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Polarizations of a gravitational wave

Recall plane wave solution in TT gauge:

hrr =

where hy, = hy (t—z/c) and hy = hy(t— z/c)
Independent components of Riemann tensor are

1. 1.
Ro101 = —FRo202 = —Eh+ and  Rpi02 = Rooo1 = _Ehx

Remaining components from Riemann symmetries and the identity
Rsapy + cRoapy =0



Polarizations of a gravitational wave

Geodesic deviation equation: let
¢ =[CsinBcosd, (sinOsind, (cosb]
Then,

d*¢
dt?
d*t,
dt2
d’s
dt?

1. 1.
= —Rp10i¢' = §h+Csin9coscb + Ethsin Osind

. 1. 1.
= —RpiC' = —§h+Csin Osind + Ehx(:sin O cosd

Tidal force is transverse



Polarizations of a gravitational wave

.’L’2

[ ol \

P
AN

1,1

N |/
V¢

\ HE Y

plus polarization cross polarization

/ N
-~ ~
H& .’V._)
~ -
N 4




Polarizations of a gravitational wave
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Polarizations of a gravitational wave
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Energy carried by a gravitational wave

Vacuum field equations:

0 1 2
0= Guv = Guv [ntxﬁ] + G;,w [hccﬁ] + Gpv [hocfs] +--
—_— Y Y
=0 O(h) o(h?)
Write . ,
8ap =Nap + hap =Nap +A hap + A hop +---
where A is an order parameter

Then

1 1 5 1 2 2 1 3
0= Guv =A Guv [hocﬁ] +A (Guv [hoc[s]‘f' Guv [hoqs}> + O(?\ )



Energy carried by a gravitational wave

The first order equation

1 1

Guv [hocﬁ] =0
gives our gravitational wave solution

The correction to first order solution is due to the back-reaction of the
first order solution:

1 2 2 1
Guv [hoc[i} = - Gp\/ [hocfi]
—_———

87TGTGW
Here .
c 2 1
Tﬁ\\/,v - 8 G Gp.v [hoc[S]

is interpreted as the stress energy tensor of the gravitational wave



Energy carried by a gravitational wave

Volume average over several wavelengths:

c4 1 2

TGW _ c* ahi{;T ahiJT'T
Y T 30nG \ Oxt OxY

Result is




Energy carried by a gravitational wave

For a plane wave
A =—hll =h (t—z/c) and h]] =hl =h(t—z/c)

Energy density/flux:

4
W _ _ _TGW _ _ _TGW _ w_ ¢ 2 g2
Too' = —cTgs cTq' = T53 167G <h+ + h><>

For a onochromatic wave of frequency w,

hy = Ay coslw(t—z/c)] and hy = Ay sinlw(t— z/c)]

4
c
T(%NZ*C 03W:*C 38/V:CZT§3\/V:32HGw2(A%r+A2X)



Production of gravitational waves

In harmonic coordinates, 9h**/dx* = 0, the field equations are

16mG

OhP = — — T™F 1+ 0(r)
:_%;Tocs

where TP is the effective stress energy tensor that includes all O(h?)
terms.

. . 0
The exact equations of motion are — "% =0

oxH

The solution to the field equation is

h*B (¢, x) = d3x’

g:J B (£~ [x— x| /<, x')
foud

[ = x|



Production of gravitational waves

> Far field: ||x—x'|| = r

» Slow motion: t— ||x— x'||/c & t— r/c over entire source
- 4G
hocﬁ(t, x) & o, chocﬁ(t— r/c x') d3x
r

Only need to compute h?
Use the identity

i = 1a—2(x"><'j't0°) + i(x"’rjk + Xty — 1o (XX
20¢t? Oxk 2 Oxkox!
e 2G 92 o
ij ~ 22 1 j 000y N A3/
hu(t, x) ey Jx Xt (t—r/c, x') d”x



Production of gravitational waves

Define the quadrupole tensor

19(t) = JX’.XI‘TOO(t, x) d3x

TT
hij (t) = C43t2U

(t—r/c)

where .
I}T _ Pik/k/'D/j - EPiij//kI

is the TT projection and the operator P,J = 6,1 hih; projects into the
plane transverse to the normal vector A’ = x'/r



Production of gravitational waves

Gravitational wave luminosity:

dE_1G /d,d'Y
dt 5\ dt3 dt3

quadrupole formula

Gravitational wave torque:

_dh_26G d*¥, d°3
dt 5 N\ g2 43

Here J is the trace-free quadrupole tensor

30(t) = J(%xf — 39Tt x) dx



Beyond Newtonian motion and quadrupole radiation

» Expand equations of motion in powers of 1/c:

» O(1/c2) terms are “first post-Newtonian order”
» O(1/c*) terms are “second post-Newtonian order”

» Include higher multipole terms in radiation

y 4G [ .
R = —JT%—T(t— r/c—h-x"/c x')dPx

Ar
4G = 1 ™ [

_ - - ] t— N(H . v md3 /
c4rmZ:0 m!at’”JTTT( /e x )@ x/e)" & x
2692 X . . .

