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History of cosmic domination
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Puzzle #2: Why is the spatial curvature so small?
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Present observational limits (i.e., CMB) imply that the “radius of curvature” (k1/2) of
the spatial section is much larger (> 100 x) than the Hubble radius, 3 Gpc.

How can this be?

d T dE R T 1

Radfe i S e NP G o e 3

bl e e L IRk Gl )
d 1

— — log O = — 87 G(p + 3p)

da H?



With “normal” matter (dust and/or radiation), curvature should eventually dominate:

Curvature small today = Curvature extremely small in the early Universe!

Why?
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Consequences of a curvature-dominated Universe

Suppose there is only radiation, and that the spatial curvature is negative.
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we rewrite this equation as:
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The solution is:
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This function has a maximum at:
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Puzzle #3: Why has the Universe just recently started to accelerate?
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Useful numbers

e Age of the Universe today: T, = (13150 2N
o Density: po =(1.9£0.15) h2 x 102° g cm3
e Hubble paramefter: H, =100 h Km s-! Mpc-!
h = 0.70 £ 0.03
Hubble radius: c/Hy, =3 h Gpc
e Baryon fraction: Q, 72 = (P /Pyor) H2 = 0.024 £ 0.003
e Radiation

(photons and massless neutrinos): Q. =2.5 x 10 /2

e Matter (dark matter + baryons) Q2 =02-03
e Curvature 12,1 <0.01

With these we can compute, e.g., matter-radiation equality:
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Part 5: Thermal history

Suggested reading:

V. Mukhanov, “Physical Foundations of Cosmology”
P. Peter and J.-P. Uzan, “"Primordial Cosmology”
E. Kolb & M. Turner, "The Early Universe”

[Original works by Zwicky; Gamow, Alpher, Herman; Bethe; Penzias, Wilson; Peebles;
Schramm; ...]
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Thermodynamics in an FLRW Universe

As the Universe expands and becomes less dense, it also cools down.

Hence the behavior of the energy density and pressure of the matter content is tied up
with its Thermodynamics and Statistical Mechanics.

Elementary particles come in two types:
bosons (spin=0, 1, 2, ...), and
fermions (spin=1/2, 3/2, ...)
Because of quantum statistics, each type occupies phase space in a different way.

The number of particles in a phase space cell is:
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Let's forget about the chemical potential (1) for a moment.

Then these distributions are:

1
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There is a beautiful result from Hamiltonian and Statistical mechanics, called the
Liouville Theorem (Liouville 1838, Gibbs 1902), which states that the phase-space
distribution function is constant on all trajectories.

This theorem is equivalent to the collisionless Boltzmann equation, which reads:

df of P e s
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In an homogeneous and isotropic (FLRW) Universe, there are no preferred
directions, so the phase space function f must be conserved in time!

Since E~1/a, we must have that T~1/a , so that the form of the BE or FD
distributions are preserved by the expansion of the Universe!



Energy and pressure

The energy and momentum of particles are related: E° — p% =m* <+ EdE = pdp

The stress-energy density for a system of particles can be written in terms of their 4-
momenta and 4-velocities:
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The simplest quantity is the particle number density: dn = f+(p,x) (27)3
. . A d’p
The energy density for this ensemble of particles is: dp=FE f+(p, z) (27)3
1 2 d3p
And if the momenta have no preferred directions, then: dP = §_ ) (27)3
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The ensemble averages of the number density, energy density and pressure are:

1 TSN 1/
n:—/dEE(E 1)
272 |

1 o S0 10
o i TEae o T7)
272 eE/T £ 1
1 E2 — m?2)3/2
po Lu [ p A
672 eE/T 4+ 1

\

/"

(> m  BE <3)
T>m FD o WL

| T<m BE/FD ( (2L)*?e-m/T
( 72 4
7 w2 4

CEIEEY

| T<m BE/FD (mn+32nT

’

4> BE

FD 0

Wl

T <m BE/FD nT(< p

\



Energy density of all relativistic matter

Lets collect all the types of particles which are relativistic - i.e., whose masses are
much smaller than their equilibrium temperatures.

Lets also allow for some of these particles to be out of equilibrium with other
particles, so that their temperatures may be different.

The totfal energy density in the relativistic degrees of freedom is, then:
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We can define an effective number of relativistic degrees of freedom as:
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Inventory of degrees of freedom

Type Statistic g (# of D.o.f.) mass
photons BE 2 ~
neutrinos FD (3P <1.2 eV
et, e FD (2) x 2 0.511 MeV
piap FD (2) x 2 0.938 GeV
n FD 2 0.940 GeV




Problem #19: Between temperatures of 1 MeV <T < 100 MeV, what is the effective number of
degrees of freedom? (Assume that the temperatures of all species are the same.)

