Top Physics and Heavy Flavor measurements with ATLAS and CMS

SILAFAE 2012. December 10-14, 2012. São Paulo, Brazil

Carlos Escobar (University of Pittsburgh) on behalf of the ATLAS and CMS Collaborations

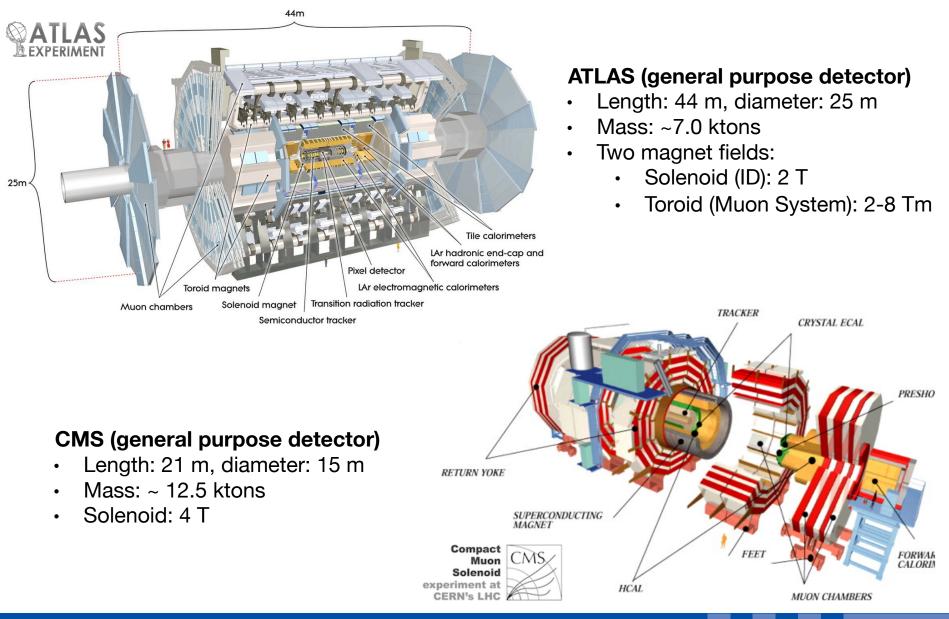
Top Physics and Heavy Flavor measurements with ATLAS and CMS SILAFAE 2012. December 10-14, 2012. São Paulo, Brazil

Carlos Escobar

Contents

Top quark Physics

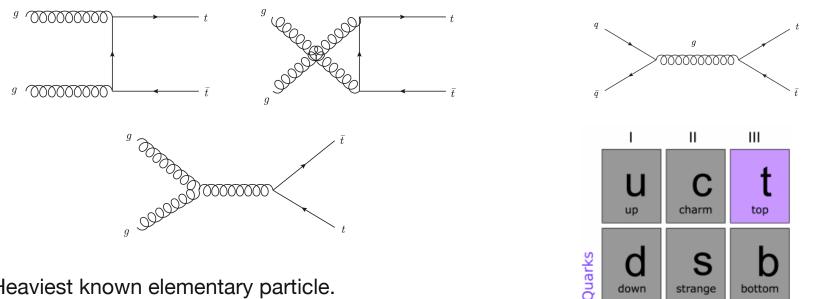
- Top quark mass measurements
- Top quark pair production
 - Cross section
 - Differential cross section
 - Top quark pair + jets
 - Charge Asymmetry
 - Top Polarization
 - Spin correlations
- Single top quark measurements
 - Cross section
 - Cross section ratio
- Search for *tf* resonances


Heavy flavor measurements

- Mass, lifetime production cross section measurements
- Observations of new particles

This talk will cover <u>some of the latest analyses and some of the most important results</u> achieved by ATLAS and CMS <u>but not all</u>. Please, visit:

- ATLAS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
- CMS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>


ATLAS and CMS detectors

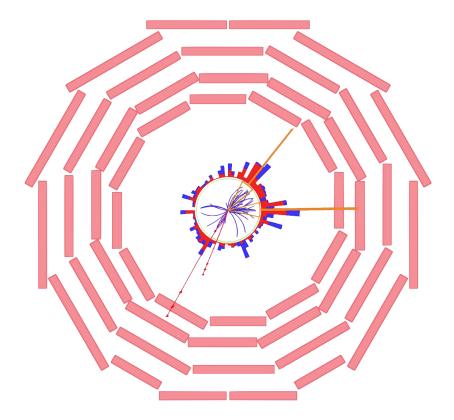
Top quark Physics Introduction

The top quark was discovered by the Tevatron experiments, *CDF* and *D0*, at Fermilab in 1995. Tevatron Run-II (10³² cm⁻² s⁻¹ @ 1.96 TeV): ~2 top pair every hour.

