Geometric Deformation in the Braneworld and (microscopic)Black Holes

J. Ovalle

Universidad Simón Bolívar, Caracas

in collaboration with Roberto Casadio, Univeristy of Bologna

SILAFAE2012. São Paulo, Brazil, December 2012

Extra Dimensional Gravity

Braneworld

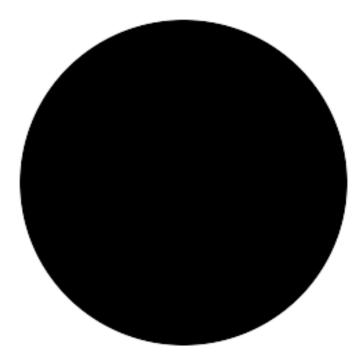
- Introduccion.
- Astrophysics in the brane world.
- Minimal geometric deformation approach.
- Some results about extra dimensional consequences on compact self-gravitational systems.
- Black Holes in the Braneworld
 - Introduccion.
 - Black Holes in the Brane world
 - Micro Black Holes in the Brane world
 - Black holes limit and miimum mass

Beyond Einstein...

Motivation

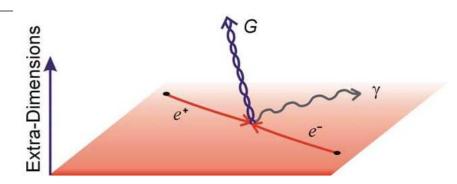
- Due to its inconsistency with quantum mechanics, it is not possible to ensure that General Relativity keeps its original structure at high energies.
- In extra dimensional gravity the fundamental scale of gravity can be as low as TeV range. Hence the production of Black Holes at the Large Hadron Collider (LHC) could be allowed.
- One of the goals of the current study is to see what features of theories beyond Einstein could be relevant in the description/production of (micro) Black Holes
- In this talk: Astrophysics in the brane world
- Micro Black Holes in the Braneworld

Black holes, neutron stars, quark stars



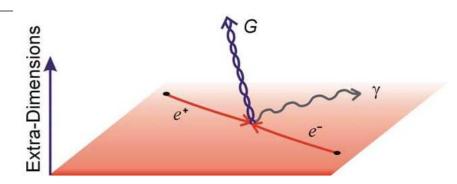
Black holes, neutron stars, quark stars

Extra dimension



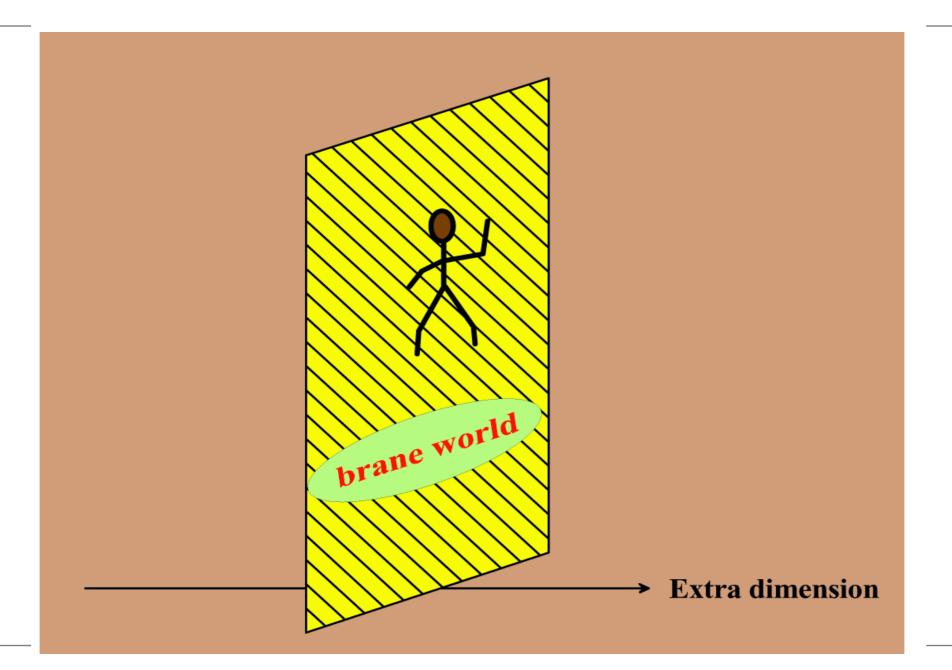
- Large Extra Dimension (ADD theory) Arkani-Hamed, Dimopoulos, Dvali (1998)
- Braneworld (RS theory) L. Randall and R. Sundrum (1999)
 - Both models explain the hierarchy problem
 - ADD: Many flat extra dimensions
 - Braneworld: Only one extra dimension with a warped geometry.

Extra dimension



- Large Extra Dimension (ADD theory) Arkani-Hamed, Dimopoulos, Dvali (1998)
- Braneworld (RS theory) L. Randall and R. Sundrum (1999)
 - Both models explain the hierarchy problem
 - ADD: Many flat extra dimensions
 - Braneworld: Only one extra dimension with a warped geometry.
- No experimental evidence for extra dimensions so far:
 - **LEP:** LEP Exotica Working Group, LEP Exotica WG 2004-03;
 - Tevatron: CDF Collaboration, Phys. Rev. Lett. 101 (2008) 181602; D0 Collaboration, Phys. Rev. Lett. 101 (2008) 011601.
 - LHC: ATLAS Collaboration, Phys. Lett. B 705 (2011) 294; Phys. Lett. B 709 (2012) 322.
 - **LHC:** CMS Collaboration, Phys. Rev. Lett. 107 (2011) 201804.
 - Recently: LHC: ATLAS collaboration, arXiv:1204.4646v2[hep-ex] Sep.2012.

