Heavy ion physics with CMS

SILAFAE 2012 IX Latin American Symposium on High Energy Physics São Paulo, Brazil

Dr. Magdalena Malek

for the CMS Collaboration

Universidade do Estado do Rio de Janeiro

10/12/2012

$\begin{array}{l} \mbox{Introduction: detector, data taking and centrality} \\ \mbox{Pb+Pb (selected) results} \end{array}$

- global observables : charged particle multiplicity, energy and transverse energy
- control probes : isolated photons, electroweak bosons
- **modified probes** : jet quenching, γ +jet, hadrons and jets R_{AA}, quarkonia

Summary

Introduction | CMS detector

- inner tracking system ($|\eta| < 2.5$)
- **calorimeters** (electromagnetic: $|\eta| < 3$, hadronic: $|\eta| < 5$)
- **muon** system ($|\eta| < 2.4$)
- forwards detectors (CASTOR: -6.6< η <-5.2 and ZDC: $|\eta|$ >8.3)
- magnetic field of 3.8 T

Introduction | Data taking/centrality

- **PbPb**: \sim 8.7 [150] μb^{-1} in 2010 [2011]
- **p** pp (at 2.76 TeV): \sim 230 nb^{-1} in 2011
- comparing PbPb results to pp reference $R_{AA} = \frac{1}{N_{coll}} \cdot \frac{N_{AA}}{N_{pp}}$ $N_{coll}: number of elementary NN collisions or$ $<math display="block">T_{AA} = N_{coll} / \sigma_{pp}$

- centrality concept: Pb ions are extended objects, particle production depends on the impact parameter
- reflects the geometrical overlap of the two colliding nuclei
- energy deposit in forward calorimeters

Introduction | Event display

Global observables | Charged particles multiplicity [JHEP 08 (2011) 141]

a hadron rapidity density \propto number of initially released partons at a given η : reduced multiplicity in saturation models

- charged hadron density for 0-5% collisions: 1612±55
- $dN_{ch}/d\eta$ is \sim flat over $|\eta|$ <2.5 (< 10% variation)
- similar N_{part} dependence for all $\sqrt{s_{NN}}$
- good description of the data by a parton saturation approach
- $\sqrt{s_{NN}}$ dependence follows power law behavior with exponent s^{0.13}

Global observables | Energy [CMS-PAS-HIN-12-006]

- CASTOR coverage up to η =-6.6 ($y_{beam} \sim$ 8); peak of the $dE/d\eta$
- HYDJET 1.8 and EPOS-LHC: good agreement for central data
- QGSJetII.3: describe better peripheral data; AMPT: quantitative agreement to the data

 \blacksquare shape change in the forward $\eta;$ flattening region for central events at high η

data is challenging for models

Global observables | Transverse energy [PRL 109 (2012) 152303]

• initial distribution of partons (via N_{part}) and hydrodynamic flow that builds up after thermalization (via η); energy density via Bjorken's formula $\epsilon_{BJ} = \frac{dE_T}{dy} \cdot \frac{1}{\tau_0 \pi R^2}$

- $\blacksquare \sim 2.1$ TeV at $\eta =$ 0; at least 3 times larger than at RHIC
- shape consistent with a Gaussian with $\sigma_\eta = 3.4 \pm 0.1$: larger than predicted by Landau hydro but narrower than given by HYDJET; AMPT overestimates
- $(dE_T/d\eta)/(0.5\langle N_{part}\rangle)$ increases with N_{part} for all η
- for $\tau_0 = 1$ fm/c and R = 7.1 fm: energy density of ≈ 14 GeV/fm³
- for $\sqrt{s_{NN}} \ge 8.7$ GeV, E_T at $\eta = 0$ reproduced by a power-law dependence $s_{_{NN}}^n$ with $n \approx 0.2$

$\underset{\hookrightarrow}{\textbf{Control probes}} \\ \textbf{field by the medium}$

Control probes | Isolated photons [PLB 710 (2012) 256]

- sources of high- p_T photons:
 - isolated (direct): blind to the created medium
 - not-isolated (fragmentation, meson decay,...): affected by the medium
- first adaptation of p+p photon identification methods to heavy ion experiment
- **photons are measured for** $|\eta| < 1.44$, E_T of 20–80 GeV in 3 centrality bins
- significant background: mainly from neutral mesons

- \blacksquare R_{AA} vs E_T is flat
- no dependence of R_{AA} on N_{part}

Magdalena.Malek@cern.ch (UERJ)

Control probes $\mid \mathsf{Z} ightarrow \mu^+ \mu^-$ [CMS-pas-hin-12-008]

- for the mass range 60-120 GeV/c²: 616 events with opposite-sign muons; no events with same-sign muons
- very low pp statistics for 2.76 TeV: comparison to POWHEG generator (well tested at Tevatron and LHC at 7TeV)

 $[\]blacksquare R_{AA} = 0.95 \pm 0.03 \pm 0.13$

Control probes | Electroweak bosons: summary

- \blacksquare also W $\rightarrow \mu \nu$ studies [PLB 715 (2012) 66]
- electroweak bosons are not affected by the medium (within uncertainties)
- confirmation of the validity of the binary (N_{coll}) scaling
- more precision: access to the nuclear PDFs

 $\begin{array}{l} \mbox{Modified probes} \\ \hookrightarrow \mbox{affected by the medium} \end{array}$

Modified probes | Jet quenching

- jets are produced at the initial impact
- radiative energy loss when they travel through the QGP
 - sensitive to the energy density of the medium
 - depends on the path length
 - azimuthal correlations between produced jets: for p+p or p+A peak at $\Delta \phi$ =180°
 - for A+A important modification of the azimuthal correlations: the away side jets are suppressed
- investigating modification of jets: very useful tool for probing the QGP properties