- The LHC is a top quark factory:
- At low luminosity (i.e. 10^{32} cm⁻² s⁻¹ @ 7 TeV): ~60 top pair every hour.
- At design luminosity (i.e. 10³⁴ cm⁻² s⁻¹ @ 14 TeV): ~8 top pair every second.
- Top production is dominated by gluon fusion (85% $gg \rightarrow tf$, 15% $q\bar{q} \rightarrow tf @ 7$ TeV)

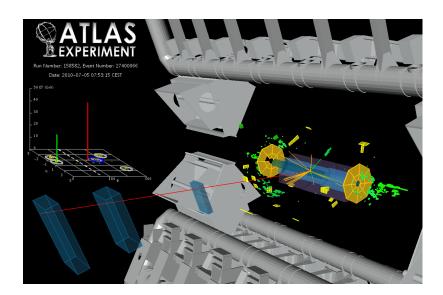
- Heaviest known elementary particle.
- Smallest cross-section of all of the SM particles.
- Short lifetime ($\tau_t \approx 5 \cdot 10^{-25}$ s) \Rightarrow top-quark decays into high p_T particles before hadronizing.
- Unique quark: only quark whose most of its properties can be directly measured!!!
- Production: top pairs and single top processes.

down


strange

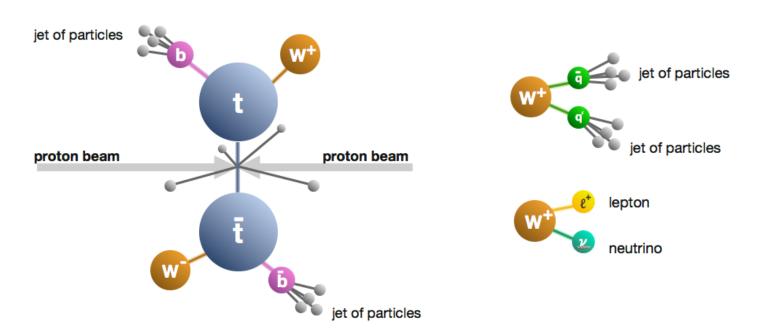
bottom

First top quark pair candidates @ LHC


Recorded: Jul 18 11:13:22 2010 CET Run/Event: 140379 / 136650665

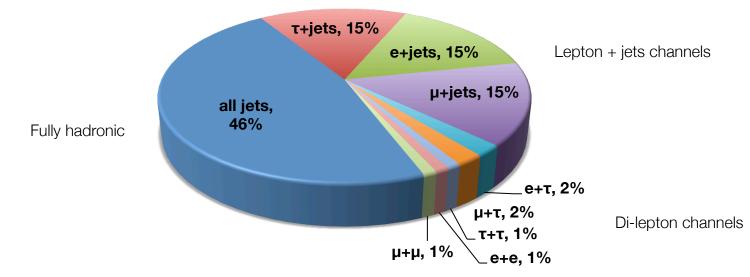
A candidate for production of a top quark pair in CMS, where both top quarks decay into a *W* and a *b*-quark, and both *W* particles decay into a μ and ν . This results in 2 μ (red tracks), 2 jets tagged as *b*-quark jets and missing energy (from the escaping neutrinos).

Recorded: Jul 7 07:53:15 2010 CET Run/Event: 158582 / 27400066



Event display of the *e*- μ dilepton candidate. The isolated μ track is shown in red, the isolated *e* is shown as a green track pointing to a green calorimeter energy cluster. The *b*-tagged jet is marked as a blue circle in the η - φ lego plot on the left side of the figure. The direction of the missing transverse energy is shown as a dashed line in the η - φ lego plot.

Top quark Physics Introduction


The top quark decays almost exclusively (>99%, i.e. $|V_{tb}| \approx 0.999$) to $t \rightarrow Wb$ (LO).

- *b*-quark will always hadronize generating a jet of particles.
- W decays define the final state topology.

Top quark pairs production

Top decay modes and selections

Top-quark pair branching ratios for different topologies

Fully hadronic channel (@ LO):

- Largest statistics: 6 high p_T jets in the final state (4 light jets and 2 b-jets).
- No leptons to trigger on. Important presence of multijets background (low S/B).

Di-lepton channel (@ LO):

- Clean in terms of trigger and selection: 2 high p_T isolated leptons and 2 high p_T b-jets.
- 2 neutrinos in the final state which can introduce reconstruction ambiguities due to the high E_T^{miss}.

Lepton + jets channel (@ LO):

- Large statistics: 4 high p_T jets in the final state (2 light jets and 2 b-jets) and 1 high p_T isolated lepton → high trigger efficiency and good multijets background rejection.
- 1 neutrino in the final state which is easy to reconstruct using E_T^{miss} .

Contents

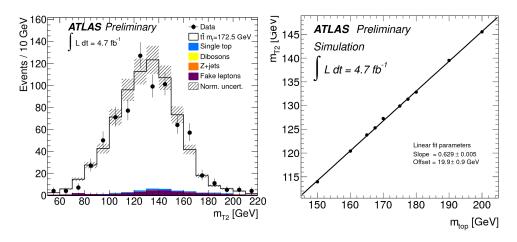
Top quark Physics

- Top quark mass measurements
- Top quark pair production
 - Cross section
 - Differential cross section
 - Top quark pair + jets
 - Charge Asymmetry
 - Polarization
 - Spin correlations
- Single top quark measurements
 - Cross section
 - Cross section ratio
- Search for resonances

Heavy flavor measurements

- Mass, lifetime production cross section measurements
- Observations of new particles