The Braneworld



Einstein field equations on the brane

The Einstein field equations on the brane may be written as a modification of the standard field equations [Shiromizu et al 2002] **5D Einstein equations:**

$$G_{ab} + \Lambda_5 g_{ab} = \kappa_5^2 T_{ab}; \quad \kappa_5 = 8\pi G_5 \quad a = 0, \dots 4 \quad (Bulk)$$

$$G_{\mu\nu} = -8\pi T^T_{\mu\nu} - \Lambda g_{\mu\nu}, \quad \mu = 0, ...3 \quad (Brane)$$

where the energy-momentum tensor has new terms carrying bulk effects onto the brane:

$$T_{\mu\nu} \to T_{\mu\nu}^{\ T} = T_{\mu\nu} + \frac{6}{\sigma}S_{\mu\nu} + \frac{1}{8\pi}\mathcal{E}_{\mu\nu}$$

Here σ is the brane tension

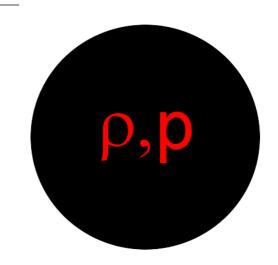
The new terms and are the high-energy corrections $S_{\mu\nu}$ and the projection of the bulk Weyl tensor on the brane $\mathcal{E}_{\mu\nu}$

$$S_{\mu\nu} = \frac{1}{12} T^{\ \alpha}_{\alpha} T_{\mu\nu} - \frac{1}{4} T_{\mu\alpha} T^{\alpha}_{\ \nu} + \frac{1}{24} g_{\mu\nu} \left[3T_{\alpha\beta} T^{\alpha\beta} - (T^{\ \alpha}_{\alpha})^2 \right]$$

$$-8\pi\mathcal{E}_{\mu\nu} = -\frac{6}{\sigma}\left[\mathcal{U}(u_{\mu}u_{\nu} + \frac{1}{3}h_{\mu\nu}) + \mathcal{P}_{\mu\nu} + \mathcal{Q}_{(\mu}u_{\nu)}\right]$$

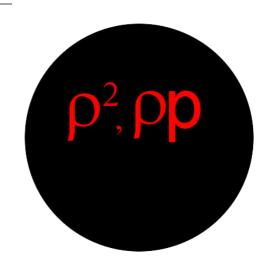
$$\mathcal{U} \rightarrow Dark \ radiation$$

 $\mathcal{P}_{\mu\nu} \rightarrow Anisotropic \ stress$
 $\mathcal{Q}_{\mu} \rightarrow Energy \ flux$



$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Perfect fluid



$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Perfect fluid+high energy terms

Too complicated!

$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Perfect fluid+high energy terms+dark radiation/pressure

Too complicated! THERE IS NOT SOLUTION! (Indefinity system)

$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Perfect fluid+high energy terms+dark radiation/pressure

Too complicated! *THERE IS NOT SOLUTION!* (Indefinity system) However we found a general effective 4D solution! ===>The Minimal Geometric Deformation approach (MGD) JO Mod.Phys.Lett.A2338(2008)3247;Int.Jour.Mod.Phys.D,18,5(2009)837;Mod.Phys.Lett.A,2539(2010)

Spherically symmetric static distribution

Schwarzschild-like coordinates

$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

A perfect fluid (General Relativity)+high energy corrections

$$-8\pi\left(\rho + \frac{1}{\sigma}\left(\frac{\rho^2}{2}\right)\right) = -\frac{1}{r^2} + e^{-\lambda}\left(\frac{1}{r^2} - \frac{\lambda'}{r}\right),$$

$$-8\pi\left(-p-\frac{1}{\sigma}\left(\frac{\rho^2}{2}+\rho p\right)\right) = -\frac{1}{r^2}+e^{-\lambda}\left(\frac{1}{r^2}+\frac{\nu'}{r}\right),$$

$$-8\pi\left(-p-\frac{1}{\sigma}\left(\frac{\rho^2}{2}+\rho p\right)\right) = \frac{1}{4}e^{-\lambda}\left[2\nu''+\nu'^2-\lambda'\nu'+2\frac{(\nu'-\lambda')}{r}\right],$$

$$p' = -\frac{\nu'}{2}(\rho + p)$$

Spherically symmetric static distribution

Schwarzschild-like coordinates

$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

A perfect fluid (General Relativity)+high energy corrections+Weyl functions

$$-8\pi\left(\rho + \frac{1}{\sigma}\left(\frac{\rho^2}{2} + 6\mathcal{U}\right)\right) = -\frac{1}{r^2} + e^{-\lambda}\left(\frac{1}{r^2} - \frac{\lambda'}{r}\right),$$

$$-8\pi\left(-p-\frac{1}{\sigma}\left(\frac{\rho^2}{2}+\rho p+2\mathcal{U}\right)+\frac{\mathcal{P}}{\sigma}\right)=-\frac{1}{r^2}+e^{-\lambda}\left(\frac{1}{r^2}+\frac{\nu'}{r}\right),$$

$$-8\pi\left(-p-\frac{1}{\sigma}\left(\frac{\rho^2}{2}+\rho p+2\mathcal{U}\right)-\frac{\mathcal{P}}{2\sigma}\right)=\frac{1}{4}e^{-\lambda}\left[2\nu''+\nu'^2-\lambda'\nu'+2\frac{(\nu'-\lambda')}{r}\right],$$

$$p' = -\frac{\nu'}{2}(\rho + p)$$

Let us see the "solution" for the geometric function

$$e^{-\lambda} = 1 - \frac{8\pi}{r} \int_0^r r^2 \left[\rho + \frac{1}{\sigma} \left(\frac{\rho^2}{2} + \frac{6}{k^4} \mathcal{U} \right) \right] dr,$$

Let us see the "solution" for the geometric function

$$e^{-\lambda} = 1 - \frac{8\pi}{r} \int_0^r r^2 \left[\rho + \frac{1}{\sigma} \left(\frac{\rho^2}{2} + \frac{6}{k^4} \mathcal{U} \right) \right] dr,$$

