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Plan:

1) Inflation, the great success.... and the problem.
2) The usual answers.
3) Our approach. Inflation as a setting to consider fundamental
questions. A word about Dynamical Collapse Theories.
4) The formal implementation. (Very brief)
5) The practical implementation. (Brief)
6) Collapse schemes and detailed predictions. Comparing with
observations.
7) Other results, The QG connection (speculations motivated by
Penrose’s ideas).
8) More on the usual answers (As time allows it). A situation were we
can see analogous conceptual problems: Mini-Mott.



1) Cosmic Inflation:
Contemporary cosmology includes inflation as one of its most
attractive components: The inclusion of an inflationary stage leads to
a natural explanation for the seeds of cosmic structure in terms of
quantum fluctuations.

Basics Inflation: A period of accelerated expansion, that takes the
universe from relative generic post Plank era initial data to a stage
where it is well described (with exponential accuracy in the number of
e-folds) by a flat Robertson Walker space-time.

dS2 = a(η)2{−dη2 + d~x2}
Advantages: Resolves various naturalness problems: Flatness,
Horizons, and GUT relics.
The biggest one is the natural generation of the seeds of cosmic
structure from “quantum fluctuations”. Moreover, these are
“reflected” in the CMB!.
However, how exactly does this happen? How do the inhomogeneities
arise from the quantum uncertainties?
I will describe our approach (briefly contrasting with the usual one,
which we feel that it is not compleately satisfactory.)



The Data. Simplified characterization:
The CMB photons emitted by the LSS. They are essentially at a local
a T ≈ 3000K0. but are subjected to the redshift by the cosmological
expansion down to T ≈ 2.7K0. However, besides that, there is an
extra red shift associated with their emergence from the local well in
the Newtonian potential.
Then:
δT
T0

(θ, ϕ) = 1
3ψ(ηD,~xD), gives us a picture of Newtonian Potential on

the LSS.
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We characterize this map in terms of the spherical harmonic
functions, and write: δT

T0
(θ, ϕ) =

∑
lm αlmYlm(θ, ϕ).

The coefficients are thus :

αlm =
1
3

∫
dΩ2ψ(ηD,~xD)Y∗lm(θ, ϕ) (1)

This is what is measured. The measurements allow us to extract the
detailed map we saw and from which we extract the individual
quantities αlm).

On the other hand, the quantity that is often the focus of the analysis
is:

Cl =
1

2l + 1

∑
m

|αlm|2. (2)



The analysis leads to a remarkable agreement with observations:
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These are supposed to represent the primordial inhomogeneities
which evolved into all the structure in our Universe: galaxies, stars
planets, etc... AND THE THEORY FITS VERY WELL WITH THE

OBSERVATIONS. One is then very tempted to say “well that is it.
What else do we want?”.

However, let us consider the following: The Universe was H&I, (both
in the part that could be described at the “classical level”, and the
quantum level) as a result of inflation. But we end with a situation
which is not: Contains the primordial inhomogeneities which will
result in our Universe structure and the conditions that permit our own
existence.

How does this happen if the dynamics of the closed system does not
break those symmetries.?



2) THE USUAL ANSWERS: See also Penrose’s “Shadows of the
Mind” Ch 6

a) As in any situation involving QM: We measure.
The problem with this view, is that the conditions that made possible
our own existence would be said to result of our actions.

b)Environment-induced decoherence + many worlds Interpretations
(MWI). i) Requires identification of D.O.F as an ” environment” (and

traced over). That would entail using our own limitations to measure
things, as part of the argument. ii) The situation is not described now

by one element of the diagonal density matrix, but by all of them, and
as such, the situation is still symmetric. We need something like
MWI. iii) But MWI relies on a mind whose state of consciousness

determines the alternatives into which the word splits.
c) Consistent (or de-cohering) Histories. Answer depends on the
questions we ask.

d) This is just Philosophy. One would have thought so. However as
we will see it is not, as it leads in principle to predictions that depend
on the answers.



How do we explain the breakdown of the symmetry? Decoherence?