Top-quark mass @ 7 TeV

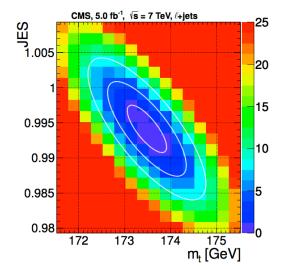

ATLAS 4.7 fb⁻¹ ATLAS-CONF-2012-082

Di-lepton event selection

Based on the transverse mass (m_{T_2}) measurement.

 m_{T2} < 220 GeV (reject events with at least one wrongly identified b-jet: eff. 92%)

Calibration using MC samples with different input top-quark masses including all expected backgrounds

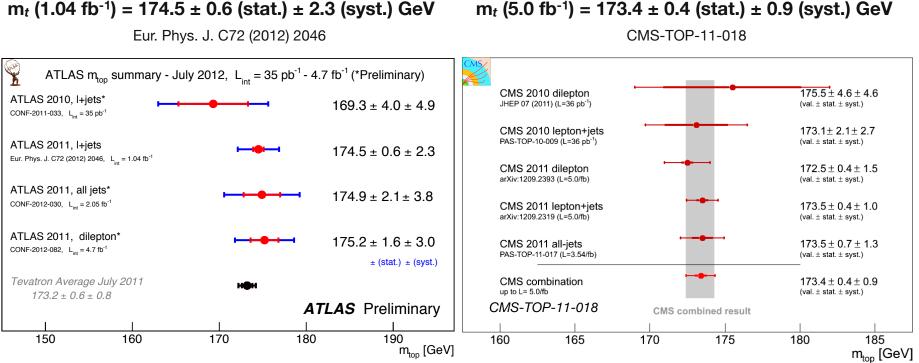


 m_t (7TeV, 4.7 fb⁻¹) = 175.2 ± 1.6 (stat.) +^{3.1}-_{2.8} (syst.) GeV

Lepton + jets event selection

Kinematic fit to reconstruct the *tf* topology (all permutations are considered) and 2D likelihood functions for each event to estimate simultaneously both the top quark mass and the JES.

The ellipses correspond to statistical uncertainties on m_t and JES of one, two, and three standard deviations.


 m_t (7TeV, 5.0 fb⁻¹) = 173.49 ± 0.43 (stat.) ± 0.98 (syst.) GeV JES = 0.994 ± 0.003 (stat.) ± 0.008 (syst.)

- Main backgrounds: *Z*+jets and *W*+jets and top production
- Main Systematics (ATLAS): JES, b-JES, Color recon. and MC modeling.
- Main Systematics (CMS): JES, b-JES, JER, Renorm. and factorization scale and Fit calib.

Top quark mass @ 7 TeV

Top quark mass is being measured in the 3 channels.

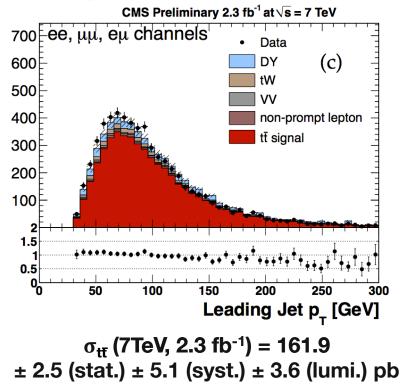
The most precise top-quark measurements are from **lepton + jets** analyses.

 m_t (5.0 fb⁻¹) = 173.4 ± 0.4 (stat.) ± 0.9 (syst.) GeV

ATLAS and CMS results are compatible between them as well as with CDF and D0 results:

 m_t (Tevatron comb. 2012, 5.8 fb⁻¹) = 173.18 ± 0.56 (stat.) ± 0.75 (syst.) GeV

CDF and D0 5.8 fb⁻¹ arXiv:1207.1069 [hep-ex]


Top quark pair cross section @ 7 TeV

CMS 2.3 fb⁻¹ CMS-PAS-TOP-11-005

Di-lepton event selection

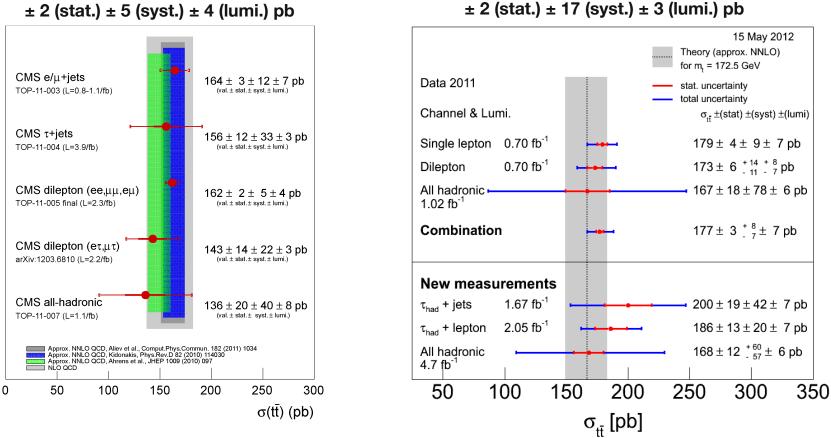
Cross section measurement using a profile likelihood ratio (and cut and count analysis as a cross-check).