It can be written as

$$e^{-\lambda} = \underbrace{1 - \frac{8\pi}{r} \int_{0}^{r} r^{2} \rho dr}_{General \ Belativity} + "DEFORMATIONS"$$

Let us see the "solution" for the geometric function

$$e^{-\lambda} = 1 - \frac{8\pi}{r} \int_0^r r^2 \left[\rho + \frac{1}{\sigma} \left(\frac{\rho^2}{2} + \frac{6}{k^4} \mathcal{U} \right) \right] dr,$$

It can be written as

$$e^{-\lambda} = \underbrace{1 - \frac{8\pi}{r} \int_{0}^{r} r^{2} \rho dr}_{General \ Relativity} + "\mathsf{DEFORMATIONS"}$$

The deformation undergone by the geometric function λ produces anisotropic consequences, as can be seen through

$$\frac{8\pi}{k^4} \frac{\mathcal{P}}{\sigma} = \frac{1}{6} \left(G_1^1 - G_2^2 \right),$$

An exact solution

Let us pick a general relativistic solution:

$$\rho(r) = \frac{C \left(9 + 2Cr^2 + C^2r^4\right)}{7\pi \left(1 + Cr^2\right)^3}; \quad p(r) = \frac{2C(2 - 7Cr^2 - C^2r^4)}{7\pi (1 + Cr^2)^3}; \quad e^{\nu} = A(1 + Cr^2)^4$$

The braneworld solution is found through

$$e^{-\lambda(r)} = 1 - \frac{2\tilde{m}(r)}{r}$$

where the interior mass function is given by

$$\begin{split} \tilde{m}(r) &= m(r) - \frac{1}{\sigma} \left(\frac{2}{7}\right)^2 \frac{Cr}{2\pi} \left[\frac{240 + 589Cr^2 - 25C^2r^4 - 41C^3r^6 - 3C^4r^8}{3(1 + Cr^2)^4(1 + 3Cr^2)} \right. \\ &\left. - \frac{80}{(1 + Cr^2)^2} \frac{arctg(\sqrt{C}r)}{(1 + 3Cr^2)\sqrt{C}r} \right], \end{split}$$

$$-m(r) = \int_{0}^{r} 4\pi r^{2} \rho dr = \frac{4}{7} Cr^{3} \frac{(3+Cr^{2})}{(1+Cr^{2})^{2}}, \quad GR \quad mass \quad function. \quad Durgapal-Fuloria \ (1983).$$

$$Geometric \, Deformation in the Braneworldand (microscopic)Black \, Holes - p. 200)$$

An exact solution

the interior Weyl functions are

$$\begin{aligned} \mathcal{P}(r) &= \frac{32}{441r^3(1+Cr^2)^6(1+3Cr^2)^2} \left[Cr \left(180+2040Cr^2+8696C^2r^4 \right. \\ &+ 16533C^3r^6+12660C^4r^8+146C^5r^{10}-120C^6r^{12}+9C^7r^{14} \right. \\ &- 60\sqrt{C}(1+Cr^2)^3(3+26Cr^2+63C^2r^4)arctg(\sqrt{C}r) \right], \end{aligned}$$

$$\begin{aligned} \mathcal{U}(r) &= \frac{32}{441r(1+Cr^2)^6(1+3Cr^2)^2} \left[C^2r \left(795+4865Cr^2+10044C^2r^4\right. \right. \\ &+ 6186C^3r^6-373C^4r^8-219C^5r^{10}-18C^6r^{12} \right) \\ &- 240C^{3/2}(1+Cr^2)^3(5+9Cr^2)arctg(\sqrt{C}r) \right]. \end{aligned}$$

An exact solution

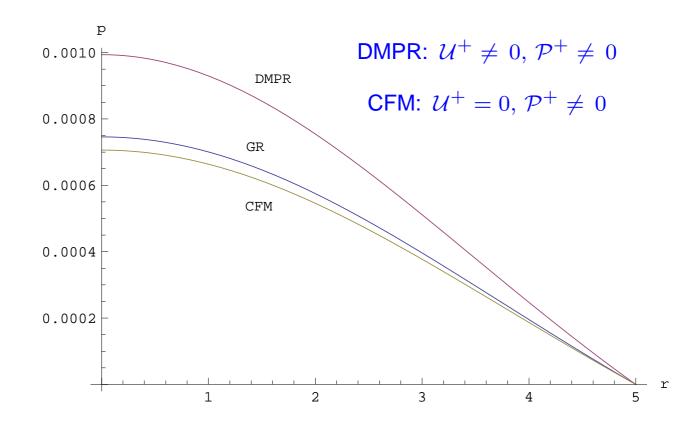
the interior Weyl functions are

$$\begin{aligned} \mathcal{P}(r) &= \frac{32}{441r^3(1+Cr^2)^6(1+3Cr^2)^2} \left[Cr \left(180+2040Cr^2+8696C^2r^4 \right. \\ &+ 16533C^3r^6+12660C^4r^8+146C^5r^{10}-120C^6r^{12}+9C^7r^{14} \right) \\ &- 60\sqrt{C}(1+Cr^2)^3(3+26Cr^2+63C^2r^4)arctg(\sqrt{C}r) \right], \end{aligned}$$

$$\begin{aligned} \mathcal{U}(r) &= \frac{32}{441r(1+Cr^2)^6(1+3Cr^2)^2} \left[C^2r \left(795+4865Cr^2+10044C^2r^4\right. \\ &+ 6186C^3r^6-373C^4r^8-219C^5r^{10}-18C^6r^{12} \right) \\ &- 240C^{3/2}(1+Cr^2)^3(5+9Cr^2)arctg(\sqrt{C}r) \right]. \end{aligned}$$

