbations satisfying equilibrium equations.   

   

 

 



IV. NONAXISYMMETRIC INSTABILITY OF 

ROTATING STARS 

 

Skylab movie 



IV. NONAXISYMMETRIC INSTABILITY OF 

ROTATING STARS 



Old neutron stars in binary systems can be observed via x-

rays emitted by matter that spirals onto the neutron star.  

The accreting matter spins up the star. 



Observed frequencies of old neutron stars spun up 

by accretion have been observed only up to 716 Hz:  

Is the frequency limited below 800 Hz? 
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 There is a sharp cutoff in the [accreting millisecond 

x-ray pulsar] population for spins above 730 Hz. 

RXTE has no significant selection biases against 

detecting oscillations as fast as 2000 Hz, making the 

absence of fast rotators extremely statistically 

significant 

     D. Chakrabarty 2008   

Even for a 1.4        star, 800 Hz is well below the 

maximum spin of the star – the Kepler limit WK at 

which the star’s equator rotates at the speed of an 

orbiting satellite   

(for all but the stiffest EOS candidates)     

 

M



Magnetically limited spins? 

Inside the magnetosphere, matter corotates with the 

star. Only matter that accretes from outside the 

magnetosphere can spin up the star.   

Equilibrium spin at the period P of a Keplerian  

orbit at the magnetosphere: 

With m the magnetic dipole moment of the star, 
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Magnetically limited spins? 

But a sharp cutoff in frequency of accreting 

millisecond x-ray pulsars is not an obvious prediction 

of magnetically limited spins, given the wide variety 

of accretion rates. It would require a minimum 

magnetic field strength of about 108 G  and would 

correlate highest spin with lowest B field. 

The cutoff in observed spin and a fairly narrow range 

of frequencies has made gravitational-wave limited 

spin a competitive possibility for accreting neutron 

stars.     



 

        NONAXISYMMETRIC INSTABILITY 

 

 GRAVITATIONAL-WAVE DRIVEN INSTABILITY 

 



 

                            

 

  

 

 

 

 

 

 

A   forward  mode, with J > 0, radiates positive  J to  

A backward mode, with J < 0, radiates negative J to  

 

Radiation damps all modes of a spherical star 






But a rotating star drags a mode in the direction of the 

star's rotation:  

 

A mode with behavior                       that moves )( tmie  

backward relative to the star is dragged  

forward relative to infinity, when 

   m W   . 
The mode still has     J < 0,     because 

  Jstar + J mode < J star . 

But  

this backward mode, with J < 0, radiates positive J. 

Thus J becomes increasingly negative, and   

THE AMPLITUDE OF THE MODE GROWS 



 

PERTURBATIONS WITH ODINARY (POLAR) PARITY 

 

modes with pressure and gravity  

providing the restoring force 

 

 

 

Parity is that of  
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l = 0 

l = 2 



l = 0 

l = 2 
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THE BAR MODE (l=m=2)   

                  

HAS FREQUENCY    OF ORDER THE MAXIMUM 

 

ANGULAR VELOCITY WK OF A STAR.  

INSTABILITY OF POLAR MODES 



IT IS DRAGGED BACKWARD ONLY  

WHEN A STAR ROTATES NEAR ITS MAXIMUM  

ANGULAR VELOCITY, WK  
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Polar modes unstable only for W near WK  

 W > 1000 Hz          (unless neutron matter very stiff)  

but observed cutoff in spins < 750 Hz 

 

But it’s worse than that:  

Old accreting stars are too cold for polar modes 

to be unstable at any W 

Instability of polar modes does not explain  

the cutoff in neutron-star spins. 



 

PERTURBATIONS WITH AXIAL PARITY 

Parity is opposite to that of  

Axial perturbations of a spherical star do not change density 

or pressure, because scalars have the parity of  

 

 

No restoring force in Euler equation:  

For spherical stars, axial parity perturbations are time 

independent currents   
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View from pole          View from equator 

THE UNSTABLE   l = m = 2   r-MODE 



Because their frequency is already zero for a 

nonrotating star, any slowly rotating star has 

backward-moving r-modes for each l that are 

dragged forward by the rotation. 

 

 That leads to much faster growth times for 

moderate neutron-star rotation. 

 

 

 

 

 

 



GRAVITATIONAL RADIATION 
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R-MODE INSTABILITY 



Stergioulas, Font, Kokkotas            Kojima, Hosonuma 

Yoshida, Lee     Rezania, Jahan-Miri 

Yoshida, Karino, Yoshida, Eriguchi  Rezania, Maartens 

Andersson, Lockitch, JF   Lindblom, Mendell  

Andersson, Kokkotas, Stergioulas Andersson 

Ushomirsky, Cutler, Bildsten  Bildsten, Ushomirsky  

Andersson, Jones, Kokkotas,   Brown, Ushomirsky 

   Stergioulas   

Lindblom,Owen,Ushomirsky  Rieutord   

Wu, Matzner, Arras   Ho, Lai 

Levin, Ushomirsky    Madsen 

Lindblom, Tohline, Vallisneri  Stergioulas, Font   

Arras, Flanagan, Schenk,   JF, Lockitch      Sa 

 Teukolsky,Wasserman  Morsink Jones   Lindblom,Owen 

Ruoff, Kokkotas,     Andersson,Lockitch,JF      

MORE RECENT 

 