Problem #20: One of the main reactions that keep photons, electrons and positrons in
equilibrium is Thomson and Compton scaftering, e+y—=e+y.

The reaction rate for this interaction is /. = ne or ¢ , where n. is the number density of
electrons, and or= 6.65 x 102> cm? is the cross section for Thomson scattering.

(a) Is this rate “fast” or “slow”? (Compared to what?)
(b) What is the mean free path for photons?
(c) Knowing that 1. = 107 cm™ (1+z)° for z < 10° , and n. = 10 cm™ (1+z)> for z> 107,

show that the rate of these scatterings is always very “fast”.




Big Bang Nucleosynthesis (BBN) - very briefly

There is a slight difference between the mass of the proton and that of the neutron:
m, = 939.57 MeV , mp=938.27 MeV -> B=1.3 MeV (“binding energy”) .

At sufficiently high temperatures (T >> 1.3 MeV), the two particles are in equilibrium, so
there are basically the same numbers (i.e., densities) of each one.

Moreover, as the Universe expands and its temperature falls, protons and neutrons can
start to bind to produce the first nuclei:

AZ Ba 8A
H 2.22 MeV 3
SH 6.92 MeV 2
SHe 7.72 MeV 2

‘He 28.3 MeV |




So, as the temperature of the bath drops below ~10 MeV (at 7 ~ 0.1 s after the Big
Bang), many things start to happen:

* Light nuclei start to form, “eating up” protons and neutrons;

* Free neutrons start to decay into protons;

* The more photons (radiation) there are per baryon, the easier it is to reverse this,
converting neutrons back into protons, and breaking up the nuclei.

* With less neutrons around, it gets harder for the nuclei to form;

* At a temperature of about 0.05 MeV (7~ 100 s), all neutrons have either been
captured by nuclei, or they have decayed into protons. "Freeze-out”!



Of course, it's much more complicated than that!!!

See, e.g., Mukhanovs book, or G. Steigman, 0712.1100
A good review by Tytler et al. (2000) can also be found online at:
http://ned.ipac.caltech.edu/level5/Tytler2/Tytler_contents.html

temp erature (kelvins)


http://ned.ipac.caltech.edu/level5/Tytler2/Tytler_contents.html
http://ned.ipac.caltech.edu/level5/Tytler2/Tytler_contents.html

Present observations and constraints

Fraction of total baryonic mass in the Universe
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- W . Bl Peebles 1968 (2-level atom; “Peebles recombination”)
Decoupling ("recombination®) i Rl

Switzer & Hirata 2007; Wong et al. 2007
Nice review in Hu 2008, arXiv: 0802.3688

The transition between an ionized & opaque Universe fto a neutral & transparent
one is governed by the process:

p+e — H+4+~v , B=13.6eV Hp + e = U + Uy R UH

Maxwell-Boltzmann distribution f/ phase space: ~ fMB — o~ (Mi—ps) /T ,—p; /(2m;T)
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This means that the relative abundance of p,e¢ and H is:
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Introducing the ionized fracti t the Saha equation:
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Ionized fraction

Correcting for He: "ma= (1 — V) X np — e S R0 - (1 e

The number of free e~ (sources of Thomson/Compton scattering) plunges at
temperatures of around T ~3eV and redshifts z ~ 1100:
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But how do the free ¢~ impact the CMB photons during recombination?

Essentially all scatterings of photons at these low energies involve the free
electrons. The cross-section for Thomson/Compton scattering is:
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35 — 665 x 107 cm’
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The mean free path is given by:
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Then the normalized probability that a photon will be scattered between some time
s and L+ dt;, but not later, in the interval [¢,#] , is
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This probability per unit length that a photon will be scattered at some time t,
but not later, is called the visibility function.

g(n) = ' (n)e " = opX.(n)ns(n)a(n) X exp { /O St orXe(n' ) (n)a(n’)

Reionization

Zaldarriaga 1997

QR 0.0105 Q1 h2 —0.028
Maxi bability: « 1
aximal probability ; 089( 0.14 ) (0-024)
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®* The CMB (up to reionization) really probes a very narrow spatial region (“shell” of

Riss) and a very precise epoch (z~1000-1300) !
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The CMB was created at a time of thermal equilibrium... or was it?