Also: JO + F. Linares (Guanajuato University) "The Tolman IV Braneworld Star: an Exact Solution" (in progress)

Role of dark radiation and dark pressure

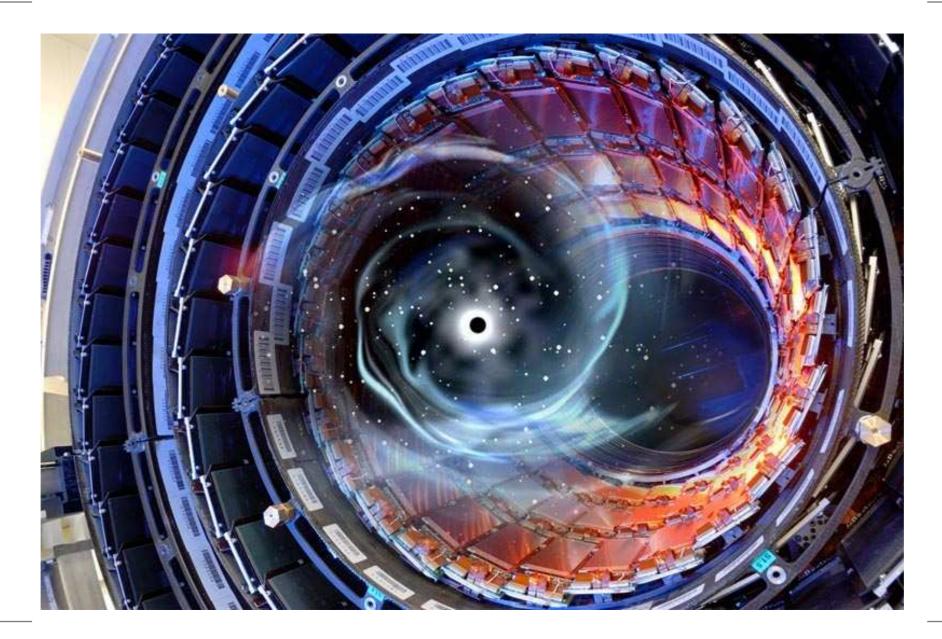


- The exterior dark radiation \mathcal{U}^+ always increases both the pressure and the compactness of the stellar structures.
- The exterior dark pressure \mathcal{P}^+ always reduces them.
- JO, A. Sotomayor (Antofagasta), A. Pascua (Trieste) (2012)

THE MGD WORKS!

- When a solution of the four-dimensional Einstein equations is considered as a possible solution of the BW system, the geometric deformation produced by extra-dimensional effects is minimized, and the open system of effective BW equations is automatically satisfied.
- This approach was successfully used to generate physically acceptable interior solutions for stellar systems JO Mod. Phys. Lett. A23, 3247 (2008); Mod. Phys. Lett. A25, 3323 (2010). and even exact solutions were found:
 - JO Int. J. Mod. Phys. D 18, 837 (2009);
 - Also: JO + F. Linares (Guanajuato University) "The Tolman IV Braneworld Star: an Exact Solution" (in Control Black Holes - p. 24)

Black Holes in the Braneworld



Black Holes in 4D

Schwarzschild-like coordinates

$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$



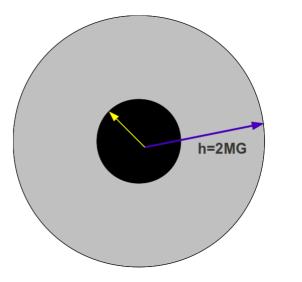
$$e^{\nu} = e^{-\lambda} = 1 - \frac{2 G M}{r} \Rightarrow h = 2 G M$$

Black Holes in 4D

Schwarzschild-like coordinates

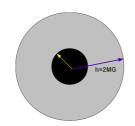
$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

$$e^{\nu} = e^{-\lambda} = 1 - \frac{2GM}{r} \Rightarrow h = 2GM$$



$$R < 2MG = 2M\frac{l_p}{M_p}$$

Black Holes in 4D



$$R < 2MG = 2M\frac{l_p}{M_p}$$

Micro Black Holes in 4D

$$R \Rightarrow \lambda_C \qquad \lambda_C \simeq \frac{\hbar}{M} = \frac{l_p M_p}{M}$$

$$\frac{l_p M_p}{M} \lesssim 2 M \frac{l_p}{M_p} \Rightarrow M_c \approx M_p \quad \text{(Minimum possible mass)}$$

Black Holes in the Braneworld

$$ds^2 = e^
u dt^2 - e^\lambda dr^2 - r^2 \left(d heta^2 + \sin^2 heta d\phi^2
ight).$$

Dadhich, Maartens, Papadopoulos and Rezania (DMPR Solution):

$$e^{\nu^+} = e^{-\lambda^+} = 1 - \frac{2\mathcal{M}}{r} + \frac{q}{r^2}, \quad \mathcal{U}^+ = -\frac{\mathcal{P}^+}{2} = \frac{4}{3}\pi q\sigma \frac{1}{r^4},$$

Black Holes in the Braneworld

$$ds^2 = e^{
u} dt^2 - e^{\lambda} dr^2 - r^2 \left(d heta^2 + \sin^2 heta d\phi^2
ight).$$

Dadhich, Maartens, Papadopoulos and Rezania (DMPR Solution):

$$e^{\nu^+} = e^{-\lambda^+} = 1 - \frac{2\mathcal{M}}{r} + \frac{q}{r^2}, \quad \mathcal{U}^+ = -\frac{\mathcal{P}^+}{2} = \frac{4}{3}\pi q\sigma \frac{1}{r^4},$$