Main Systematics: lepton efficiencies, W BR fraction and Et^{miss} efficiency.

ATLAS 4.7 fb⁻¹ ATLAS-CONF-2012-131

Lepton + jets event selection

Soft Muon Tagging (SMT) technique: Semileptonic b decays are identified by a low p_T muon close to a jet.


 $N_{\rm data} - N_{\rm bkg}$ Top quark pair cross $\sigma_{t\bar{t}} =$ $\int L dt \cdot \epsilon \cdot BR(\text{noFullHad})$ section is computed with: tagged e + \geq 3 jets ATLAS Preliminary ம் 3500E Data ö $L dt = 4.66 \text{ fb}^{-1}$ g 3000 W+jets Multijets 2500 Other uncertainty 2000 1500 1000 500 Data / Prediction 0.7 SMT muon prel [GeV] $\sigma_{\rm tf}$ (7TeV, 4.66 fb⁻¹) = 165

- \pm 2 (stat.) \pm 17 (syst.) \pm 3 (lumi.) pb
- Main Systematics: JES, NLO generator, PDF and $b \rightarrow \mu X$ BR.
- Main backgrounds: multijets, W+jets and top production.

Top quark pair cross section @ 7 TeV

Top guark cross section is being measured in the various channels (lepton+jets, di-lepton, all-hadronic, τ +lepton, τ +jets, lepton+jets using semileptonic decays).

The most precise top guark cross section measurement are from di-lepton (CMS) and lepton + jets (ATLAS) analyses.

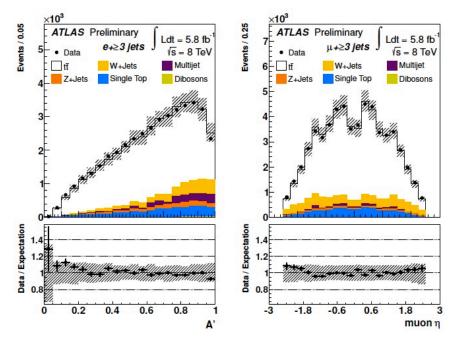
σ_{tt} (7TeV, 2.3 fb⁻¹) = 162

ATLAS and CMS results are compatible between them and... In agreement with SM prediction (approx. NNLO): σ_{tt} (7TeV) = 167 ± 18 pb.

HATHOR 1.2 .. Aliev et al. 2011. arXiv 1007.1327

 $\sigma_{\rm tf}$ (7TeV, 4.7 fb⁻¹) = 165

Top quark pair cross section @ 8 TeV

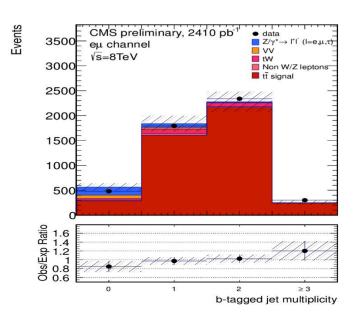

Lepton + jets analyses

ATLAS 5.8 fb⁻¹ ATLAS-CONF-2012-149

Similar to 7 TeV selection with few updates (p_T (e, $\mu) >$ 40 GeV) to reduce multijet background

Kinematic fit using likelihood discriminant function based on lepton η and transformed aplanarity (A'=e^{-8A}).

 σ_{tt} (8TeV, 5.8 fb⁻¹) = 241 ± 2 (stat.) ± 31 (syst.) ± 9 (lumi.) pb


• Main Systematics: MC modeling (generator, ISR/FSR), PDF, PS) and Jet/E_T^{miss} reconstruction.

CMS 2.4 fb⁻¹ CMS-TOP-PAS-12-007

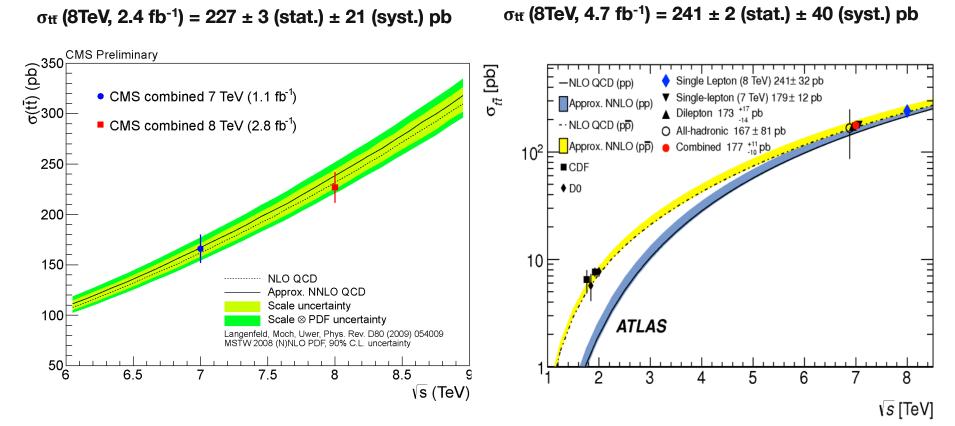
Cut and count analysis.

Very small background contributions \Rightarrow High purity allows precision measurement with 6% overall uncertainty.