Karino, Yoshida, Eriguchi Hosonuma 

Watts, Andersson   Rezzolla, Lamb, Markovic, 

Arras, Flanagan, Morsink            Shapiro 

 Shenk, Teukolsky,  

 Brink, Bondarescu 

Wagoner, Hennawi, Liu  

Jones, Andersson, Stergioulas  Haensel,   

Lockitch, Andersson   Prix, Comer, Andersson 

Hehl  

Gressman, Lin, Suen, Stergioulas, JF 

Lin, Suen 

Xiaoping, Xuewen, Miao, Shuhua, Nana 

Reisenegger, Bonacic 

Drago, Lavagno, Pagliari 

Gondek-Rosinska, Gourgoulhon, Haensel  

 

 



Sa, Tome 

Flanagan, Racine 

Lackey, Nayyar, Owen 

Dias, Sa 

Abramowicz, Rezzolla, Yoshida 

Alford, Mahmoodifar, Schwenzer 

Andersson, Comer, Glampedakis, Haskell, Passamonti 

Kastaun 

Ho, Andersson, Haskell 

Alford, Mahmoodifar, Schwenzer 

 

 

 



Axial perturbations of a spherical star do not change 

density and pressure, because scalars have parity of 

Ylm 

 

Then no restoring force in Euler equation:  

Axial parity modes have zero frequency  

for nonrotating star. 



THE  l = m = 2   r-MODE 

Newtonian: Papaloizou & Pringle, Provost et al,     

                    Saio et al,  Lee, Strohmayer 
 

Frequency  relative to a rotating observer:        

 

         R = - 2/3 W             COUNTERROTATING 

Frequency  relative to an inertial observer:        

          

  I =  4/3 W        COROTATING    ei(2-t) 



corotating frame 

Animations by Chad Hanna 



inertial frame  

Animations by Chad Hanna 



Above 1010K, beta decay and inverse beta decay  

n 

Below 109K, shear viscosity  dissipates  

the mode’s energy in heat  

tSHEAR = CT-2 

produce neutrinos that carry off the energy of the mode: 

bulk viscosity 

tBULK = CT6 

     e 
p 

 

VISCOUS DAMPING 

GR shear viscosity bulk viscosity

1 1 1 1

t t t t
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GRR growth times for r-modes 
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(From Lindblom-Owen-Morsink Figure)  Temperature (K) 
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Bulk 

viscosity 

kills 

instability  

at high 

temperature 

Shear viscosity  

kills instability at 

low temperature  

Star is unstable only when W is larger than critical  

frequency set by bulk and shear viscosity 

Star spins down as it 

radiates its angular 

momentum in 

gravitational waves 
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       0.1 

Star spun up by accretion:  Does it hover, with  
angular momentum  

gained in accretion  =  

angular momentum  

lost in gravitational waves?  

(Wagoner; 

Andersson, Jones,  

Kokkotas, Stergioulas) 



Thermal runaway          (Levin) 

                    108             109             1010  K 
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DOES THE INSTABILITY SURVIVE THE PHYSICS 

OF A REAL NEUTRON STAR? 

Will nonlinear couplings limit the amplitude to v/v << 1? 

 

Will   a continuous spectrum from GR or differential 

 rotation eliminate the r-modes?    

(Kojima …Ferarri et al) 

 

Will    a viscous boundary layer near a solid crust 

  windup of magnetic-field from 2ndorder differential 

      rotation of the mode 

 bulk viscosity from hyperon production 

kill the instability? 



NONLINEAR EVOLUTION 



Fully nonlinear numerical evolutions show no  

evidence that nonlinear couplings limiting the amplitude  

to v/v < 1: 

 

Nonlinear fluid evolution in GR 

Cowling approximation (background metric fixed)  

Font, Stergioulas 

 

Newtonian approximation, with radiation-reaction term 

GRR enhanced by huge factor to  

see growth in 20 dynamical times. 

  

Lindblom, Tohline, Vallisneri  



BUT  

Work to 2nd order in the perturbation amplitude shows  

      TURBULENT CASCADE  

The energy of an r-mode appears in this approximation to 

flow into short wavelength modes, with the effective 

dissipation too slow to be seen in the nonlinear runs.  

Arras, Flanagan, Morsink, Schenk, Teukolsky,Wasserman 



Newtonian evolution with somewhat higher resolution,  

w/ and w/out enhanced radiation-driving force 

(Gressman, 

Lin,  

Suen, 

Stergioulas, 

JF) 

 

Catastrophic 

 decay of r-mode  



Fourier transform shows sidebands - apparent daughter 

modes. 



Similar picture emerges from 2nd-order coupling 

of modes for uniform density model (Maclaurin) 
(Brink, Teukolsky, Wasserman 



Amplitude likely too low to see gravitational waves 

from r-mode instability in newborn stars.    

But a low amplitude can improve the chance of 

seeing gravitational waves from old stars spun up by 

accretion 



(Heyl) 

                                               108 K 
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Thermal sit-there 

(Owen) 



shear viscosity  

higher viscosity                lower viscosity 

(governed by slippage at boundary layer) 

Bondarescu, Teukolsky, Wasserman 
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Better candidates for observable f-modes are  

nascent neutron stars 

 

eccentric BH-NS inspiral of binary formed by 

capture  

 

oscillations after NS-NS merger 



Nonaxisymmetric modes following NS-NS 

merger and in eccentric BH-NS inspiral.   

 

simulations by  East   Pretorius   Stephens  ’11   



In GR simulations with Shen EOS,  neutrino 

cooling, T remains above  3x1011 K  for 

seconds –long enough to allow hundreds of 

oscillations, with a mass of the merged stars of    

 

Sekiguchi  Kiuchi  Kyutoku  Shibata  ’11  

threshold 3.2 !M M



M M1.3 1.3

EOS: 
      SLy cold +  
      thermal hot 
 
Oscillations  
dominated by 
bar mode 

Shibata Taniguchi Uryu ’03 