Casadio, Fabbri and Mazzacurati (CFM Solution)

$$e^{\nu^{+}} = \left[\frac{\eta + \sqrt{1 - \frac{2\mathcal{M}}{r}(1+\eta)}}{1+\eta}\right]^{2}, \ e^{\lambda^{+}} = \left[1 - \frac{2\mathcal{M}}{r}(1+\eta)\right]^{-1},$$
$$\frac{16\pi\mathcal{P}^{+}}{k^{4}\sigma} = -\frac{\mathcal{M}(1+\eta)\eta}{\eta + \sqrt{1 - \frac{2\mathcal{M}}{r}(1+\eta)}}\frac{1}{r^{3}}, \ \mathcal{U}^{+} = 0,$$

Micro Black Holes in the BW

The tidally charged metric

 $ds^{2} = e^{\nu} dt^{2} - e^{\lambda} dr^{2} - r^{2} (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}); \qquad e^{\nu} = e^{-\lambda} = 1 - \frac{2\,\ell_{\rm P}\,\mathcal{M}}{M_{\rm P}\,r} - \frac{q}{r^{2}}$

Its horizon
$$h = \ell_{\rm P} \left[\frac{\mathcal{M}}{M_{\rm P}} + \sqrt{\frac{\mathcal{M}^2}{M_{\rm P}^2} + q \frac{M_{\rm P}^2}{M_G^2}} \right]$$

Micro Black Holes : $\lambda_C \lesssim h \Rightarrow \frac{\ell_{\rm P} M_{\rm P}}{M} \lesssim \ell_{\rm P} \left[\frac{\mathcal{M}}{M_{\rm P}} + \sqrt{\frac{\mathcal{M}^2}{M_{\rm P}^2} + q \frac{M_{\rm P}^2}{M_G^2}} \right]$

We consider black holes near their minimum possible mass $M \sim \mathcal{M} \approx \, M_{\rm G} \, \ll \, M_{\rm P}$

$$\rightarrow M_{c} \approx \frac{M_{G}}{\sqrt{q}} \quad G.L.Alberghi, R.Casadio, O.Micu, and A.Orlandi, JHEP 1109, 023 (2011)$$

Micro Black Holes in the BW

The tidally charged metric

 $ds^{2} = e^{\nu} dt^{2} - e^{\lambda} dr^{2} - r^{2} (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}); \qquad e^{\nu} = e^{-\lambda} = 1 - \frac{2\,\ell_{\rm P}\,\mathcal{M}}{M_{\rm P}\,r} - \frac{q}{r^{2}}$

Its horizon
$$h = \ell_{\rm P} \left[\frac{\mathcal{M}}{M_{\rm P}} + \sqrt{\frac{\mathcal{M}^2}{M_{\rm P}^2} + q \frac{M_{\rm P}^2}{M_G^2}} \right]$$

Micro Black Holes : $\lambda_C \lesssim h \Rightarrow \frac{\ell_{\rm P} M_{\rm P}}{M} \lesssim \ell_{\rm P} \left[\frac{\mathcal{M}}{M_{\rm P}} + \sqrt{\frac{\mathcal{M}^2}{M_{\rm P}^2} + q \frac{M_{\rm P}^2}{M_G^2}} \right]$

We consider black holes near their minimum possible mass $M \sim \mathcal{M} \approx \, M_{\rm G} \, \ll \, M_{\rm P}$

$$\rightarrow M_{c} \approx \frac{M_{G}}{\sqrt{q}} \quad G.L.Alberghi, R.Casadio, O.Micu, and A.Orlandi, JHEP 1109, 023 (2011)$$

But q is unknown!!! We need the complete 5D solution, which is unknown so far. However...

$$e^{\nu} = e^{-\lambda} = 1 - \frac{2\,\ell_{\mathrm{P}}\,\mathcal{M}}{M_{\mathrm{P}}\,r} - \frac{q}{r^2}$$

- What is the relationship between \mathcal{M} and q?
- We need the complete 5D solution (unknown).

$$e^{\nu} = e^{-\lambda} = 1 - \frac{2\,\ell_{\mathrm{P}}\,\mathcal{M}}{M_{\mathrm{P}}\,r} - \frac{q}{r^2}$$

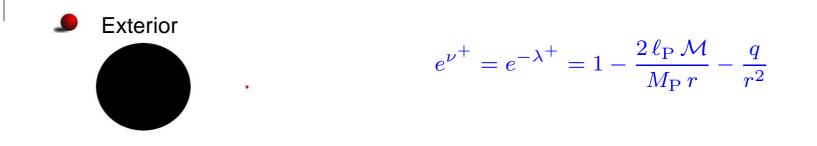
- What is the relationship between \mathcal{M} and q?
- We need the complete 5D solution (unknown).
- We have to consider an alternative way: the Minimal Geometric Deformation

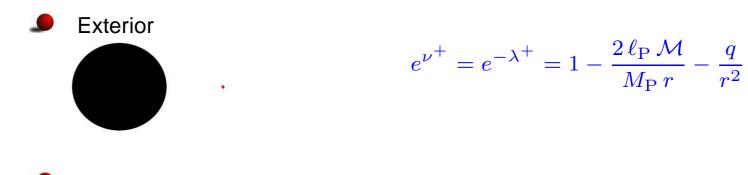
$$e^{\nu} = e^{-\lambda} = 1 - \frac{2\,\ell_{\rm P}\,\mathcal{M}}{M_{\rm P}\,r} - \frac{q}{r^2}$$

- What is the relationship between \mathcal{M} and q?
- We need the complete 5D solution (unknown).
- We have to consider an alternative way: the Minimal Geometric Deformation
 - In the GR limit $\sigma^{-1} \rightarrow 0$, the tidal charge q must vanish.