Consider a particle in a state with sharp localization at ~X0 = (D, 0, 0):
|Ψ~X0
〉. Now let’s say that it has a spin in the y direction |+ y〉 so the

state is |Ψ~X0
〉 ⊗ |+ y〉. The result of rotating this state by 180o about

the z axis, is the state |Ψ−~X0
〉 ⊗ | − y〉. Now consider that the system

is prepared in the supposition given by:

1√
2

(|Ψ~X0
〉 ⊗ |+ y〉+ |Ψ−~X0

〉 ⊗ | − y〉)

The state is invariant under rotations of 180o about the z axis.
The reduced density matrix that results from ignoring ( tracing over)
the spin degree of freedom is:

1
2

(|Ψ~X0
〉〈Ψ~X0

|+ |Ψ−~X0
〉〈Ψ−~X0

|)

I.e. perfect decoherence. Now does this mean the particle is either at
~X0 or at −~X0? No!.
Does this mean the invariance of the system’s state has somehow
disappeared? No!



In the case of our cosmological problem, the environment would
correspond to the DOF of other fields, or some particular modes of
the inflaton field deemed to be ‘non observable” ( by us). The point is,
however, that the whole state involving the full set of modes is
symmetric as inflation is supposed to drive all fields to their vacuum
state (the geometric accelerated expansion affects the inflaton and
other fields in the same way).

Most people working on this topic compute the so called decoherence
functionals, apparently without focussing too much on these issues.

However, even W Zurek tells us: “The interpretation based on the
ideas of decoherence and ein-selection has not really been spelled out
to date in any detail. I have made a few half-hearted attempts in this
direction, but, frankly, I was hoping to postpone this task, since the
ultimate questions tend to involve such “anthropic” attributes of the
“observership” as “perception,” “awareness,” or “consciousness,”
which, at present, cannot be modeled with a desirable degree of
rigor.”



We can not use our own observational limitations as part of the
argument ( i.e. the appeal to an unobservable set of DOF we declare
to constitute the environment) which through decoherence explains
the very conditions that lead to us.

We need to understand the breakdown of the initial homogeneity and
isotropy if we really want to understand the source of the seeds of the
cosmic structure (which eventually lead to galaxies stars and planets,
where we can find the conditions for the emergence of life and
eventually intelligent :-) .., beings like ourselves.) .



3) OUR APPROACH The situation we face here is unique:
(Quantum + Gravity + Observations).
We want to be able to point to a physical process that occurs in time
as explaining the emergence of the seeds of structure. After all
emergence means : Something that was not there at a time, is there at
a later time.

Collapse Theories: Important existing work in this direction: GRW,
Pearle, Diosi, Penrose, Bassi (recent advances to make it compatible
with S.R. : Tumulka ( Th. of flashes), Bedningham (Q F with stoch.
dynamics)), and recently Weinberg.

Example, CSL:
d|ψ〉 = −{[iĤ − λ2

2 (Â− 〈ψ|Â|ψ〉)2]dt + λ(Â− 〈ψ|Â|ψ〉)dWt}|ψ〉.
where Wt is a Wiener process. ( W2

t = t ).

It includes the U and R evolution processes (for measuring Â) in a

unified fashion. The proposal for particles assumes Â = ~̂X.
λ is taken to be small enough that particle physics is not strongly
affected but leads to localization of macroscopic objects.



However, we will NOT start from any of those, as we first want to
learn what does the situation at hand require?. Eventually, we will
seek to connect ( Recent paper by J Martin et. al., and work in
progress by 2 other groups).

We add to the standard inflationary paradigm, an instantaneous
quantum collapse of the wave function as a self induced process.

NOTE, HOWEVER, THAT EVEN IGNORING THE PROBLEMS
AND ACCEPTING ONE OF THE ALTERNATIVES a) b) or c) ,
what they indicate is that the relevant state is not the H& I vacuum
state |0〉 but some other state |ξ〉 Thus, one should characterize such
state and extract the spectrum from it. Not from |0〉 !!. I think even the
advocates of such postures would have to agree with us on this point.

Most people working in the field believe that the results are the same
no matter how one approaches the issue (the statistics are the “same”).
It turns out that this is not a correct assumption.



