
Perturbations and Stability of Newtonian Stars

Describe fluid perturbation by a Lagrangian displacement ξa that
joins each fluid element in the unperturbed star to the
corresponding fluid element in the perturbed configuration: If c(t)
is the fluid trajectory in the unperturbed star, then the perturbed
trajectory c̄(t) is given in Cartesian coordinates by

c̄i(t) = ci(t) + ξi[c(t), t].

Adiabatic index: Γ1 :=
∂ logP

∂ log ρ

∣∣∣∣
s,Yi

Fractional change in volume of a fluid element is

∆V

V
= ∇aξa,

implying

∆ρ

ρ
=

∆P

Γ1P
= −∇aξa (1)
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Here ∆ρ is the Lagrangian change in ρ, the difference in the
density of the same fluid element:

∆ρ = ρ̄(x + ξ)− ρ(x) = δρ+ £ξρ.

The Eulerian change δρ is the change at a fixed point in space,
and the relation between them is

∆ = δ + £ξ (2)

Equivalently, one can consider a family of fluid flows, with the
original fluid flow is mapped by the family of diffeos ψλ(t, x)
generated by ξa to the perturbed flow. If ψλ were
time-independent, the velocity field of the new flow would be
Lie-dragged by ψλ to the new velocity field implying ∆va would
vanish. That means ∆va can depend only on ∂tξ

a:

∆va = ∂tξ
a. (3)
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Here’s the derivation:

v̄i[c̄(t)] =
d

dt
[ci(t) + ξi[t, c(t)] = vi + vj∂jξ

i + ∂tξ
i

v̄i + ξj∂j v̄
i = vi + vj∂jξ

i + ∂tξ
i

δvi = ∂tξ
i − £ξv

i

∆vi = ∂tξ
i

Eqs. (1) and (3) give the perturbed fluid variables in terms of ξa.
The perturbed Euler equation then becomes a dynamical equation
for ξa.
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Let ρ, P, va be a solution to the equilibrium equations

P = P (ρ)

∇a(ρva) = 0

∇2Φ = 4πGρ

v · ∇va +
1

ρ
∇aP +∇aΦ = 0

Perturbed equation of continuity (conservation of mass) and
perturbed EOS:
Already satisfied by ∆ρ/ρ = −∇aξa = ∆P/Γ1P .
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Perturbed field equation:

∇2δΦ = 4πδρ = −4π∇ · (ρξ). (4)

Perturbed Euler:

0 = ρ∆

[
(∂t + v · ∇)va +

1

ρ
∇aP +∇aΦ

]
⇒

0 = ρ∂2
t ξ
a + 2ρvb∇b∂tξa + ρ(vb∇b)2ξa −∇a(Γ1P∇bξb)

−∇bP∇aξb + ρξb∇b∇aΦ + ρ∇aδΦ

= Aab ∂
2
t ξ
a +Ba

b ∂tξ
b + Cab ξ

b ≡ Labξb.

The operators Aab , Ba
b , Cab are self-adjoint, anti-self-adjoint, and

self-adjoint, respectively, for δΦ satisfying (4).
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When one includes radiation reaction, the equation has the form

Aab ∂
2
t ξ
a +Ba

b ∂tξ
b + Cab ξ

b = −F a.

The antisymmetry of Bab implies the inner product with ξ̇a is∫
dV [Aabξ̇

aξ̈b + Cabξ̇
aξb] = −

∫
dV ξ̇aF

a ≤ 0.

or

d

dt
Ec = −

∫
dV ξ̇aF

a ≤ 0,

where

Ec =

∫
dV

1

2
[Aabξ̇

aξ̇b + Cabξ
aξb]

The star is then unstable (or marginally stable) when there is initial
data for which 〈ξ|Cξ〉 < 0.
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The symmetry of the operators also means that Lab is symmetric in
a 4-dimensional sense,

ξ̂aLabξ
b = ξaLabξ̂

b +∇αΘα(ξ).