• We expect
$$\mathcal{M} = 0 \implies q = 0$$

Hence $\mathbf{q} = \mathbf{q}(\mathcal{M}, \sigma)$

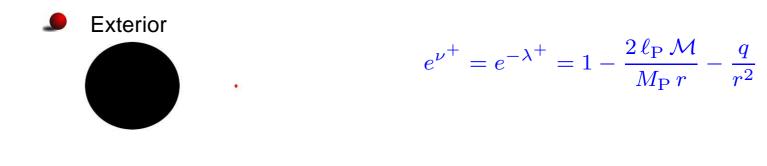




Interior

$$e^{-\lambda^{-}} = 1 - \frac{2\,\tilde{m}(r)}{r}$$

where the interior mass function \tilde{m} is given by $\tilde{m}(r) = m(r) - \frac{r}{2} f^*(r)$, with $f^*(r)$ the minimal geometric deformation.



Interior

$$e^{-\lambda^{-}} = 1 - \frac{2\,\tilde{m}(r)}{r}$$

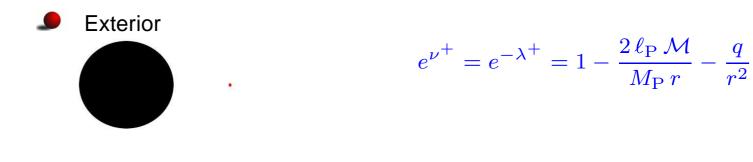
where the interior mass function \tilde{m} is given by $\tilde{m}(r) = m(r) - \frac{r}{2} f^*(r)$, with $f^*(r)$ the minimal geometric deformation.

• Matching conditions at r = R

$$e^{\nu_R} = 1 - \frac{2\,\ell_{\rm P}\,\mathcal{M}}{M_{\rm P}\,R} - \frac{q}{R^2}$$

$$\frac{2\mathcal{M}}{R} = \frac{2M}{R} - \frac{M_{\rm P}}{\ell_{\rm P}} \left(f^* + \frac{q}{R^2} \right)$$

$$\frac{q}{R^4} = \left(\frac{\nu_R'}{R} + \frac{1}{R^2}\right) f^* + 8\pi \frac{\ell_{\rm P}}{M_{\rm P}} p_R$$



Interior

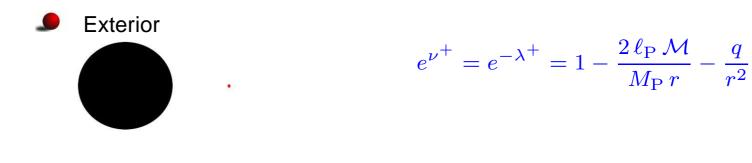
$$e^{-\lambda^{-}} = 1 - \frac{2\,\tilde{m}(r)}{r}$$

where the interior mass function \tilde{m} is given by $\tilde{m}(r) = m(r) - \frac{r}{2} f^*(r)$, with $f^*(r)$ the minimal geometric deformation.

Matching conditions at
$$r = R$$

We then ontain the tidal charge as

$$\frac{M_{\rm P}}{\ell_{\rm P}} q = \left(\frac{R\,\nu_R' + 1}{R\,\nu_R' + 2}\right) \left(\frac{2\,M}{R} - \frac{2\,\mathcal{M}}{R}\right) R^2 + \frac{8\,\pi\,p_R\,R^4}{2 + R\,\nu_R'}$$



Interior

$$e^{-\lambda^{-}} = 1 - \frac{2\,\tilde{m}(r)}{r}$$

where the interior mass function \tilde{m} is given by $\tilde{m}(r) = m(r) - \frac{r}{2} f^*(r)$, with $f^*(r)$ the minimal geometric deformation.

Matching conditions at
$$r = R$$

We then ontain the tidal charge as

$$\frac{M_{\rm P}}{\ell_{\rm P}} q = \left(\frac{R\,\nu_R' + 1}{R\,\nu_R' + 2}\right) \left(\frac{2\,M}{R} - \frac{2\,\mathcal{M}}{R}\right) R^2 + \frac{8\,\pi\,p_R\,R^4}{2 + R\,\nu_R'}$$

We need an interior solution to evaluate ν'_R and then to find $q = q(\mathcal{M}, \sigma)$

Taking $p_R = 0$ and imposing the boundary constraint

$$R\nu'_{R} = -\frac{(M - \mathcal{M}) - \frac{2\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}{(M - \mathcal{M}) - \frac{\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}$$

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q and \mathcal{M} given by (R. Casadio, JO, Phys. Lett. B, 715, 251-255 (2012)).

$$q = \frac{2 K \mathcal{M}}{\sigma R}$$

Taking $p_R = 0$ and imposing the boundary constraint

$$R\nu'_{R} = -\frac{(M - \mathcal{M}) - \frac{2\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}{(M - \mathcal{M}) - \frac{\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}$$

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q and \mathcal{M} given by (R. Casadio, JO, Phys. Lett. B, 715, 251-255 (2012)).

$$q = \frac{2 K \mathcal{M}}{\sigma R}$$

It vanishes for $\mathcal{M} \to 0$ and for $\sigma^{-1} \to 0$, and

it vanishes for very small star density, that is for $R \to \infty$ at fixed \mathcal{M} and σ .

Taking $p_R = 0$ and imposing the boundary constraint

$$R\nu'_{R} = -\frac{(M - \mathcal{M}) - \frac{2\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}{(M - \mathcal{M}) - \frac{\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}$$

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q and \mathcal{M} given by (R. Casadio, JO, Phys. Lett. B, 715, 251-255 (2012)).

$$q = \frac{2 K \mathcal{M}}{\sigma R}$$

It vanishes for
$$\mathcal{M}
ightarrow 0$$
 and for $\sigma^{-1}
ightarrow 0$, and

If vanishes for very small star density, that is for $R \to \infty$ at fixed \mathcal{M} and σ .