4) The Proposal:
The idea is that at the quantum level gravity is VERY different, and at
large scales leaves something that looks like a collapse of the quantum
wave function matter fields. ( Inspired by Penrose and Diosi’s ideas).

Thus the inflationary regime is one where gravity already has a good
classical description but matter fields still require a full quantum
treatment.
The setting will thus naturally be semiclassical Einstein’s gravity
(with the extra element: THE COLLAPSE): i.e., besides U we have
sometimes, spontaneous jumps:
....|0〉k1 ⊗ |0〉k2 ⊗ |0〉k3 ⊗ ....→ ....|Ξ〉k1 ⊗ |0〉k2 ⊗ |0〉k3 ⊗ .....

ASSUME: There is an underlying Quantum Theory of Gravity,
(probably with no notion of time as in LQG), however, by the ”time”
we recover space-time concepts, the semiclassical treatment is a very
good one. Its regime of validity includes the inflationary regime as
long as R << 1/l2Plank.



More precisely we will rely on the notion of Semiclassical
Self-consistent Configuration (SSC).

DEFINITION: The set gµν(x), ϕ̂(x), π̂(x),H, |ξ〉 ∈ H represents a
SSC if and only if ϕ̂(x), π̂(x) andH correspond a to quantum field
theory constructed over a space-time with metric gµν(x) and the state
|ξ〉 inH is such that:

Gµν [g(x)] = 8πG〈ξ|T̂µν [g(x), ϕ̂(x), π̂(x)]|ξ〉.

It is a GR version of Shrödinger-Newton equation.

This however can not describe the transition from a H&I SSC to one
that is not. For that we need to add a collapse: A collapse will be a
transition from one SSC to another.
So instead of just “state jumps” we need: ....SSC1....→ ....SSC2....

That involves changing the state, and thus the space-time, and thus the
Hilbert space where the state “lives” and is a bit complex.



Space-time is thus treated as classical and in our case (working in a
specific gauge and ignoring the tensor perturbations):

ds2 = a2(η)
[
−(1 + 2ψ)dη2 + (1− 2ψ)δijdxidxj

]
, ψ(η,~x)� 1

The scalar field is treated at the level of quantum field theory on a
curved space-time, so we write:

φ̂(x) =
∑
α

(
âαuα(x) + â†αu∗α(x)

)
, (3)

with the functions uα(x) a complete set of normal modes
orthonormal with respect to the symplectic product.

Note that this construction depends on ψ. It is a self referential
situation.



Working up to the first order in the Newtonian potential the equations
for the normal modes simplify to

(1− 2ψ)(ü~k + 2Hu̇~k)− (1 + 2ψ)∆u~k − 4ψ̇u̇~k + a2m2u~k = 0, (4)

∫
η=const.

[
u~k(∂ηu∗~k′)− (∂ηu~k)u∗~k′

]
(1− 4ψ)d3x = i~a−2δ~k~k′ . (5)

Construct the modes for a “generic” ψ and then look for a state in the
Hilbert space leading to a self consistent solution for the GR
equations controlling a(η) and ψ. This is nontrivial, but is a well
defined problem. We have constructed explicitly the SSC for the H& I
case where ψ = 0 and, for the case involving the excitation of just one
nontrivial mode ψ = F(η)Cos(~k0.~x) and studied the transition from
one SSC to the other ( in press JCAP arXiv:1106.1176 [gr-qc]).
In practice, and while working just to first order perturbation, we can
work with a single QFT construction.



5) PRACTICAL TREATMENT:

We have checked that this is equivalent at the lowest order in
perturbation theory.
We again split the treatment into that of a classical homogeneous
(‘background’) part and an in-homogeneous part (‘fluctuation’),
i.e.g = g0 + δg, φ = φ0 + δφ.
The background is taken again to be Friedmann-Robertson universe,
and the homogeneous scalar field φ0(η). In the previous more precise
treatment this corresponds to the zero mode of the quantum field.

The big difference will be in the spatially dependent perturbations.
Here the theory indicates we should quantize the scalar field but not
the metric perturbation.

We will set a = 1 at the‘present cosmological time”, and assume that
inflationary regime ends at a value of η = η0, negative and very small
in absolute terms.