 σ_{tt} (8TeV, 2.4 fb⁻¹) = 227 ± 3 (stat.) ± 10 (syst.) ± 10 (lumi.) pb $\sigma(8\text{TeV})/\sigma(7\text{TeV}) = 1.41 \pm 0.11$

Main Systematics: JES (2.5%), lepton efficiencies (1.8%) and JER (1.7%).

Top quark pair cross sections @ 7 TeV and 8 TeV

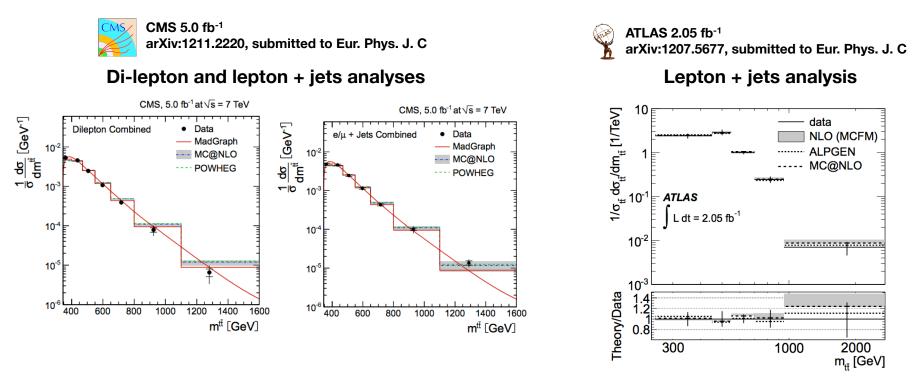


CMS-TOP-11-005 **CMS-TOP-PAS-12-007**

ATLAS-CONF-2012-131 ATLAS-CONF-2012-149

 σ_{tf} (7TeV, 2.3 fb⁻¹) = 162 ± 2 (stat.) ± 9 (syst.) pb σ_{tt} (8TeV, 2.4 fb⁻¹) = 227 ± 3 (stat.) ± 21 (syst.) pb σ_{tf} (7TeV, 4.7 fb⁻¹) = 165 ± 2 (stat.) ± 20 (syst.) pb σ_{tf} (8TeV, 4.7 fb⁻¹) = 241 ± 2 (stat.) ± 40 (syst.) pb

ATLAS and CMS results are compatible between them and... In agreement with theoretical predictions (approx. NNLO):

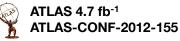

- σ_{tf} (7TeV) = 167 ± 18 pb.
- σ_{tt} (8TeV) = 238⁺²²₋₂₄ pb

HATHOR 1.2., Aliev et al, 2011, arXiv 1007.1327

Top quark pair differential cross section @ 7 TeV

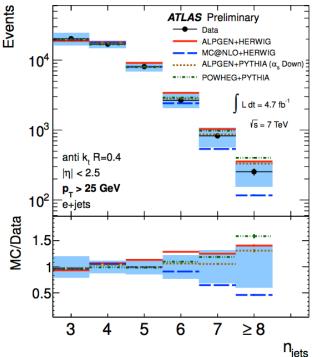
Relative diff. cross section derived as function of m_{tf}, p_T^{tf} and y_{tf}.

Top quarks reconstructed using a likelihood fit (lepton + jets) or probabilistic method (di-lepton).

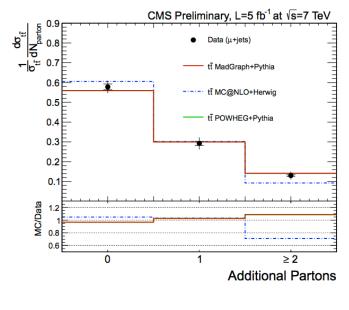

- Unfold detector effects in data (MC migration matrix, no regularization used for ATLAS analysis)
- Correct for acceptance, luminosity and BR fraction.
- Measurements systematics dominated.

No significant deviation from SM expectations are observed.

Top quark pair + jets @ 7 TeV


Additional jets in top pair production important for:

- QCD tests at NLO.
- Constraint MC generators \Rightarrow main source of systematic uncertainty in many top analyses.
- ISR/FSR assessment.
- Background to other signals (e.g. top-Higgs associate production).



CMS 5.0 fb⁻¹ CMS PAS-TOP-12-018

Measurement done in a fiducial region matching the experimental acceptance.

Additionally: top pair d σ in the number of radiated additional hard partons in the μ +jets channel.

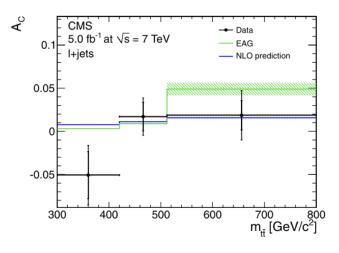
Studies performed for different p_{T} thresholds: 25, 40, 60, and 80 GeV

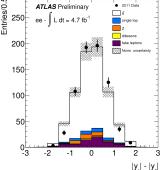
• Limited by systematic uncertainties, from background modeling (at lower jet multiplicities) to JES (at higher jet multiplicities). Results are mostly compatible with various predictions (disagreement with MC@NLO+HERWIG).