As the pressure does not need to vanish at the surface in the BW, we can get the same simple $q = q(\mathcal{M}, \sigma)$ solution by

$$4\pi R^{3} p_{R} = \frac{M_{P} \mathcal{M} K}{\ell_{P} \sigma R^{2}} \left(2 + R \nu_{R}'\right) - (M - \mathcal{M}) \left(1 + R \nu_{R}'\right)$$

Taking $p_R = 0$ and imposing the boundary constraint

$$R\nu'_{R} = -\frac{(M - \mathcal{M}) - \frac{2\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}{(M - \mathcal{M}) - \frac{\mathcal{M}KM_{P}}{\sigma R^{2}\ell_{P}}}$$

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q and \mathcal{M} given by (R. Casadio, JO, Physics Letters B, 715, 251-255 (2012)).

$$q = \frac{2 K \mathcal{M}}{\sigma R} \quad (*)$$

It vanishes for
$$\mathcal{M}
ightarrow 0$$
 and for $\sigma^{-1}
ightarrow 0$, and

It vanishes for very small star density, that is for $R \to \infty$ at fixed \mathcal{M} and σ .

As the pressure does not need to vanish at the surface in the BW, we can get the same simple $q = q(\mathcal{M}, \sigma)$ solution by

$$4\pi R^{3} p_{R} = \frac{M_{P} \mathcal{M} K}{\ell_{P} \sigma R^{2}} \left(2 + R \nu_{R}'\right) - (M - \mathcal{M}) \left(1 + R \nu_{R}'\right)$$

In our solution (*) R is still a free parameter. We need an interior solution to fix it!

Geometric Deformationin the Braneworldand (microscopic)Black Holes - p. 44

Let us consider the exact interior solution (JO Int. J. Mod. Phys. D 18, 837 (2009))

$$e^{\nu} = A \left(1 + C r^2\right)^4$$

$$\rho = C_{\rho} \left(\frac{M_{\rm P}}{\ell_{\rm P}}\right) \frac{C \left(9 + 2 C r^2 + C^2 r^4\right)}{7 \pi \left(1 + C r^2\right)^3}$$

where $C_{\rho} = C_{\rho}(K)$ is a constant to be determined for consistency, and

$$p_R = \left(\frac{M_P}{\ell_P}\right) \frac{2C\left(2 - 7CR^2 - C^2R^4\right)}{7\pi\left(1 + CR^2\right)^3} = 0$$

Let us consider the exact interior solution (JO Int. J. Mod. Phys. D 18, 837 (2009))

$$e^{\nu} = A \left(1 + C r^2\right)^4$$

$$\rho = C_{\rho} \left(\frac{M_{\rm P}}{\ell_{\rm P}}\right) \frac{C \left(9 + 2 C r^2 + C^2 r^4\right)}{7 \pi \left(1 + C r^2\right)^3}$$

where $C_{\rho} = C_{\rho}(K)$ is a constant to be determined for consistency, and

$$p_{R} = \left(\frac{M_{\rm P}}{\ell_{\rm P}}\right) \frac{2C\left(2 - 7CR^{2} - C^{2}R^{4}\right)}{7\pi\left(1 + CR^{2}\right)^{3}} = 0.$$
$$R = 2n\left(\frac{\ell_{\rm P}}{M_{\rm P}}\right) \frac{M}{C_{\rho}}; \quad K = \left(\frac{M_{\rm P}}{M_{\rm G}}\right)^{2} \frac{\ell_{\rm G}}{M_{\rm G}}; \quad C_{\rho} = (M_{\rm G}/M_{\rm P})^{4}$$

Let us consider the exact interior solution (JO Int. J. Mod. Phys. D 18, 837 (2009))

$$e^{\nu} = A \left(1 + C r^2\right)^4$$

$$\rho = C_{\rho} \left(\frac{M_{\rm P}}{\ell_{\rm P}}\right) \frac{C \left(9 + 2 C r^2 + C^2 r^4\right)}{7 \pi \left(1 + C r^2\right)^3}$$

where $C_{\rho} = C_{\rho}(K)$ is a constant to be determined for consistency, and

$$p_{R} = \left(\frac{M_{\rm P}}{\ell_{\rm P}}\right) \frac{2C\left(2 - 7CR^{2} - C^{2}R^{4}\right)}{7\pi\left(1 + CR^{2}\right)^{3}} = 0.$$

$$R = 2n\left(\frac{\ell_{\rm P}}{M_{\rm P}}\right) \frac{M}{C_{\rho}}; \quad K = \left(\frac{M_{\rm P}}{M_{\rm G}}\right)^{2} \frac{\ell_{\rm G}}{M_{\rm G}}; \quad C_{\rho} = (M_{\rm G}/M_{\rm P})^{4}$$

$$\mathcal{M} = \frac{M^{3}}{M^{2} + n_{1}M_{\rm G}^{2}} \qquad q = \frac{\ell_{\rm G}^{2}M^{2}}{n\left(M^{2} + n_{1}M_{\rm G}^{2}\right)}$$

where we used $\sigma \simeq \ell_{\rm G}^{-2}$.

The ADM mass \mathcal{M} and tidal charge q do not explicitly depend on the star radius R, and we can therefore assume they are valid in the limit $R \to 0$ (or, more cautiously, $R \ll \ell_{\rm G}$). Hence

$$e^{\nu} = 1 - \frac{2\,\ell_{\rm P}\,M^3}{M_{\rm P}\left(M^2 + n_1\,M_{\rm G}^2\right)r} \left(1 + \frac{\ell_{\rm G}^2\,M_{\rm P}}{2\,n\,\ell_{\rm P}\,M\,r}\right)$$

which can be used to describe a BH of "bare" (or proper) mass M.