Semiclassical Einstein’s equations, at lowest order lead to

∇2Ψ = 4πGφ̇0〈δφ̇〉 = s〈δφ̇〉, (6)

where s ≡ 4πGφ̇0.

Consider the quantum theory of the field δφ. Work with the rescaled
field variable y = aδφ and its conjugate momentum π = δφ̇/a. (Set
the problem in a box of side L, and L→∞ at the end ).

We decompose the field and momentum operators as:

y(η,~x) = 1
L3

∑
~k ei~k·~xŷk(η), πy(η,~x) = 1

L3

∑
~k ei~k·~xπ̂k(η),

where

ŷk(η) ≡ yk(η)âk + ȳk(η)â+
−k; π̂k(η) ≡ gk(η)âk + ḡk(η)â†−k

The usual choice of modes: yk(η) = 1√
2k

(
1− i

ηk

)
exp(−ikη)

gk(η) = −i
√

k
2 exp(−ikη), leads to the Bunch Davies vacuum: the

state defined by âk|0〉 = 0 .



Note that 〈0|ŷk(η)|0〉 = 0 and 〈0|π̂k(η)|0〉 = 0 .
The collapse will modify the state and thus expectation values of the
operators ŷk(η) and π̂k(η).

Now we need to specify the rules according to which collapse
happens. That is: the state |Θ〉 after the collapse. This is thought to be
controlled by novel physics so we must try to make and “educated
guess”, and hopefully then contrast with data.

We will assume that after the collapse, the expectation values of the
field and momentum operators in each mode, will be related to the
uncertainties of the pre-collapse state (these quantities for the vacuum
are NOT zero).

In the vacuum state, ŷk and π̂k characterized by Gaussian wave
functions centered at 0 with spread ∆yk and ∆πyk, respectively.



6) We will want to consider various possibilities for the detailed form
of this collapse. Thus, for their generic form, associated with the ideas
above, we assume that at time ηc

k the part of the state corresponding to
the mode ~k undergoes a sudden jump so immediately afterwards:

〈ŷk(η
c
k)〉Θ = A xk,1

√
∆ŷk

〈π̂k(η
c
k)〉Θ = B xk,2

√
∆π̂y

k

where xk,1, xk,2 are (single specific values) selected randomly from
within a Gaussian distribution centered at zero with spread one.
Model 1): the symmetric model A = B = 1.
Model 2): the Newtonian model. A = 0, B = 1.

Finally using the evolution equations for the expectation values (i.e.
using Ehrenfest’s Theorem) we obtain 〈ŷk(η)〉 and 〈π̂k(η)〉 for the
state that resulted from the collapse for all later times.



Analysis of the Phenomenology

The semi-classical version of the perturbed Einstein’s equation that, in
our case, leads to∇2Ψ = 4πGφ̇0〈δφ̇〉 indicates that the Fourier
components at the conformal time η are given by:

Ψk(η) = −(s/ak2)〈π̂k(η)〉
Prior to the collapse, the state is the vacuum and 〈0|π̂k(η)|0〉 = 0 so
we have:

Ψk(η) = 0
But after the collapse we have:

Ψk(η) = −(s/ak2)〈Θ|π̂k(η)|Θ〉 6= 0

And thus we can reconstruct the Newtonian potential (for times after
the collapse)

Ψ(η,~x) = 1
L3

∑
~k ei~k·~xΨk(η)



The quantity we want to focus on is the “Newtonian potential” on the
surface of last scattering: Ψ(ηD,~xD), where ηD is the conformal time
at decoupling and~xD are co-moving coordinates of points on the last
scattering surface corresponding to us as observers.
This quantity is identified with the temperature fluctuations on the
surface of last scattering.
Thus :

αlm =
∫

Ψ(ηD,~xD)Y∗lmd2Ω.

Now, we have:
Ψ(η,~x) =

∑
~k

sU(k)
k2

√
~k
L3

1
2a F(~k)ei~k·~x

where F(~k) contains the information about the type of collapse
scheme one is considering, as well as the time at which the collapse of
the wave function for the mode ~k occurs.