Modified probes | Jet quenching: calorimeter jets [PRC 84 (2011) 024906]

• dijet asymmetry: $A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$ ($p_{T,1}$ for leading, $p_{T,2}$ for sub-leading)

• here only calorimeter dijets: leading $p_T > 120$ GeV, sub-leading $p_T > 50$ GeV

p $_T$ imbalance (i.e. A_J) increases with the centrality

azimuthal decorrelation $\Delta \phi_{1,2}$: back-to-back $(\Delta \phi_{1,2} \sim \pi)$ for all centralities

Modified probes γ +jet [arXiv:1205.0206, accepted by PLB]

- at LO photons produced back-to-back with an associated parton (jet): $p_T^{\gamma} \sim p_T^{Jet}$
- transverse momentum balance $x_{J\gamma} = rac{p_T^{Jet}}{p_T^{\gamma}}$
- when increasing the centrality of the collision
 - shift of the $x_{J\gamma}$ distribution towards lower values
 - reduction of the fraction of photons with an associated jet

Modified probes γ +jet [arXiv:1205.0206, accepted by PLB]

 \blacksquare average $\gamma\text{-jet}~p_T$ balance decreases by ${\sim}14\%$ compared to pp

 $\scriptstyle \blacksquare$ fraction of γ with an associated jet partner drops by ${\sim}20\%$

Modified probes | Charged particles [EPJC 72 (2012) 1945]

• using jet trigger to enhance p_T reach (up to 100 GeV/c) and decrease fake rate

■ large suppression of charged particles above a few GeV/c

Modified probes | High p_T jets [CMS-PAS-HIN-12-004]

• online PbPb jet trigger threshold of 80 GeV/c; offline: $p_T > 100$ GeV/c and $|\eta| < 2$

■ suppression factor of ~0.5 in central PbPb when comparing to pp

- no suppression (within uncertainties) in the most peripheral PbPb
- $\blacksquare \ R_{AA}$ is approximately independent of p_T in the measured range

Modified probes | High p_T jets [CMS-PAS-HIN-12-004]

no change in level of suppression due to jet cone size

Modified probes | Open c and b [CMS-PAS-HIN-12-014; ALICE: arXiv:1205.6443]

- **b** from non-promt J/ ψ : produced at large distance from the primary vertex; $p_T < 30$ GeV/c
- the identification of J/ψ coming from B hadron decays relies on the measurement of a secondary $\mu^+\mu^-$ vertex displaced from the primary collision vertex. The distance between the $\mu^+\mu^-$ vertex and the primary vertex is measured in the plane transverse to the beam direction
- D's from ALICE

Modified probes | b jets [CMS-PAS-HIN-12-003]

- jets tagged by cutting on discriminating variables:
 - Simple Secondary Vertex High Efficiency (SSVHE): based on the flight distance significance of reconstructed SV
 - Jet Probability (JP)
- $p_T > 100 \text{ GeV/c}$; first b-jet identification in heavy ion collisions

pp and PbPb b-jet fraction are the same: consistent with MC

■ *R*_{AA} < 1

Modified probes | R_{AA}: summary

Modified probes | Quarkonia: di-muon spectrum

- **color screening** of static potential between heavy quarks
- quarkonia melting depending on the binding energy: thermometer of the medium

Modified probes | Prompt J/ ψ [CMS-PAS-HIN-12-014]

- 6.5< p_T <30 GeV/c: no rapidity dependence
- \blacksquare central collisions: suppression by factor ${\sim}5$
- high y: low p_T suppressed less than high p_T

Modified probes | J/ ψ and ψ (2S) [CMS-PAS-HIN-12-007]

- first look at $\psi(2S)$; raw ratios: $R_{\psi(2S)} = N_{\psi(2S)}/N_{J/\psi}$
- red curves: PbPb fit
- $\blacksquare \ |y| < \!\! 1.6$ and 6.5< $p_T < \!\! 30 \ {\rm GeV/c}$

 $\begin{array}{l} \mbox{ relatively less } \psi(2{\rm S}) \mbox{ than } J/\psi \\ \mbox{ } R^{PbPb}_{\psi(2S)} \sim 0.5 \ R^{pp}_{\psi(2S)} \end{array}$

Modified probes | Y family [PRL 109 (2012) 222301]

• excellent mass resolution (~1%): clear separation; acceptance down to $p_T = 0$ GeV/c • centrality-integrated $R_{AA}(\Upsilon(nS))$

- $R_{AA}(\Upsilon(1S)) = 0.56 \pm 0.08 \pm 0.07$
- $R_{AA}(\Upsilon(2S)) = 0.12 \pm 0.04 \pm 0.02$
- $R_{AA}(\Upsilon(3S)) < 0.1$ (95% CL)
- ordered suppression

Modified probes | Quarkonia: melting map

- \blacksquare centrality-integrated R_{AA} vs binding energy seems ordered: looser bound states are more suppressed
- but has to be done with more data: centrality dependence, feed-down contributions, cold nuclear matter effects (pA)

Magdalena.Malek@cern.ch (UERJ)

SILAFAE 2012

- Pb+Pb data taking periods were very successful !
- CMS collected a significant amount of data thanks to CERN for fantastic LHC performance!
- detailed measurements of global properties of medium in Pb+Pb collisions
- measurement of control probes (γ , Z and W): unmodified as expected
- jet quenching ... including b !!!
- quarkonium suppression
- looking forward for pA data ...
- much more results not discussed here : https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN