Towards brane-antibrane inflation in type IIA string theory: the holographic MQCD model

> Horatiu Nastase IFT-UNESP, Brazil

SILAFAE, Sao Paulo December 2012

HN and J. Sonnenschein, 1109.6813 (JHEP 1202 (2012) 040)

### Summary:

- •1. Introduction
- •2. Problems of embedding inflation in string theory
- •3. KKLT/KKLMMT scenario
- •4. Holographic MQCD
- •5. Two inflation set-ups from holographic MQCD
- •6. The potential and consequences for cosmology
- •7. Conclusions

## **1. Introduction**

•Inflation  $\rightarrow$  need a scalar field with a flat potential  $\rightarrow$  slow roll  $(\epsilon = M_P^2 (V'/V)^2 \ll 1 \text{ and } \eta = M_P^2 V''/V \ll 1)$ 

•But quantum corrections can spoil it. Also, need a fundamental theory near  $M_{Pl}$  to **derive**  $V(\phi)$ .

•Natural to look for string theory potentials. But, ∄ fully consistent embedding of inflation in string theory yet.

•String theory has many light scalars (moduli)  $\rightarrow$  need to stabilize most. Stabilization and/or quantum corrections generically spoil slow roll.

•One standard model  $\rightarrow$  KKLT/KKLMMT in IIB string theory.

•But it has same problems generically.

•Also, IIB easier to build model. How about the T-dual type IIA? No good model yet.

•Here: model based on a T-dual analog of KKLMMT  $\rightarrow$  a first step towards IIA inflation.

•Based on a holographic MQCD gauge theory.

•We find the shape of the scalar potential and argue that it can fit experimental constraints.

# 2. Problems of embedding inflation in string theory

•String theory: quantum theory of gravity, living in 10d (IIB) or 11d (IIA  $\rightarrow$  M theory at strong coupling)

•Need to do something with extra dimensions  $\rightarrow$  Kaluza-Klein reduction: small compact space, or or transverse  $\rightarrow$  a brane (matter restricted to a 4d model)

• $\exists$  many moduli (light scalars)  $\rightarrow$  parametrize the "size" of the space (including the overall volume)  $\rightarrow$  Kähler structure moduli and the "shape" of the space (like the ratio of radii of a torus)  $\rightarrow$  complex structure moduli.

•As well: related fields (e.g.  $B_{ij}$  components)

•In brane scenario, brane positions in transverse space are also light scalars.

•Need to stabilize (most of) the moduli, at least now  $\rightarrow$  we don't see light scalars. But also, for simplest inflation  $\rightarrow$  we want just one scalar to roll  $\rightarrow$  inflaton.

•Stabilization mechanisms  $\rightarrow$  quantum (often nonperturbative) potentials  $\rightarrow$  hard to calculate.

•Easiest: fluxes of antisymmetric tensor fields in extra dimensions give stabilizing superpotentials.

•Example of flux: 11d supergravity "spontaneous compactification" to 4d on  $AdS_4 \times S^7$  (Freund-Rubin):  $F_{\mu\nu\rho\sigma} \propto \epsilon_{\mu\nu\rho\sigma}$ ( $\mu, \nu, \rho, \sigma = 1, ..., 4$  and  $F_{MNPQ}$ =4-form fields strength in 11d)

•GVW superpotential for G-flux:  $G = F^{RR} - \tau H^{NS}$ 

$$W = \int_{K_6} \Omega \wedge G$$

where  $\Omega$ =holomorphic 3-form on G.

•Generic potential in string theory has  $V''/V \sim 1/M_{Pl}^2 \Rightarrow \eta \sim 1 \rightarrow$  "the eta problem in string theory"  $\rightarrow$  naturally, quantum corrections for scalar mass  $\Rightarrow$  run to cut-off scale  $(M_P)$ :  $\Delta \eta \sim \Delta m^2/3H^2 \geq 1$ 

•One can choose non-generic points in moduli space  $\rightarrow$  but then how to justify initial conditions.

•We still need full quantum potential to be sure.

•Stabilizing potentials by flux  $\rightarrow$  generically the last field to be stabilized: volume  $\rightarrow$  introduce steep regions in potential  $\Rightarrow$  spoils slow-roll.

 $\bullet \mbox{Recent progress} \rightarrow \mbox{towards computing the full quantum potential.}$ 

•Popular example: brane, or brane-antibrane potential  $\rightarrow$  brane motion in extra dimensions  $\rightarrow$  motion in 4d scalar field space  $\rightarrow$  inflation.