The ADM mass \mathcal{M} and tidal charge q do not explicitly depend on the star radius R, and we can therefore assume they are valid in the limit $R \to 0$ (or, more cautiously, $R \ll \ell_{\rm G}$). Hence

$$e^{\nu} = 1 - \frac{2\,\ell_{\rm P}\,M^3}{M_{\rm P}\left(M^2 + n_1\,M_{\rm G}^2\right)r} \left(1 + \frac{\ell_{\rm G}^2\,M_{\rm P}}{2\,n\,\ell_{\rm P}\,M\,r}\right)$$

which can be used to describe a BH of "bare" (or proper) mass M. Using the dimensionless proper mass $\bar{M} = M/M_{\rm G}$ we have

$$\bar{\mathcal{M}} = \frac{\mathcal{M}}{M_{\rm G}} = \frac{\bar{M}^3}{\bar{M}^2 + n_1} \simeq \frac{\bar{M}^3}{0.1 + \bar{M}^2}$$

and

$$\bar{q} = \frac{q}{\ell_{\rm G}^2} = \frac{\bar{M}^2}{n\left(n_1 + \bar{M}^2\right)} \simeq \frac{\bar{M}^2}{0.2 + 1.6\,\bar{M}^2}$$

We obtain the horizon radius

$$h = \frac{\ell_{\rm P}}{M_{\rm P}} \left(\mathcal{M} + \sqrt{\mathcal{M}^2 + q \, \frac{M_{\rm P}^2}{\ell_{\rm P}^2}} \right)$$

and the classicality condition $h\gtrsim\lambda_M$ reads

$$\frac{M}{M_{\rm P}^2} \left(\mathcal{M} + \sqrt{\mathcal{M}^2 + q \, \frac{M_{\rm P}^2}{\ell_{\rm P}^2}} \right) \gtrsim 1$$

We expand for $M \sim \mathcal{M} \simeq M_{\rm G} \ll M_{\rm P}$, thus obtaining

$$\frac{h^2}{\lambda_C^2} \simeq \frac{M^2}{M_P^2} \frac{q}{\ell_P^2} \simeq \frac{M_G^2}{M_P^2} \bar{M}^2 \bar{q} \frac{\ell_G^2}{\ell_P^2} \simeq \bar{M}^2 \bar{q} \simeq 1$$

We obtain the horizon radius

$$h = \frac{\ell_{\rm P}}{M_{\rm P}} \left(\mathcal{M} + \sqrt{\mathcal{M}^2 + q \, \frac{M_{\rm P}^2}{\ell_{\rm P}^2}} \right)$$

and the classicality condition $h\gtrsim\lambda_M$ reads

$$\frac{M}{M_{\rm P}^2} \left(\mathcal{M} + \sqrt{\mathcal{M}^2 + q \, \frac{M_{\rm P}^2}{\ell_{\rm P}^2}} \right) \gtrsim 1$$

We expand for $M \sim \mathcal{M} \simeq M_{\rm G} \ll M_{\rm P}$, thus obtaining

$$\frac{h^2}{\lambda_C^2} \simeq \frac{M^2}{M_{\rm P}^2} \frac{q}{\ell_{\rm P}^2} \simeq \frac{M_{\rm G}^2}{M_{\rm P}^2} \,\bar{M}^2 \,\bar{q} \,\frac{\ell_{\rm G}^2}{\ell_{\rm P}^2} \simeq \bar{M}^2 \,\bar{q} \simeq 1$$

or $\bar{M}^4 \simeq n \left(n_1 + \bar{M}^2 \right)$, which yields

 $M_c \simeq 1.3 M_{\rm G}$

This can be viewed as the minimum allowed mass for a semiclassical BH in the BW.

Two more BW astrophysical solutions

A non-uniform BW solution (with
$$M/R \simeq 0.38 \frac{M_{\rm P}}{\ell_{\rm P}}$$
)
 $e^{-\lambda(r)} = 1 - \frac{3Cr^2}{2(1+Cr^2)} + f^*(r); \quad e^{\nu(r)} = A(1+Cr^2)^3$

$$\rho(r) = \frac{3C(3+Cr^2)}{2k^2(1+Cr^2)^2}; \quad p(r) = \frac{9C(1-Cr^2)}{2k^2(1+Cr^2)^2}$$

 $M_c \simeq 1.22 M_{\rm G}$

• The Schwarzschild solution (with $M/R \simeq 0.28 rac{M_{
m P}}{\ell_{
m P}}$)

$$e^{-\lambda} = 1 - \frac{r^2}{C^2} + f^*; \quad e^{\nu} = \left(A - B\sqrt{1 - \frac{r^2}{C^2}}\right)^2$$

$$\rho = \frac{3}{k^2 C^2}; \quad p(r) = \frac{\rho}{3} \left[\frac{3B\sqrt{1 - \frac{r^2}{C^2}} - A}{A - B\sqrt{1 - \frac{r^2}{C^2}}} \right]$$

 $M_c \simeq 1.9 M_{\rm G}$

Astrophysical consequences for M_c

From $\simeq \lambda_C$, we find

$$\bar{M}^2 \bar{q} \simeq 1$$

which yields

$$M_c^2 \simeq \frac{n}{2} \left(1 + \sqrt{1 + \frac{4n_1}{n}} \right) M_G^2$$

Now, from GR we know that the compactness of any stable stellar distribution of mass M and radius R must satisfy the constraint M/R < 4/9. This bound leads to n > 9/8, and, correspondingly,

$$M_c^2 \simeq \frac{n}{2} \underbrace{\left(1 + \sqrt{1 + \frac{4n_1}{n}}\right)}_{>2} M_G^2$$

Always a critical mass M_c above M_G JO, R. Casadio, arXiv:1212.0409 [gr-qc] (2012).

Conclusions

- We have analyzed analytical descriptions of stars in the BW, with the tidal charge as an explicit function of the ADM mass and brane tension, which was still an open problem.
- Different astrophysical solutions lead to different critical mass.
- By using the general relativistic constraint M/R < 4/9 we found that the minimum mass of a semiclassical microscopic black hole M_c is always above M_G
- A more general solution regarding charged black holes will be considered (in progress).

THANK YOU!