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bes·ti·ar·y  /!b"st#$r#/
noun (pl. -ar·ies)
a descriptive or anecdotal treatise on various real or mythical kinds of
     animals, esp. a medieval work with a moralizing tone.
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Sources of continuous gravitational waves

I At high frequencies, 1 Hz to 1000 Hz, expect main sources of
continuous waves to be rapidly rotating neutron stars:

I Isolated rapidly rotating neutron stars
I Neutron stars in low-mass X-ray binaries (Sco X1?)

I Signal may be produced by:
I Distorted neturon stars with ellipticity ε > 0
I Wobbling neutron stars (free precession)
I Unstable modes under gravitational radiation

(Chandrasekhar-Friedman-Schutz instability), e.g. r-modes
I Search categories:

I Known pulsars (targeted searches): position and phase
evolution known, e.g. Crab pulsar

I Known/suspected neutron stars (directed searches): position
known, e.g. Sco X1, Cas A

I Blind search for unknown isolated neutron stars
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Targeted pulsar search example: Crab

x 
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Observed spin-down limits gravitational
wave strain

I Recall, for Crab pulsar: h . 10−25

I Could be arbitrarily small!
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Sources of continuous gravitational waves

Directed search example: Sco X1

Assume that gravitational radiation
balances torque from accretion

I Accretion rate: Ṁ
I Torque: Ṁ

√
GMR

I X-ray luminosity: LX ≈ GMṀ/R
I Observed X-ray flux: FX =

LX/(4πr2) = 2 × 10−10 W m−2

h ∼

(
GP
c3

)1/2 ( R3

GM

)1/4
F1/2

X

∼ 3 × 10−26

for P = 4 ms, M = 1.4 M⊙, R = 10 km.
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I Observed X-ray flux: FX =

LX/(4πr2) = 2 × 10−10 W m−2

h ∼

(
GP
c3

)1/2 ( R3

GM

)1/4
F1/2

X

∼ 3 × 10−26

for P = 4 ms, M = 1.4 M⊙, R = 10 km.



. . . . . .

Sources of continuous gravitational waves

Directed search example: Sco X1

Assume that gravitational radiation
balances torque from accretion

I Accretion rate: Ṁ
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Sources of continuous gravitational waves
Blandford’s argument for unknown “gravitars”

I Assume a disk population of gravitars
I Galactic disk birth rate per unit area: R
I Spindown time-scale: τ = P/Ṗ where Ṗ ∼ GI3P−3ε2/c5

I Nearest gravitar: rnearest ∼ (Rτ)−1/2

I Strongest source: hlargest ∼ GI3P−2ε/(c4rnearest) ∼
√

GI3R/c3

Depends only on birth rate!
h ∼ 3 × 10−24 for I3 = 1038 m2 kg, R = (30 yr)−1/[4π(10 kpc)2]
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Binary coalescence sources

I At high frequencies, 1 Hz to 1000 Hz, expect main binary
coalescence sources to be:

I Coalescences of binary neturon star systems
I Coalescences of neutron-star + black-hole binaries
I Coalescences of binary black hole systems with M . 100 M⊙

I Anticipated rates:

System Rate density (Myr−1 Mpc−3)

NSNS 0.1 to 10

NSBH 6 × 10−4 to 1

BHBH 1 × 10−4 to 0.3
Abadie et al. (2010) Class. Quantum Grav. 27 173001
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Binary coalescence sources

I Advanced LIGO will have a typical range of ∼ 100 Mpc for
NSNS systems

I Expect ∼ 40 events per year
(But more than an order of magnitude uncertainty!)

I NSBH and BHBH detection rates are even more uncertain,
but could be as high
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Binary coalescence sources

Binary neutron star inspral + merger + post-merger
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I Inspiral: described by post-Newtonian theory
I Late inspiral / merger / post-merger oscillations: computed

using Numerical Relativity
I Tidal effects: size of the star encoded in waveform
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Binary coalescence sources

Science goals:

I Determine population of NSNS, NSBH, BHBH systems
I Informs models of stellar evolution
I How do supermassive black holes form?

I Determine progenitors of short gamma-ray bursts
I Measure neutron star equation of state

I Independent Distance-Redshift relationship
I Tests of General Relativity
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Core collapse supernovae

I At end of life, massive stars
have cores of Fe “ash”
supported by electron
degeneracy

I Collpse when Mcore > 1.4 M⊙

I Core becomes NS
I Rebound shock powered by

neutrinos from photo-
dissociation of nuclei

I Remnant is a NS or BH
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At end of collapse
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tff =

√
3π
32

1
Gρ ∼ 0.1 ms

for ρ ∼ 1018 kg m3

I Axisymmetric collapse has
h ∼ G(̈I22 − Ï33)/c4r where
I11 = I22 = (1 − 1

2e2)I33

I During collapse, e ∝ R−1/2

h ∼
GM
c2r

(
eR
ctff

)2
∼ 10−20

for M ∼ 1 M⊙, R ∼ 15 km,
e ∼ 0.1, r ∼ 10 kpc
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h ∼ G(̈I22 − Ï33)/c4r where
I11 = I22 = (1 − 1

2e2)I33

I During collapse, e ∝ R−1/2

h ∼
GM
c2r

(
eR
ctff

)2
∼ 10−20

for M ∼ 1 M⊙, R ∼ 15 km,
e ∼ 0.1, r ∼ 10 kpc



. . . . . .

Core collapse supernovae
At end of collapse

I Dynamical timescale is

tff =

√
3π
32

1
Gρ ∼ 0.1 ms

for ρ ∼ 1018 kg m3

I Axisymmetric collapse has
h ∼ G(̈I22 − Ï33)/c4r where
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Sources of continuous gravitational waves

Sources of gravitational wave bursts
Binary coalescence sources
Gravitational collapse

Sources of a stochastic background of gravitational radiation
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Sources of a stochastic background of gravitational
radiation

See Robert Caldwell’s Lectures
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