_ 2 r ij ijk o ijklzy o
Grar | L Pk Py ]

m=0"quarupole octupole hexadecapole
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Rotating triaxial ellipsoid

z
h
/’,; lo = h
I
X y I(t) = Ry (wt) - Iy - Ra(wt)
—cos2wt  —sin2wt 0
d? )
E'(t) =2ehw —sin2wt cos2wt 0
0 0 0

where ¢ = (I — h)/l3 is the ellipticity



Rotating triaxial ellipsoid

2G d?
Ob is: hyr = Hi2
server on z axis: htt 2rdt2 TT

4Gelw?

h, = ———°—7" 2wt

N o, cos2w
4Gelzw?

h>< = —% sin2wt

Observer on Z' axis:

I"=Ry(1)-1-RYV)

4Gelw? 1 2
hy = — ;3w —|—;os Lcos2w1‘
r

4Gelzw?
hy = 1253 osisin2wt

cAr




Rotating triaxial ellipsoid

sin2wt —cos2wt
a3 3
@'(t) =dehw —cos2wt —sin2wt
0 0

dE _ 326 op s

» Luminosity: 4 5 &

dis 326G
> Torque: —7:: 55 e w?

dE dJ3

@~ Yar



Crab pulsar

rotation period P =0.0333s
spin-down rate P =4.21x 10"

mass M = 1.4 Mg

radius R =10km

quadrupole b~ 2MR =11 x 10¥m? kg
inclination L =62°

distance r =25kpc

If the spin-down is explained entirely by gravitational radiation then

P P> dJs 5121* G

"o T Tonkdt . 5 &

| 5 SPP
Required ellipticity is ¢ = 5P Gl ~T72x1074

e?lP3



Crab pulsar

Sinusoidal gravitational waves produced at ~ 60 Hz with amplitude

4Gelsw? 1+ cos? L

Al = =73x10%
M ctr 2 3x10
4Gelsw?
Ay = 230 051 =56 x 1072
Ar

Upper bounds since most spin-down is from electromagnetic breaking

For T = 1year of observation, “root-sum-square” amplitude is

hrss ~ V/Th~ 1072 Hz /2



Orbiting binary system

ST

~

Center-of-mass coords:
» Orbital separation
a=n-+n
» Total mass
M=m +m;

» Reduced mass
w=mmy/M

Quadrupole tensor:

h = paZ cos® ©
ho = pa’sin @ cos @

hy = pa®sin® @

where @ = wt



Orbiting binary system

Kepler's 3rd law: a*w? = GM  Let v = aw = (GMw)'/3

Waveform is:

b __4Gu(!>2l+cosztc
T 2r \e 2

4
hy — Gu(v

2
gl in?2
2, C) cosLsin 2@

0s 2@

Gravitational wave frequency is 2ntf = 2w so
v=(nGMf)*/3

also

(27TGM) 1/3 GM
V= P v



Orbiting binary system

Gravitational radiation causes orbit to decay
> Orbital energy:

1 GMu 1
E=-w?— — =—u/?
L ; i

» Gravitational wave luminosity:

e ("

» Orbital evolution:

where 1 = u/M



Orbiting binary system

Generalize: define an energy function and a flux function

_E(v)—/\/lc2 _ GdE
E(v) = e and 9(v)_—05dt(v)
_GMdeay
S dvdt
o GmM1de
dv & Fadv

» Time until coalescence:

T:tc—t(v):—%ﬂjcé%dv

where v, is the value of v at coalescence, t = t.