•Another big problem: de Sitter (dS) background is very difficult in string theory  $\rightarrow$  susy requires AdS  $\Rightarrow$  need some susy breaking, but still to have stability.

# 3. KKLT/KKLMMT scenario

 $\bullet \rightarrow$  based on brane-antibrane inflation.

•In flat space  $D - \overline{D}$  potential is

$$V(y) = A - \frac{B}{y^{d_{\perp}-2}}$$

where  $A=2T_pV_{\parallel} \rightarrow$  free branes, and interaction potential  $\rightarrow$  attractive.

•Canonically normalize  $\Rightarrow$ 

$$\eta \sim -eta (d_{\perp}-1)(d_{\perp}-2) \left(rac{r_{\perp}}{V}
ight)^{d_{\perp}}$$

•On a torus however,  $\exists$  images of branes  $\Rightarrow \exists$  metastable positions  $(D - \overline{D} - D - \overline{D} - ...) \Rightarrow$ 

$$V(z) = A - Cz^4$$

where z=displacement from metastable positions  $\Rightarrow$  inflation only if we start near z = 0.

•KKLT: mechanism for de Sitter vacua in strng theory.

•Warped throat geometry of Klebanov-Strassler (KS) type  $\rightarrow$  cigar type

$$ds^{2} = e^{2A}g_{\mu\nu}dx^{\mu}dx^{\nu} + e^{-2A(y)}g_{mn}dy^{m}dy^{n}$$
$$g_{mn}dy^{m}dy^{n} = dr^{2} + r^{2}ds^{2}_{X_{5}}$$

 $(X_5 = T^{1,1})$  glued to a  $CY_3$  to cap off the throat  $\rightarrow$  compactification.

• $\exists$  G-gflux  $\Rightarrow$  tree level superpotential  $W = W_0$ , and nonperturbative superpotential  $W = Ae^{ia\rho}$ ,  $\rho =$ volume modulus (Euclidean D3-brane instanton or gluino condensation on D7-branes).

•Tree-level Kähler potential

$$K = -3\ln[-i(\rho - \bar{\rho})]$$

 $\Rightarrow$  supersymmetric potential  $\Rightarrow$  AdS vacuum.

•But we can introduce an anti-D3-brane at tip of cigar ( $\exists$  exponentially small warping there)  $\Rightarrow \delta V = D/(\text{Im}\rho)^3$  nonsusy potential  $\Rightarrow$  dS vacuum.

•KKLMMT: proposal for brane-antibrane inflation, where  $\overline{D}3$  is the above in KKLT (fixed) and  $\exists$  moving D3 on warped throat geometry.

•KS ~ log-corrected AdS. For AdS: consider D3-brane as another D3-source, modifying the harmonic function  $h(r) = e^{-4A}$ :

$$\frac{R^4}{r^4} \to \frac{R^4}{r^4} + \frac{R^4/N}{(r-r_1)^4} \simeq R^4 \left(\frac{1}{r^4} + \frac{1}{N}\frac{1}{r_1^4}\right)$$

•Calculate DBI action of  $\bar{D}$ 3-brane in this background  $\Rightarrow$  potential

$$V(\phi) = \frac{4\pi^2 \phi_0^4}{N} \left( 1 - \frac{1}{N} \frac{\phi_0^4}{\phi^4} \right)$$

•flat potential  $\rightarrow$  though volume stabilization generically spoils it. And could be quantum corrected.

### 4. Holographic MQCD

•MQCD  $\rightarrow$  generalization of 4d  $\mathcal{N} = 1$  SYM theory in M theory with one extra parameter ( $g_s$ , or radius of 11th dimension)

•Constructed by Witten (1997) as: 2 NS5-branes,  $\parallel$  in 3+1 dimensions  $(x^0, ..., x^3)$  and extended in 2 new different directions:  $x^4, x^5$  with  $v = x^4 + ix^5$ , vs.  $x^7, x^8$ , with  $w = x^7 + ix^8$ , and separated in  $x^6$  by a length L.

•Linked by p D4-branes of length L.

