Perturbations and Stability of Newtonian Stars

Describe fluid perturbation by a Lagrangian displacement £ that
joins each fluid element in the unperturbed star to the
corresponding fluid element in the perturbed configuration: If ¢(t)
is the fluid trajectory in the unperturbed star, then the perturbed
trajectory ¢(t) is given in Cartesian coordinates by

a(t) = () + € e(t), 1].

Odlog P
Adiabatic index: Iy := 8
0log p sV
Fractional change in volume of a fluid element is
AV
7 = va§a7
implying
Ap AP
-_rF_ =" _ _va a 1
S = TP £ (1)
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Here Ap is the Lagrangian change in p, the difference in the
density of the same fluid element:

Ap = p(x+&) — p(x) =p+ Lep.

The Eulerian change Jp is the change at a fixed point in space,
and the relation between them is

A=6+ £ (2)

Equivalently, one can consider a family of fluid flows, with the
original fluid flow is mapped by the family of diffeos 1y (%, x)
generated by £ to the perturbed flow. If 1) were
time-independent, the velocity field of the new flow would be
Lie-dragged by 1, to the new velocity field implying Av® would
vanish. That means Av® can depend only on 0;£%:

a PA a
Av® = 9%, (3)
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Here's the derivation:
v'le(t)] = %[cl(t) + &'t c(t)] = v" + 17 0;€" + 0,
'+ 900 = v 0996 + 9E
vt = o — £§vi
Avt = 9!

Egs. (1) and (3) give the perturbed fluid variables in terms of £°.
The perturbed Euler equation then becomes a dynamical equation
for £2.
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Let p, P, v be a solution to the equilibrium equations

P = P(p)
Va(pv®) =0
V2® = 47Gp

1
U-Vva—l—;VaP—i-Va(I):O

Perturbed equation of continuity (conservation of mass) and
perturbed EOS:
Already satisfied by Ap/p = =V, = AP/T P.
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Perturbed field equation:
V25® = 4ndp = —4nV - (p€). (4)

Perturbed Euler:

1
0= pA (at—l—v-V)va—i—;VaP%-Va@ =

0 = pdE" + 2p0°V,0i8% + p(1Vy)*€" — V(T PV,E")
—VPPV b + pebVy V@ + pV, 0P

= Ay 0P+ By 0+ O €0 = I

The operators Ay, By, C} are self-adjoint, anti-self-adjoint, and
self-adjoint, respectively, for 0 satisfying (4).



When one includes radiation reaction, the equation has the form
Aj 076 + By 0"+ Cf &0 = —F°,

The antisymmetry of B, implies the inner product with f“ is

/ AV [Agp€9€° + Cppéc?]) = — / dVELF® < 0.

or
dp ——/dvé F*<0
dt c — a — bl
where

E. = / AV 3" + Cute)

The star is then unstable (or marginally stable) when there is initial
data for which (£|C¢) < 0.
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The symmetry of the operators also means that L7 is symmetric in
a 4-dimensional sense,
E'Lap” = €' L€’ + Va® ().

and this implies that the action for the perturbed Euler equations
has the form

I = / dtdv L,
1 . .
L= 5 A" - Bugé — Cuge’

The momentum density conjugate to &% is

oL, b 1 b
Ha— ag_AabE +2-Bab§-
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The symplectic product,

W(évf) = /dV(ﬂafa - Haga)

is conserved and gives simple forms for the energy and angular
momentum of a perturbation and a relation between them:

o= JWES, o= —5W (£l

Then for a mode with time-dependence emP—wt and w real, we
have

w/m the pattern speed of the mode. For J. < 0 (a mode that
moves backward relative to the star), the energy E. will be less
than zero when w > 0, when the star rotates fast enough that the
mode is dragged forward relative to the inertial frame.
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Relativistic perturbation theory

Variations of the metric and fluid

Here's roughly the same introduction a second time, this time in
the context of spacetime and the exact theory. First order
departures from an initial configuration can be described in two
ways. The Eulerian perturbations in the quantities Q()\) are
defined by

5Q = S QW) ©)

and compare values of () at the same point of the spacetime.
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In the region occupied by the original fluid, one can also introduce
the Lagrangian perturbations

AQ = S QW (6)
= (+LQ 7

where £ generates the family of diffeomorphisms x,. That is, the
curve A — x(P) has tangent £%(P) at the point P. The field £
is termed a Lagrangian displacement and may be regarded as the
connecting vector joining fluid elements in the unperturbed
configuration to the corresponding elements in the perturbed
spacetime.
The first order changes in the variables () can be expressed in
terms of the displacement £% and the Eulerian change in the metric
haﬁ = (5gaﬂ~ (8)
In fact, we will see that perturbations of the fluid variables can all
be written in terms of Ag,g,