Orbiting binary system

» Phase evolution:

do  dodt

dv  dt dv
B GM 1 d&
BRIy

- (054

Ve

o(v) = <pc+J (5)3 %%dv

v




Orbiting binary system

Binary inspiral “chirp” waveform:

4G /v\2 14 cos?t
h+(t(V)) = —Z (E) TCOS2(D(V)
4Gu fv\2 .
hy (t(v)) =2, (E) costsin2@(v)
GM (¥ 1 d& e rv\31dE
t(V)—tc‘i—?Jv Ea/dv (P(V)—(PC+J'V (E) aa/dv



Orbiting binary system

Newtonian chirp: €= —% (5)2 and 2= —35—211 (‘é)m
tv) =t — %%M (5)78 and (V) = @ — % (g)’5

(Note: as v— 00, t = tc, @ = @)

» Gravitational wave frequency evolution: use f= v3/tGM

df _ dfdv _ 96 g5 (G o3 A1/3
dt  dvdt 5 3

where

(m1m2)3/5

m—= 3/5M: 3/5M2/5 _
" " (my + mp)1/5

chirp mass



Orbiting binary system

h(t)——1+COS2L@ te—t \ V4 o te—t 5/8
= 2 &r\sem/e P \56m/c

o) = —cos S (Lt ) g g (ot )
=Tt \sem/e S Pe=\sem/e




Hulse-Taylor binary pulsar

pulsar mass m; = 1.4414 M,

companion mass my = 1.3867 Mg

orbital period P =0.322997 448 930 days

orbital decay P =—759psyr * = —2.405 x 102

orbital eccentricity e =0.6171338
If the orbital decay is explained entirely by gravitational radiation,

1+ 2+ e
1—e&)/2

p_ _loom (2ncm>5/3

5 P
~ —2.402 x 10712




Binary neutron star coalescence

Characteristic amplitude:

22 (2

Characteristic chirp timescale for Af~ f.

1 1 <1d(v/c)>1 5 GM (y)fs

TS dnfidt 3\ vjc dt To6n @ \c¢

Root-sum-squared amplitude:

[5 Gu2Gu (2[5 GG (mGmf)
hiss ~ V' 9% & r (c) 24 3 c2r( a3 (>



Binary neutron star coalescence

neutron star masses m; = m, =1.4 M@

chirp mass m =1.22 Mg
gravitational wave frequend00, Hz
distance r =100Mpc

Chracteristic amplitude:
s ~ 4 x 10723



Gravitational wave detectors
Interferometers
Pulsar timing arrays



Interferometers

Hanford, WA, USA

2nd-Generation (construction)

LIGO Livingstong, LA, USA  2nd-Generation (construction)

India 2nd-Generation (planning)
Virgo Pisa, Italy 2nd-Generation (construction)
KAGRA Kamioka, Japan 2nd-Generation (construction)
Einstein

Telescope

Europe

3rd-Generation (planning)




Interferometers

end mirror

Strain sensitivity:

end mirror

(- L } > Laser wavelength: Ax

5 » Resolvable fraction of a fringe:
S n

> Effective arm-length: L

photodiode



Interferometers

» Resolvable fraction of a fringe is determined by shot noise:
—1/2
n=nN,"
where N, is the number of photons collected in time T:

Px
N, — —*
Y T Drthe/Ax |

and Px is the laser power

» Effective arm-length can be larger than actual arm length, e.g., by
having multiple bounces

. . c
To remain in long-wavelength limit: L < 7
0



Interferometers

Strain power spectral density is S, ~ Th

Detectable signal has hys 2 (a few) x 5}1/2 where

omhe 1 27t
51/2 12 h~ o * £
hoo T ™ \/ Py Thy c/f0 TV Py

Initial LIGO
laser wavelength Ax = 1lpm
1/2 _ -
laser power Py =100 W Sh/ ~10 28 H 12

gravitational wave frequency  fy = 100 Hz



Interferometers

Other noise sources:

» Thermal noise

» Radiation pressure noise
» Seismic noise
>

Gravity gradient noise



Interferometers — LIGO




Interferometers — Initial LIGO
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Interferometers — Advanced LIGO
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Interferometers — Advanced LIGO

10-2

10-22
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10~
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Interferometers — Virgo




Interferometers — KAGRA




Interferometers — Einstein Telescope




Interferometers — Einstein Telescope

1072

100 10" 102 10°  10*
frequency f (Hz)



Pulsar timing arrays

v

Pulsars are very stable “clocks”

v

Timing residuals: difference between when a pulse arrives and when
it was expected

v

Gravitational waves affect clocks; produce timing residuals

v

Decade-long obeservation = sensitive to nano-Hertz frequencies
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