The factor U(k) represents known physics like the acoustic
oscillations of the plasma (i.e. corresponds to the transfer functions).



Now, putting all this together we find,

αlm = s
√

~
L3

1
2a

∑
~k

U(k)
√

k
k2 F(~k)4πiljl(|~k|RD)Ylm(k̂),

where jl(x) is the spherical Bessel function of the first kind,
RD ≡ || ~xD||, and k̂ indicates the direction of the vector ~k.

Thus αlm is the sum of complex contributions from all the modes, i.e.
the equivalent to a two dimensional random walk, whose total
displacement corresponds to the observational quantity.
We then evaluate the most likely value of such quantity:

|αlm|2M.L. = s2~
2πa2

∫ U(k)2C(k)
k4 j2l ((|~k|RD)k3dk

The function C(k) encodes information contained in F(k). For each
model of collapse it has a slightly different functional form.
It turns out that in order to get a reasonable spectrum, we have one
single simple option: zk must be almost independent of k, That is:
ηc

k = z/k.

This result shows that the details of the collapse have observational
consequences!!



For Model 1) we have

C(k)(1) = 1 + 2
z2

k
sin2 ∆k + 1

zk
sin(2∆k), where ∆k = kη − zk,

zk = ηc
kk with η representing the conformal time of observation, and

ηc
k the conformal time of collapse of the mode k.

For Model 2) we find:

C(k)(2) = 1 + sin2 ∆k

(
1− 1

z2
k

)
− 1

zk
sin(2∆k),

If zk is independent of k this will not modify the form of the spectrum
because these functions become constants.

We can consider simple departures from the pattern ηc
k = z/k, say,

assuming ηc
k = A/k + B.

These can now be compared with observations!.



A detailed analysis (with S, Landau & C. Sccocola PRD 85, 123001,
(2012).) incorporating the well understood late time physics (acoustic
oscillations, etc) and comparing directly with the observational data.
For Model 1:
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For Model 2
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A version of ‘Penrose’s mechanism’ for collapse in the
cosmological setting

Penrose has advocated the idea of a collapse of the wave functions as
a dynamical process related to gravitational interaction. The
suggestion: collapse into one of two quantum mechanical alternatives
would take place when the gravitational interaction energy between
them exceeds a certain threshold.
A very naive realization of Penrose’s ideas in the present setting could
be obtained as follows: each mode would collapse by the action of the
gravitational interaction between its own possible realizations. In our
case, one could estimate the interaction energy EI(k, η) by
considering two representatives of the possible collapsed states on
opposite sides of the Gaussian associated with the vacuum. We will
denote the two alternatives by the indices (1) and (2).

We interpret Ψ as the Newtonian potential and, the matter density
ρ = a−2φ̇0δ̇φ = a−3φ̇0π

y.



Then the relevant energy is given by :

EI(η) =
∫

Ψ(1)ρ(2)dV =
∫

Ψ(1)(x, η)ρ(2)(x, η)a3d3x =∫
Ψ(1)(x, η)φ̇0(πy(x, η))(2)d3x

where Ψ(1) is Newtonian potential that would have arisen if the
system had collapsed into the alternative (1), and ρ(2) represents the
density perturbation associated with a collapse into the alternative (2).

Viewing each mode’s collapse as occurring independently, the trigger
for the collapse of mode k would be the condition that this energy
EI(k, η) = (π~G/ak)(φ̇0)2 reaches the value of the Planck Mass Mp.

This leads to:

zk = ηc
kk = π

9 (~V ′)2(HIMp)−3 = ε
8
√

6π
(Ṽ)1/2 ≡ zc

which is independent of k, and, thus, as we have seen, this leads to a
roughly scale invariant spectrum of fluctuations in accordance with
observations. TEST OF CONCEPT.