Top quark pair Charge Asymmetry @ 7 TeV

Top pair production is symmetric at LO and slightly asymmetric at NLO because of $q\bar{q}$ annihilation production (top emitted preferentially in q direction).

Lepton + jets event selection


- Inclusive *tf* charge asym. measurement.
- Diff. tf charge asym. measurements (y, p_T and m_{tt})


Di-lepton event selection

- Inclusive *tf* charge asym. measurement.
- Lepton (ee, $e\mu$ and $\mu\mu$) charge asymmetry measurement.

Likelihood fit to reconstruct the *tf* event topology. Background subtraction and unfolding (correct for acceptance and detector effects).

 A^{tt}_{C} = 0.004 ± 0.010 (stat.) ± 0.011 (syst.) A^{tt}_{C} (NLO) = 0.0115 ± 0.0006 $A_{\rm C} = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)} \\ {\rm FB \ asymmetry}$

 $A^{\ell\ell}{}_{C}$ = 0.023 ± 0.012 (stat.) ± 0.008 (syst.) $A^{\ell\ell}{}_{C}$ (SM using MC@NLO) = 0.004 ± 0.001

 $A^{tt}_{C} = 0.057 \pm 0.024$ (stat.) ± 0.015 (syst.)

Combination (BLUE): $A^{tt}_{C} = 0.029 \pm 0.018 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$ $A^{tt}_{C} \text{ (SM using MC@NLO)} = 0.006 \pm 0.002$

• Main systematics: Signal and background modeling. Inclusive and differential measurements are consistent with $A_{C}^{tr}=0$ as well as with NLO predictions. top anti-top

Top quark polarization @ 7 TeV

SM predicts non-polarized top guarks in top guark pair production Parity conservation in QCD \Rightarrow deviation will be a hint of new physics (BSM). Kinematic top pair decay reconstruction (top direction in top/anti-top center of mass frame).

 $\cos\theta_l$

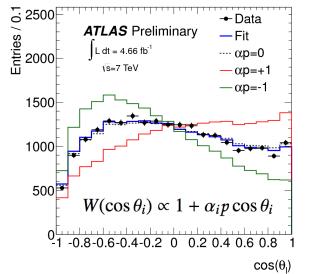
Polar angle of

charged lepton in

parent top quark's rest frame

 $\alpha_{1}P = 2f - 1$

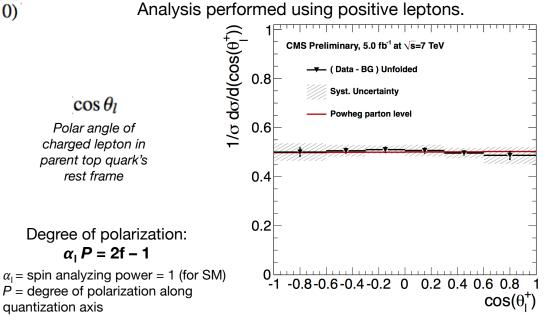
quantization axis


ATLAS 4.66 fb⁻¹ ATLAS-CONF-2012-133

Lepton + jets event selection

Fraction of positively polarized top quarks:

$$f = \frac{1}{2} + \frac{N(\cos \theta_l > 0) - N(\cos \theta_l < 0)}{N(\cos \theta_l > 0) + N(\cos \theta_l < 0)}$$



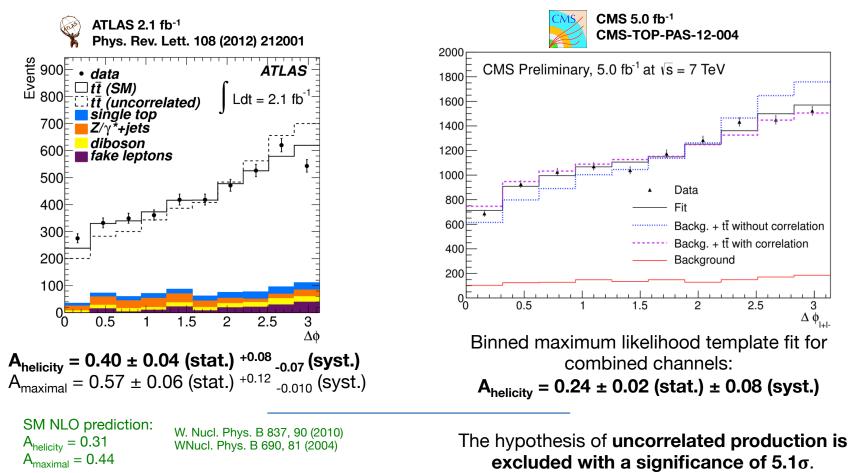
Di-lepton event selection

Kinematic top pair decay reconstruction (top direction in top/anti-top center of mass frame).