Agag = hap + Vaés + Vgéa. 9)
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We begin with the change in the four-velocity u®. Let t — ¢(t) be
the initial path of a fluid element, ¢y = x\ o ¢ the new path.
Because x) drags c to ¢y, the Lagrangian change in ¢ and in its
tangent vector vanishes. That is, if w® is tangent to ¢, then

w§ = x w is tangent to cy. Thus x_ w$ = w®, independent of A,
implying

Aw® = d\(x_ wg) = hw = 0. (10)

Now w® will not, in general have norm —1; even if we choose t to
be proper time along the original path, ¢ will not be proper time
along cy. As a result, the Lagrangian change in the four-velocity is
nonzero, depending on the change in the metric along the fluid
trajectory, Agaguauﬁ. We have

o we w®
Cwbug) 72 (gpyuwbun)i?
e 1 w® 1 o, B,
Au’ = —iw(—Agﬁ’ywﬁw’y) = §U u 'U'Agﬁﬁ,.

(11)
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Baryon density Ap:

Conservation of baryon mass is

A(py/q) = 0;

because (as discussed in the context of the unperturbed
conservation law), the volume of a fluid element perpendicular to
u® is proportional to /g, and the fractional change in its volume is

V \/Z[ 2q
[ hen

A 1
== — 50 Agap (12)

1
Agop = §q“5 Agag.

The equation means that the fractional increase in p is equal to
the fractional decrease in the volume orthogonal to the 4-velocity.

John Friedman 11l. Gravitational Waves From Rotating Stars



Ae and AP:
We already know the relation between Ae, AP and Ap:

Ae AP A 1
= oo = =l = 2" Agap.
e+p I4tWwP p 2

These relations imply that an action for the Einstein-Euler system

is given by
1
I—/ |:167TR—€\/—9:| .
Use
1 [0
A (f\/jg) = _iT BAgaﬁ
1
= 5T hap + & VT = V(£aT)
1
51:/[ 757 (Ga 5 — 81T Vhog — EaV TP | \/—gd'x
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Perturbed Euler equation

ugVaTaﬁ = 0 already satisfied by Ae = —%(e + P)q“BAgaﬁ.

For remaining part, use our expressions for all perturbed fluid
quantities in terms of Ag,s to write the perturbed Euler equation
of a uniformly rotating barotropic star:

h
utqoéﬁzﬂfjkAgg7 = —anVBAlnE
1 5 Tip s
= _§Qaﬁv5 <u7u Agys + mq'y Agys | -
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Perturbed Einstein equation

In a Lorenz gauge (deDonder, transverse, harmonic, ...), given by

~ ~ 1
Vgho‘[’) =0, where hqg := hag — §ga5h.

The perturbed vacuum field equation has the form
1 - -
0GP = —5vvvm@5 — 2Rh_5 = 0,
with a more elaborate expression
1 - -
8GP = —§V7V7h°‘/5 — G

in the star.
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Because the field equations come from an action, the perturbed
field equations satisfy a symmetry relation: For any pairs (%, hag)
and (£, hyp), the symmetry relation has the form

EA TV + 35l (67— 87TV
= —2£<5,E; & h) + V4507,

o~

where £ is symmetric under interchange of (£,h) and (&, h),
implying an action of the form

_ / dof = %c(s, hi€,h).

Again we define a symplectic product and conserved energy and
angular momentum of the perturbation by

?)

W (E, h; €, h) = /Z (Mal® + 7% hap — a€" — 7C%hag)d e
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1
EC = §W(£t§a7£th0¢ﬁagaahaﬁ)

1
Jc = _§W(£¢Ea7 £¢h0¢ﬁ7 fav hocﬁ)

The stability discussion is now identical to that in the Newtonian
approximation, with longer expressions for the operators.
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Why are the perturbed field equations self-adjoint in this
4-dimensional sense (symmetric up to a divergence)?

This follows quite generally from the existence of an unconstrained
action. Let {¢'} be a set of fields whose field equations E;(¢) = 0
are given by a variation of the action I[¢] = [ L(¢)d*z. That is,

I T .
Er = 3ol with 61 = / W6¢ (x)d*x, for any choice of

perturbed fields ¢! vanishing sufficiently rapidly at the boundary
of the region of integration that no surface terms arise. Then the
perturbed field equations, §E; = 0, governing a perturbation d¢’,
have the form
(5E - 5 Jo d4 /

I / 6¢I 5¢)J ) ¢ (.’IJ ) z,
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and the symmetry of the system corresponds to an exchange of the
order of the two derivatives of the action:

ST 52[ JroN g4 1 g4
/M) (x)m&b (@)d zdw
_ Jo 0 52[ ST 4 . 94 1
- / ) ST el ) (W el

— /5¢J(x’)c§EJ(x')d4x'.

/ 56! (2)0 5, (z)d's
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