In 1992-1993, an instrument on the COBE satellite called FIRAS measured the energy
distribution of the CMB photons:
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e The CMB!

ACBAR Reichart et al. arXiv:0801.1491

» WMAP 5-year
e ACBAR
* BOOMERANGO3

100 500 1000 1500 2000 2500
/




Sources of CMB anisotropies:

e Sachs-Wolfe effect

AT(R) 1 0
T(n) R §¢(RLSST7, NM.SS) ~ ?p ~ 1077 ,Zlf
AT (%) 0®(7i - n,m) v
o | —
SW T . ﬁdn on W
o Sunyaev-Zel'dovich AT(;“ V) A f(V)y(ﬁc)

e Gravitational lensing

e Gravity waves

Sachs & Wolfe 1967, Silk 1968, Peebles 1968, Zeldovich and Sunyaev 1969, Peebles & Yu 1970, Polnarev 1987
Modern theory: Bond & Efstathiou, Bond & Szalay, Hu & Sugiyama 1995, Seljak & Zaldarriaga, Hu & White ...



Observations: CMB Horizon @ L.S. T R i T Horizon @ L.S.
|
— O
eﬂat — 0.5 i
— l
6 | == | e
closed s B oben

Spergel et al. 2006

1 00 | 000

(g =1-—Q, — Qp




Bond & Efstathiou 1984
Polnarev 1985
Kosowski 1996

2. CMB polarization

e Prior to decoupling (z >1100), radiation was Seljak & Zaldarriaga 1997
] ] Hu & White 1997
UI"IPOIClI"IZQd. Cabella & Kamionkowski 2005

Li & VWandelt 2005

¢ After decoupling, Thomson scattering of CMB photons off free
electrons generates polarization. The cross-section for an incident photon

with polarization . emerging with polarization - is:

do o S

iQ -~ 8w €; - €5 | |
* Integrating over incident radiation field 1 : ;}/1:::;?;1]0
final state: o
U o= ?g;‘: d2 sin 6 cos 201;(0, ©) }

Polarization

of incident radiation



Main sources of primary/secondary CMB polarization:
free electrons, with optical depth to Thomson scattering: dr = o1 n. dn

weak lensing

e e

z ~ 30-6 (?)
Reionization

z <3
galaxy clusters (S2)

Primary:
z~ 1100 :
QEESIS + gravity waves
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CMB Temperature:
Precision cosmology
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Some crucial observations to understand our Universe:

* Cosmic microwave background, or e Matter distribution over large scales
CMB (COBE, Boomerang, Dasi, QUAD, ..., - “Matter Power Spectrum”
WMAP... PLANCK...)

Standard
« CMASS DR9
——best—fit model
X°=81.5 / 59

Wavelength [mm]
2 1 0.67

0

FIRAS data with 400G errorbars
2.725 K Blackbody

log,o P(k) / P(K)gnooth
-0.05

Intensity [MJy/sr]




® The physics of the CMB involves propagation and scattering of
photons

® The CMB is also the most distant direct observation we have
of the universe in its infancy, hence it is a key observable fo

test physical processes, as well as correlations and causality,
over the largest observable scales



® In an FLRW spacetime, proper distances for light-speed signals can be finite even
when the travel time extends arbitrarily into the past or into the future.

® For instance, lets take a decelerating FLRW:

t p
a(t) =ag | — o) < sl
to
/ P 4t NP

This spacetime can be pH(t) = a,(t)/ dt, — (_t_) / dt’ (t_)
continued to the past a’(t to 0 to
only down to t=0 1
(when a=0). Then: B t = . H_l_(t)

3 i B .

de is the maximum physical distance

a light ray can cover if it was
emmitted at the earliest possible time

in the past. This means that the
in this scenario is

bounded, and cannot be extended
beyond that limit.




®* This maximal distance is called a . Since in this case (p<1) the horizon
refers to a truncation of the PLC, it is a past-like horizon, a.k.a. a

. This horizon is usually approximately equal to the curvature radius of the
FLRW, r ~ 1/R1V2~ H'! - j.e., the Hubble radius!

® The particle horizon separates observers which never had causal contact prior
to the time t. Therefore, when there is a particle horizon, the Universe can be

separated into regions which are (up to that time)

e Since the Universe has been, for most of its history, dominated by either radiation
(p=1/2) or matter (p=2/3), if that were true down to t=0, then our particle horizon

today would be: . ————

d, (0) =~ ¢ x t, ~ 4600 Mpc r/ |

i AOSREE
e

ok

Problem #20: Compute the particle horizon at the time of decoupling (t~380.000 vy, z~1100),
assuming that p=1/2. Answer: ~200 Kpc




* Now tfake an accelerating scale factor:

£\ P
a(t) = ag (%) o> 1

t p t tl =P
We still have some initial time t=0. However: 2(Z) = (t_) / dt’ (t_)
0 t; 0

is now an arbitrarily large distance as we fake the lower limit t; @ O, and hence
there is no particle horizon in this case!

However, consider, instead, what happens if the upper limit is take to be # — «, and
take the lower limit to be .

This distance would then correspond to the maximal length that separates two
objects such that they could ever exchange a light-speed signal emmitted at time ¢.
If that maximal distance is not infinity, then there an event horizon:

S (%) /t o (%) o ¢




1. General Relativity 2. Einsteins equations 3. Kinematics of FLRW 4. Dynamics of FLRW 5. Thermal history 6. Big Bang, horizons, inflation, and all that




® The physical significance of a horizon is profound, as it clearly marks causality boundaries:

" A particle horizon setfs a limit to the

past light-cone of observers at time
pairs of inertial observers separated by a

distance larger than dyn at time ¢ have
never been in causal contact before .

= An event horizon sets a limit to the

future light-cone of inertial observers at
time #: pairs of observers separated by a

distance larger than d.z at time t will never
again be in causal contact after r.
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Problems of the dust + radiation Friedmann models

® Horizon problem: if the expansion rate has always been decelerating, then the
visible Universe today is a much “larger” region than it was at the time of
decoupling. If that were true, then the CMB shows many causally disconnected
regions which are incredibly similar (same temperature, density, pressure, etc.) So,
why does the CMB shows such an isotropic and homogeneous Universe, on such
immense scales?

® Curvature problem: the density of the Universe today is very close to the critical
one, Q =1 . However, if curvature wasnt set to zero at the Big Bang, with an
incredible accuracy, then it would have become dominant a long time ago! How can
this be?...

® Problem of the origin of the primordial inhomogeneities (Robert’s talk!): the
standard Big Bang model does not give any clue as fo why or how there were only
very small fluctuations in the density field. It does not say anything about their
amplitude (which is near scale-invariant), or about their statistical nature (nearly
Gaussian).



The solution to all of these problems: accelerated expansion (inflation)

The main idea is that the Universe, in its very early stages, went through a phase

of accelerated expansion:

az=0 - q=—%<0
a

E.g., the scale factor could have behaved as:

P
a'=ia, i\z s g7 5] mp—o>00: a=e
]
a_pp-1)
= ; > 0
a 4

Ht

This accelerated phase could be due fo some type of matter with a negative
equation of state, such that:

0 oc g3+ ST Lole

OK, but... what does that achieve?



v The curvature problem

The 0-0 Friedmann equation (again!) is:

3H 52 = 8nG p
A

If the matter that dominates the Universe decays less fast than curvature, then it
will make curvature less dominant with time.
In our example of power-law expansions, if p>>1, then the energy density stays
nearly constant:
-2/ p

P xa
In the limit p — 00 , the density is constant and the contribution of spatial
curvature decays exponencially:

K :
limp — o0 : a =elt | poxconst ,  —voce i

a
Hence, the result of an era of accelerated expansion is to suppress the spatial
curvature. All models of inflation do that: the acceleration era is long enough that

curvature today is completely negligible - even after the radiation and matter eras.

Therefore, inflation "predicts” that Q=1.



v The horizon problem

Consider, for simplicity, the radiation era, and let’s say that spatial curvature
is gone. Without inflation we would have:

4 ) t

a =it =dd= a(t) s
3H? = 81Gp | -1 [ a(t")

pxa

Now, let’s say that between t, e t,, the Universe’s evolution was dominated

by some type of matter that caused an accelerated expansion.
The scale factor would then look something like this:

.

f
a([) = tl/z — ' i< [=< tb a(t)
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Inflation: the ultimate past-light-cone democracy
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Eg. motion
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e Problem #33: the “power-law” model of inflation. Take an exponential potential:

4 |
S
The Friedmann and Klein-Gordon take this form:
¢P+3HO+V, =0
3H? = 8nGLg2 + 1) ;
, - . ot P
Let’s now try a solution of the type: alilimpl = P = —
to} [
By inspection of the equations above, (I)(t) — & lni
we are led to consider a scalar field: 0 /
0
Substituting these expressions in the equations above, we have:
¢ 3ph M % _»
__O_I_ p () e—(d)o/s)lnt/tO:O ; £ o
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