CMS 2.3 fb⁻¹

$f = 0.470 \pm 0.009 \text{ (stat)} + 0.023 \text{ (syst)}$

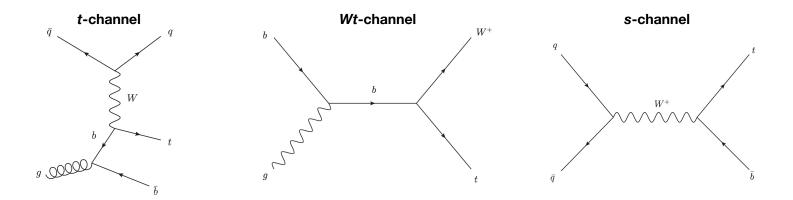
Compatible with SM predictions: f(SM) = 0.5, P (SM) = 0 Main systematics: jet reconstruction and signal modeling.


Top Physics and Heavy Flavor measurements with ATLAS and CMS SILAFAE 2012. December 10-14, 2012. São Paulo, Brazil

 $P = -0.009 \pm 0.029$ (stat.) ± 0.041 (syst.)

Di-lepton event selection

Spin correlations between top and anti-top. gg fusion top pair production \rightarrow same helicity for top and anti-top.


- $\Delta \phi$ between leptons (e/µ) in lab frame.
- Use helicity basis (*tf* rest frame) and "maximal basis".

• Main systematics: fake leptons

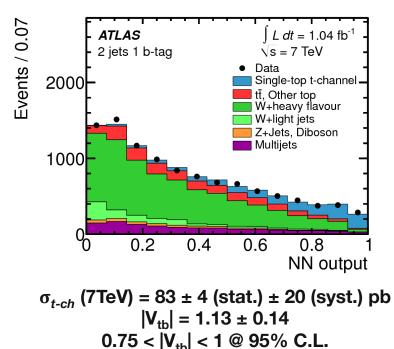
Single top-quark production @ LHC

Discovery of the production of single top quarks in 2009 by CDF and by D0.

Production via electroweak interaction

• 3 production mechanisms: *t-channel* (higher σ), *s-channel* and *Wt-channel*.

Motivations for studies of single top quark production

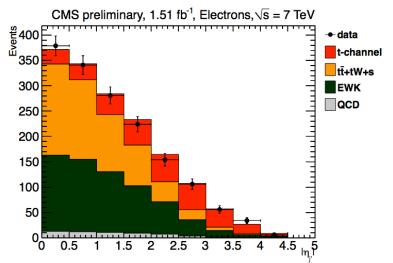

- Cross-section measurement allows to directly access a CKM matrix element: $\sigma \propto |V_{tb}|^2$
- Powerful probe for physics BSM related to EWSB
 - The 3 production modes are sensitive to different forms of new physics: cross-sections, polarization, anomalous couplings, 4th generation, FCNC, W', H+

Single top quark: t-channel cross section @ 7 TeV

Lepton + jets event selection

ATLAS 1.04 fb⁻¹ Phys. Lett. B717 (2012) 330-350

Multivariate analysis with maximum likelihood fit on NN output.



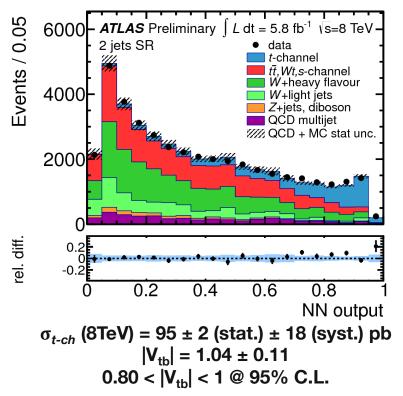
Main Systs: ISR/FSR (14%) and b-tagging modeling (13%).

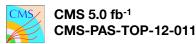
CMS 1.51 (e) 1.14 (μ) fb⁻¹ CMS-PAS-TOP-11-021

Maximum likelihood fit to the η distribution of the of the light jet.

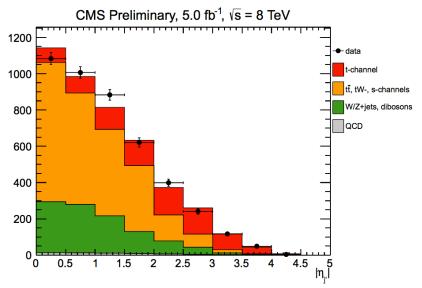
 $\sigma_{t\text{-}ch}$ (7TeV) = 70.2 ± 5.2 (stat.) ± 10.4 (syst.) ± 3.4 (lumi.) pb $|V_{tb}|$ = 1.04 ± 0.09 (exp.) ± 0.02 (th.)

Main Systs: JES (9%) and W+jets (7%).


• Main backgrounds: *W*+jets and top production. Both measurement are compatible with theoretical prediction: σ_{t-ch} (7TeV) = 64.6 ± 2.4 pb

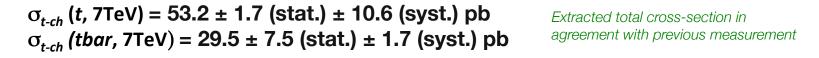

Single top quark: t-channel cross-section @ 8 TeV

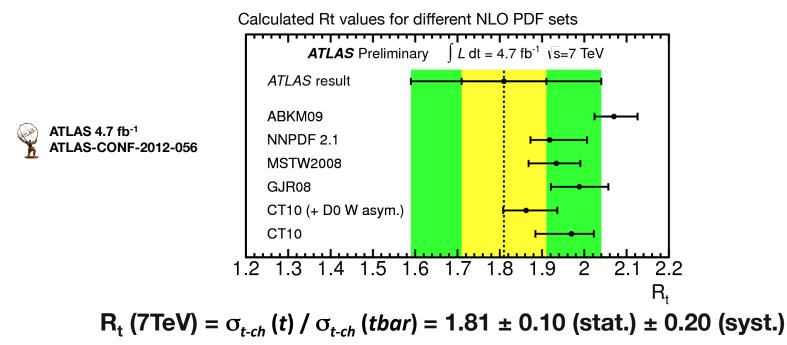
Lepton + jets event selection



Multivariate analysis with maximum likelihood fit on NN output.