•Has a solution in M theory:  $\exists$  single M5-brane  $\mathbb{R}^4 \times \Sigma$ , with  $w = \zeta v^{-1}$ ,  $v^n = t$ ,  $w^n = \zeta n t^{-1}$ .  $(t = e^{-z}, z = R^{-1} x^6 + i x^{10})$ 

•Holographic MQCD  $\rightarrow$  gravitational description of MQCD, where we add N D4-branes || the p D4-brane plane, with  $N \ge p$ - probe approximation  $\rightarrow$  replace the N D4-branes by their gravity background

$$ds^{2} = H^{-1/3} (dx_{\mu}^{2} + dx_{6}^{2} + dx_{11}^{2}) + H^{2/3} (|dv|^{2} + |dw|^{2} + dx_{7}^{2})$$
  
$$C_{6} = H^{-1} d^{4}x \wedge dx_{6} \wedge dx_{11}, \quad H = 1 + \frac{\pi \lambda_{N} l_{s}^{2}}{|\vec{r} - \vec{r}_{0}|^{3}}$$

•NS5-branes and p D4-branes form a single curved M5-brane in the background.

•Compact  $x_6 \Rightarrow$  M5-brane on cylinder  $(x_6, u)$  spirals down from  $u = \infty$  to  $u_0$  and then back up  $\rightarrow$  carries p units of D4-brane charge.



•Is T-dual to KKLT susy set-up.

•Cigar topology: non-supersymmetric model  $\rightarrow$  double Wick rotated near-extremal D4-brane  $\Rightarrow$  cigar instead of cylinder  $ds^2 = H^{-1/3}[-dt^2 + dx_i^2 + f(r)dx_6^2 + dx_{11}^2] + H^{2/3}[(f^{-1}(r) - 1)dr^2 + |dv|^2 + |dw|^2 + dx_7^2]$ 





## 5. Two set-ups for holographic MQCD

#### Model 1

•Consider the nonsusy deformation of holo MQCD set-up: in T-dual KKLT,  $\exists$  anti-D3 at tip of KS  $\rightarrow$  take Wick-rotated near-extremal D4-brane  $\rightarrow$  make  $\overline{D}3$  perturbation of background.

•Then: semi-infinite cigar in r over  $S^4$ , for  $r_{min} = r_H$ , and cigar in r over  $x_6$ . Cut-off cigar at  $r_{max}$ , gluing another space  $\rightarrow$  compactify.

• $(x_6, r)$  is T-dual to  $(r, T^{1,1})$  in KKLT, glued onto  $CY_3 \Rightarrow (x_6, r, S^4)$ glued onto  $CY_3$  space W, T-dual to M. (susy breaking  $\Rightarrow \exists$  small additional energy at gluing region)

•Add also sliding D4-brane on cigar  $\rightarrow$  like KKLMMT.

•Action for D4-brane in double-Wick rotated near-extremal D4-brane  $\Rightarrow$ 

$$S = -\frac{T_p}{g_s} \int H_p^{-1}(r) \left[ \sqrt{f_p + \frac{H_p(r)}{f_p} g^{\mu\nu} \mathsf{d}_{\mu} r \mathsf{d}_{\nu} r} - 1 \right]$$

•Then, the potential is

$$V_4(r) = +\frac{T_4R}{g_s}H^{-1}(r)[\sqrt{f(r)}-1] = +\frac{T_4R}{g_s}\frac{1}{1+\alpha_4(\frac{r_4}{r})^3}\left[\sqrt{1-\frac{r_H^3}{r^3}}-1\right] < 0$$
  
•Going from  $V(\infty) = 0$  to  $V(r_H) \simeq -T_4R(r_H/r_4)^3/g_s$ .

• $\exists$  a plateau for  $r_H \ll r \ll r_4$ ,

$$V(r) \simeq -\frac{T_4 R}{2g_s \alpha_4} \left(\frac{r_H}{r_4}\right)^3 \left[1 + \frac{1}{4} \frac{r_H^3}{r^3} - \frac{r^3}{\alpha_4 r_4^3}\right]$$

•The spiralling brane has a negligible effect on the potential (calculated)

#### Model 2

•consider a sliding anti-brane in a susy (cylinder) background  $\Rightarrow$  cylinder in  $(x_6, r)$  and semi-infinite in  $(r, S^4)$ .

•Space terminates at r = 0 however  $\Rightarrow$  by adding a  $CY_3$ , the space is again truly compactified.

•Calculation of potential is similar: consider the action of an anti-brane in a susy background.

•Find

$$V_4(r) = \frac{2T_4R}{g_s} \frac{1}{1 + \frac{r_4^3}{r^3}}$$

•Potential now varies between V(0) = 0 and

$$V(\infty) = \frac{2\pi R}{g_s}$$

with an infinite derivative at 0:

$$V_4'(r) = \frac{6T_4R}{g_s r} \frac{r_4^3/r^3}{1 + r_4^3/r^3} \to \infty(r \to 0)$$

•Neglect again contribution of spiral, though now form of correction is less rigorous  $\rightarrow$  again only interaction between brane and antibrane via modified background, and no backreaction.