and this implies that the action for the perturbed Euler equations
has the form

I =

∫
dtdV L,

L :=
1

2

[
Aabξ̇

aξ̇b −Babξaξ̇b − Cabξaξb
]

The momentum density conjugate to ξa is

Πa =
∂L
∂
ξ̇ = Aabξ̇

b +
1

2
Babξ

b.
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The symplectic product,

W (ξ̂, ξ) =

∫
dV (Π̂aξ

a −Πaξ̂
a)

is conserved and gives simple forms for the energy and angular
momentum of a perturbation and a relation between them:

Ec =
1

2
W (ξ̇, ξ), Jc = −1

2
W (£φξ, ξ).

Then for a mode with time-dependence eimφ−ωt, and ω real, we
have

Ec
Jc

= ω/m,
Ėc

J̇c
= ω/m,

ω/m the pattern speed of the mode. For Jc < 0 (a mode that
moves backward relative to the star), the energy Ec will be less
than zero when ω > 0, when the star rotates fast enough that the
mode is dragged forward relative to the inertial frame.
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Relativistic perturbation theory

Variations of the metric and fluid

Here’s roughly the same introduction a second time, this time in
the context of spacetime and the exact theory. First order
departures from an initial configuration can be described in two
ways. The Eulerian perturbations in the quantities Q(λ) are
defined by

δQ =
d

dλ
Q(λ)|λ=0 (5)

and compare values of Q at the same point of the spacetime.
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In the region occupied by the original fluid, one can also introduce
the Lagrangian perturbations

∆Q =
d

dλ
[χ−λQ(λ)]|λ=0 (6)

= (δ + £ξ)Q, (7)

where ξα generates the family of diffeomorphisms χλ. That is, the
curve λ→ χλ(P ) has tangent ξα(P ) at the point P . The field ξα

is termed a Lagrangian displacement and may be regarded as the
connecting vector joining fluid elements in the unperturbed
configuration to the corresponding elements in the perturbed
spacetime.
The first order changes in the variables Q can be expressed in
terms of the displacement ξα and the Eulerian change in the metric

hαβ = δgαβ. (8)

In fact, we will see that perturbations of the fluid variables can all
be written in terms of ∆gαβ,

∆gαβ = hαβ +∇αξβ +∇βξα. (9)
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We begin with the change in the four-velocity uα. Let t→ c(t) be
the initial path of a fluid element, cλ = χλ ◦ c the new path.
Because χλ drags c to cλ, the Lagrangian change in c and in its
tangent vector vanishes. That is, if wα is tangent to c, then
wαλ = χλw is tangent to cλ. Thus χ−λw

α
λ = wα, independent of λ,

implying

∆wα = ∂λ(χ−λw
α
λ ) = ∂λw

α = 0. (10)

Now wα will not, in general have norm −1; even if we choose t to
be proper time along the original path, t will not be proper time
along cλ. As a result, the Lagrangian change in the four-velocity is
nonzero, depending on the change in the metric along the fluid
trajectory, ∆gαβu

αuβ. We have

uα =
wα

(−wβwβ)1/2
=

wα

(−gβγwβwγ)1/2
;

∆uα = −1

2

wα

(−wδwδ)3/2
(−∆gβγw

βwγ) =
1

2
uαuβuγ∆gβγ .

(11)
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Baryon density ∆ρ:

Conservation of baryon mass is

∆(ρ
√
q) = 0;

because (as discussed in the context of the unperturbed
conservation law), the volume of a fluid element perpendicular to
uα is proportional to

√
q, and the fractional change in its volume is

∆V

V
=

∆
√
q

√
q

=
1

2
qαβ∆qαβ =

1

2
qαβ∆gαβ.

Then

∆ρ

ρ
= −1

2
qαβ∆gαβ (12)

The equation means that the fractional increase in ρ is equal to
the fractional decrease in the volume orthogonal to the 4-velocity.
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∆ε and ∆P :
We already know the relation between ∆ε, ∆P and ∆ρ:

∆ε

ε+ p
=

∆P

Γ1P
=

∆ρ

ρ
= −1

2
qαβ∆gαβ.