7) MORE ON THE COLLAPSE MODELS AND IDEAS.

i) No tensor modes. ( In the semiclassical approach we favor. This
can also be tested.)

ii) Might offer a solution to the Fine Tuning problem for the inflaton
Potential. ( CQG, 27, 225017 (2010)).

iii) Multiple collapses. More information about the post-collapse
states .( CQG, 28, 155010 (2011)).

iv) New views on the study of Non-Gaussianities. Novel possibilities,
and approaches. (arXiv:1107.3054 [astro-ph.CO].)

v) Very Speculative Ideas connecting with QG and the problem of
time: Wheeler de Witt or LQG are timeless theories. To recover time,
we must resort to identifying an observable that acts as a physical
clock. When the evolution of the state for other variables is cast in
terms of a physical clock an approx. Schrëdinger eq. is recovered.
But it is not 100% Unitary. Can this be the place where a collapse fits
with the rest of our theories?



8) MORE ON THE INTERPRETATIONAL PROBLEM:
( if we have time)
In fact, we could have decided to compute directly the quantities most
directly observed: our specific CMB map (characterized by its
coefficients):

αlm = 1
3

∫
dΩ2ψ(ηD,~xD)Y∗lm(θ, ϕ)

Identifying ψ(ηD,~xD) with 〈0|ψ̂~k(ηR)|0〉, we find that αlm = 0. THIS
SEEMS LIKE A PROBLEM, OR DOES IT NOT?.
One could dismiss this by saying: Well that is only the average value
over universes. That is, one would take the view that the vacuum state
( i.e its unitary evolution) does not represent the state of our universe.
That it is just ” like when we measure anything”... perhaps, but then,
we must acknowledge that there must be some measurement involved.
What measurement? By whom?
Perhaps, the view is that the vacuum state does not represent our
Universe, but some ensemble. If so, what is the state that represents
our universe? And why should we not use that state in analyzing the
spectrum?



Any way, we should not trust the analysis that leads to αlm = 0. Is not
this quantity a weighted average over spatial directions? should this
not be equal to the weighted ensemble average? isn’t that zero?. If
so...
Why should we trust some predictions of the formalism and not
others ?
In fact, to be able to trust the analysis, we need to find the physical
reason behind the breakdown of the initial symmetry. (even if the
symmetry was broken in one part in e80 that is not relevant). Often
this issue is hidden from view by the fact that one is dealing with
complex situations involving large numbers of D.O.F.

But this does not mean that the conceptual problem simply goes away.

What helps us focus here on the issue, despite the large number of
D.O.F., is the symmetry.



People often refer to so called analogous situations:
Example 1 Radioactive α Decay of an spherically symmetric atomic
nucleus in a bubble chamber.
How is it that the outgoing spherical wave function characterizing
such decay, could be reconciled with the observational fact that the
emitted α particles lead to straight tracks in the bubble chambers ?
Problem considered by Sir. N. F. Mott in 1929 in the following
manner:

Initially, we have the unstable nucleus located at ( ~X = ~0) in the state
|Ψ+〉 (spherically symmetric). Decays to the nuclear ground state
|Ψ0〉, plus an α particle in the state |Ξα〉, which is also spherically
symmetric . One considers then two hydrogen atoms with nuclei fixed
at ~a1 and ~a2, while the electrons are in the corresponding ground
states . The analysis focuses on the degree of alignment of the origin
and the points ( ~a2 ≈ c~a1 ) if both atoms become excited by the
interaction with the α particle.



The result is that the probability of both atoms to be excited is 6= 0
only if there is a large degree of alignment, which then explains the
experimental finding of straight α tracks in the bubble chamber.

At first sight, this seems like a clear example of an initial state with a
given symmetry (|Ψ+〉) evolving to a final state lacking it, despite the
fact that the Hamiltonian (governing the decay |Ψ+〉 → |Ψ0〉|Ξα〉 and
the dynamics of the α particle) preserves that symmetry.



A second look reveals, to start, that the localization of the hydrogen
nuclei breaks the symmetry. The discussion, in fact, is based not just
on what we said before, but also on the Hamiltonian for the joint
evolution of the α particle and the 2 electrons ( of the localized
hydrogen atoms).
In fact, the analysis by Mott relies, implicitly, on the projection
postulate in connection with measurement: This is employed while
computing probabilities, by projecting on the sub-space
corresponding to both atoms being excited.
If we were to replace such atoms by some hypothetical detectors
having spherical wave functions (say spherical shells with radius ri), a
similar calculation would not yield straight lines but spherical patterns
of excitation. We would find that, with a certain probability, the shells
ith&jth would be excited, but symmetry would remain intact. In our
problem with the inflationary cosmology, the situation is closer to the
latter than to the former.