# 6. The potential and consequences for cosmology

• Model 1: The potential on the plateau is

.

$$V(\phi) \simeq \frac{T_4 R}{g_s} \left(\frac{\phi_H}{\phi_4}\right)^3 \left[N - \frac{1}{2\alpha_4} \left(1 + \frac{\phi_H^3}{4\phi^3} - \frac{\phi^3}{\alpha_4\phi_4^3}\right)\right]$$

and gives for the slow-roll parameters and the number of e-folds

$$\begin{aligned} \epsilon &\equiv \frac{1}{2} \left( M_P \frac{V'}{V} \right)^2 \simeq \frac{1}{2} \left[ \frac{3M_P}{2N\phi} \left( \frac{1}{4} \frac{\phi_H^3}{\phi^3} + \frac{\phi^3}{\phi_A^3} \right) \right]^2 \\ \eta &\equiv M_P^2 \frac{V''}{V} = \frac{3M_P^2}{2N\phi^2} \left( -\frac{\phi_H^3}{\phi^3} + 2\frac{\phi^3}{\phi_A^3} \right) \\ \mathcal{N} &= \frac{8N}{15} \frac{\phi_{in}^5 - \phi_{end}^5}{M_P^2 \phi_H^3} \end{aligned}$$

•Note that  $\phi_4/M_P$  is generically large, so we are generically on the plateau  $\phi_H \ll \phi \ll \phi_4$  (for generic  $\phi$ , of order  $M_P$ ), for a red spectrum we need  $\eta < 0$ , or  $\phi < \sqrt{2^{-1/3}\phi_H\phi_4}$  (since  $\epsilon \ll |\eta|$ ), and we can easily get 60 e-folds.

•Also, COBE normalization puts a constraint on V at horizon exit, which gives

$$V_p = N\left(\frac{T_4R}{g_s}\right) \left(\frac{\phi_H}{\phi_4}\right)^3 \sim 12\pi\epsilon \times 10^{-10} M_P^4$$

•Reheating:  $V'(\phi)$  seems finite at  $\phi = 0$ , but divergent kinetic term  $\sim \sqrt{(d\phi)^2/(r - r_H)}$ , so effective description breaks down  $\Rightarrow$  usual brane-antibran reheating mechanism.

• Model 2: the potential on the plateau is

$$V_4(\phi) = \frac{2T_4R}{g_s} \frac{1}{1 + \frac{\phi_4^3}{\phi^3}}$$

leading to

$$\epsilon = \frac{1}{2} \left[ \frac{3M_P}{\phi} \frac{\phi_4^3/\phi^3}{1+\phi_4^3/\phi^3} \right]^2$$
  

$$\eta = -\frac{M_P^2 \phi_4^3/\phi^3 (32+30\phi_4^3/\phi^3)}{\phi^2 (1+\phi_4^3/\phi^3)^2}$$
  

$$\mathcal{N} \simeq \frac{\phi_{in}^5 - \phi_{end}^5}{3M_P^2 \phi_4^3}$$

so we always have a red spectrum ( $\epsilon > 0$  and  $\eta < 0$ , and  $n_s - 1 = -6\epsilon + 2\eta$ ), but we can have slow-roll for non-generic  $\phi \gg M_P$ , or if  $\phi \sim M_P$ , we need  $\phi_4 \ll M_P$ , needing the non-generic  $V_5 m^4 / (\sqrt{\alpha'} N^{2/3}) \gg 1$ . However, reheating is simpler since now  $V'(\phi) = \infty$  at  $\phi = 0$ .

•COBE normalization gives

$$V_f \sim \frac{2T_4R}{g_s} \sim 12\pi\epsilon \times 10^{-10} M_P^4$$

22

## 7. Conclusions

•Inflation is difficult to obtain in string theory. A standard model (try) is KKLT/KKLMMT in IIB string theory.

•It is based on the KS throat geometry, compactified by gluing a  $CY_3$ .

•We can write a gravity dual to MQCD, T-dual to the KKLT construction.

•Based on it, we presented two models in IIA string theory, one with a compactified non-susy cigar geometry, and one with a compactified cylinder geometry, but with a sliding antibrane.

•The cosmology coming from it is consistent with current experiments, but it has the usual problems of KKLMMT.