These relations imply that an action for the Einstein-Euler system
is given by

I =

∫ [
1

16π
R− ε

√
−g
]

:

Use

∆
(
ε
√
−g
)

= −1

2
Tαβ∆gαβ

= −1

2
Tαβhαβ + ξα∇βTαβ −∇β(ξαT

αβ)

δI =

∫ [
− 1

16π
(Gαβ − 8πTαβ)hαβ − ξα∇βTαβ

]√
−gd4x
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Perturbed Euler equation

uβ∇αTαβ = 0 already satisfied by ∆ε = −1

2
(ε+ P )qαβ∆gαβ.

For remaining part, use our expressions for all perturbed fluid
quantities in terms of ∆gαβ to write the perturbed Euler equation
of a uniformly rotating barotropic star:

utqα
βuγ£k∆gβγ = −qαβ∇β∆ ln

h

ut

= −1

2
qα
β∇β

(
uγuδ∆gγδ +

Γ1p

ε+ p
qγδ∆gγδ

)
.
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Perturbed Einstein equation

In a Lorenz gauge (deDonder, transverse, harmonic, . . . ), given by

∇βh̃αβ = 0, where h̃αβ := hαβ −
1

2
gαβh.

The perturbed vacuum field equation has the form

δGαβ = −1

2
∇γ∇γ h̃αβ − 2Rαγβδh̃γδ = 0,

with a more elaborate expression

δGαβ = −1

2
∇γ∇γ h̃αβ −Gαγβδh̃γδ

in the star.
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Because the field equations come from an action, the perturbed
field equations satisfy a symmetry relation: For any pairs (ξα, hαβ)

and (ξ̂α, ĥαβ), the symmetry relation has the form

ξ̂βδ(∇γT βγ
√
|g|) +

1

16π
ĥβγδ

[
(Gβγ − 8πT βγ)

√
|g|
]

= −2L(ξ̂, ĥ; ξ, h) +∇βΘβ,

where L is symmetric under interchange of (ξ, h) and (ξ̂, ĥ),
implying an action of the form

I =

∫
d4xL =

1

2
L(ξ, h; ξ, h).

Again we define a symplectic product and conserved energy and
angular momentum of the perturbation by

W (ξ̂, ĥ; ξ, h) :=

∫
Σ

(Π̂αξ
α + π̂αβhαβ −Παξ̂

a − παβĥαβ)d3x.
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Ec =
1

2
W (£tξ

α,£thαβ, ξ
α, hαβ)

Jc = −1

2
W (£φξ

α,£φhαβ, ξ
α, hαβ)

The stability discussion is now identical to that in the Newtonian
approximation, with longer expressions for the operators.
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Why are the perturbed field equations self-adjoint in this
4-dimensional sense (symmetric up to a divergence)?
This follows quite generally from the existence of an unconstrained
action. Let {φI} be a set of fields whose field equations EI(φ) = 0
are given by a variation of the action I[φ] =

∫
L(φ)d4x. That is,

EI =
δI

δφI
, with δI =

∫
δI

δφI(x)
δφI(x)d4x, for any choice of

perturbed fields δφI vanishing sufficiently rapidly at the boundary
of the region of integration that no surface terms arise. Then the
perturbed field equations, δEI = 0, governing a perturbation δφI ,
have the form

δEI(x) =

∫
δ2I

δφI(x)δφJ(x′)
δφJ(x′)d4x′,
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and the symmetry of the system corresponds to an exchange of the
order of the two derivatives of the action:∫

δ̂φI(x)δEI(x)d4x =

∫
δ̂φI(x)

δ2I

δφI(x)δφJ(x′)
δφJ(x′)d4x′d4x

=

∫
δφJ(x′)

δ2I

δφJ(x′)δφI(x)
δ̂φI(x)d4xd4x′

=

∫
δφJ(x′)δ̂EJ(x′)d4x′.
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