Simplified Model: Mini-Mott:
Consider two, double level detectors |−〉 (ground) y |+〉 ( excited)
located in x = x1 y x = −x1: Initially, they are in their ground states,
and there is a particle with an initial state corresponding to a wave
packet ψ(x, 0) centered at the origin and symmetric under x→ −x.
The Hamiltonian for the free particle:

ĤP = p̂2/2M (7)

while that for each detector is

Ĥi = εÎp ⊗ {|+〉(i)〈+|(i) − |−〉(i)〈−|(i)}. (8)

where i = 1, 2. The hamiltonian for particle -detector 1 interaction is:

ĤP1 =
g√
2
δ(x− x1Îp)⊗ (|+〉(1)〈−|(1) + |−〉(1)〈+|(1))⊗ I2 (9)

analogously for detector 2.



Then, we consider Schrödinger’s equation for the initial condition:
Ψ(0) =

∑
x ψ(x, 0)|x〉 ⊗ |−〉(1) ⊗ |−〉(2)

Thus, after some time t we have:

Ψ(t) =
∑

x

ψ1(x, t)|x〉⊗|+〉(1)⊗|−〉(2)+
∑

x

ψ2(x, t)|x〉⊗|−〉(1)⊗|+〉(2)

+
∑

x

ψ0(x, t)|x〉⊗ |−〉(1)⊗ |−〉(2) +
∑

x

ψD(x, t)|x〉⊗ |+〉(1)⊗ |+〉(2)

The first 2 terms seem to be easily interpreted, while the last two
represent the failure of detection and double detection (or bounce)
usually very small amplitude g2.
Thus, we could think that the first 2 terms indicate the high probability
of breakdown of the symmetry: Either detector 1 or 2 became excited.
Just using a Bohr-like interpretation, we are done. However, besides
indicating that these are detectors, we must specify how they are used.
In other words, one must determine which basis (or observable) is the
appropriate one to describe their behavior.



Let us focus on the ambiguities by considering an
Alternative description
Simply work with the basis:

|U〉 ≡ |+〉(1) ⊗ |+〉(2) (10)

|D〉 ≡ |−〉(1) ⊗ |−〉(2) (11)

|S〉 ≡ 1√
2

[|+〉(1) ⊗ |−〉(2) + |−〉(1) ⊗ |+〉(2)] (12)

|A〉 ≡ | 1√
2

[|+〉(1) ⊗ |−〉(2) − |−〉(1) ⊗ |+〉(2)] (13)

These are more convenient to discuss the symmetry issues .



In terms of the new states:
The Hamiltonian for the detectors:

Ĥ1 + Ĥ2 = 2εÎp ⊗ {|U〉〈U| − |D〉〈D|}. (14)

(the other eigen-states correspond to he eigenvalue 0.)
The interaction Hamiltonian

ĤP1 + ĤP2 =
g√
2

[{δ(x− x1Îp) + δ(x− x2Îp)}⊗ (|U〉+ |D〉)〈S| (15)

+{δ(x− x1Îp)− δ(x− x2Îp)} ⊗ (|U〉+ |D〉)〈A|] + h.c. (16)



This structure revels that a wave function that is symmetric x→ −x
and 1→ 2 can not excite the antisymmetric state of the detectors. In
particular, the second term would give no contribution.
In fact, we can write the solution to the problem as :

Ψ(t) =
∑

x

ψs(x, t)|x〉⊗|S〉+
∑

x

ψ0(x, t)|x〉⊗|D〉+
∑

x

ψD(x, t)|x〉⊗|U〉

Here the question is: why would it be wrong to consider this picture
involving the full Hilbert space and the particle- detectors
interactions, in terms of this basis where we view the two detectors as
simply a more complex single one.

In this way we see that the initial symmetry is not broken when the
detectors are considered at the quantum level and are initially also in a
symmetric state. At least not, without the introduction of some
additional postulate.