Multivariate analysis exploiting the η distribution of the of the light jet and the m_t.

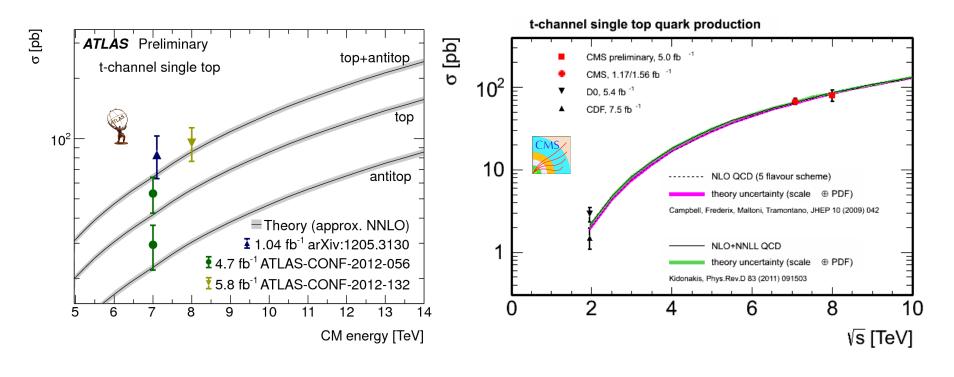

 $\begin{aligned} \sigma_{t\text{-}ch} \ (\text{8TeV}) &= 80.1 \pm 5.7 \ (\text{stat.}) \pm 15 \ (\text{syst.}) \ \text{pb} \\ |\mathsf{V}_{\text{tb}}| &= 0.96 \pm 0.08 \ (\text{exp.}) \pm 0.02 \ (\text{th.}) \\ & 0.81 < |\mathsf{V}_{\text{tb}}| < 1 \ @ \ 95\% \ \text{C.L.} \end{aligned}$

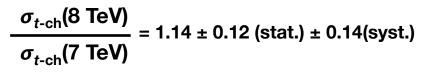

• Main backgrounds: *W*+jets and top production. Both measurement are compatible with theoretical prediction: σ_{t-ch} (8TeV) = 87.86 ± 3.4 pb

Single top quark: t-channel top/anti-top cross section ratio @ 7 TeV

Lepton + jets event selection

- Binned maximum likelihood fit to the output of NN, split according to the charge of the lepton.
- The ratio $R_t = \sigma_{t-ch}(t) / \sigma_{t-ch}(t)$ is sensitive to PDFs and new physics.

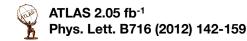


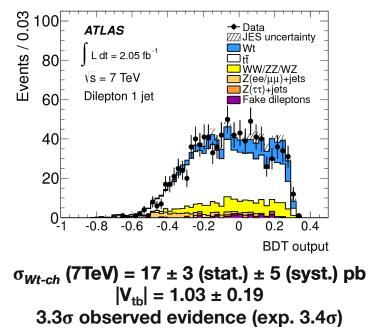


- Main backgrounds: multijets, *W*+jets and top pairs.
- Main Systematics: bkg normalization (5%), ISR/FSR (4%) and JES (4%).
- Ratio measurement reduces systematics mainly on lepton eff, JES and top MC gen.

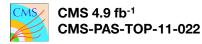
The measurement is in agreement with the predictions that vary between $R_t = [1.86, 2.07]$.

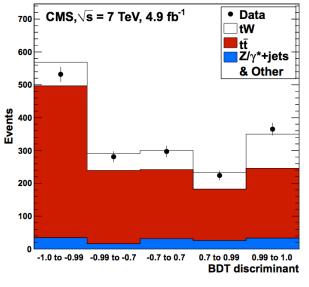
Precision achieved in the cross section measurements at 7 and 8 TeV is comparable with theoretical NLO and NNLO predictions.




CMS 5.0 fb⁻¹ CMS-PAS-TOP-12-011

Single top quark: Wt associated production


Di-lepton event selection analyses


Multivariate analysis with profile likelihood fit on boosted decision tree (BDT) output. Combined fit of 1-jet, 2-jet and ≥3-jets channels.

Main Systematics: JES (16%), PS modeling (15%), data stats. (17%).

Multivariate analysis with on BDT output. Combined fit of 1-jet, 2-jets channels.

 $σ_{Wt-ch}$ (7TeV) = 16 ± 5 (stat. + syst.) pb 4.0σ observed evidence (exp. 1.8 ± 0.9 σ)

Main Systematics: b-tag (10%), Q² (15%), generator model (~9%).

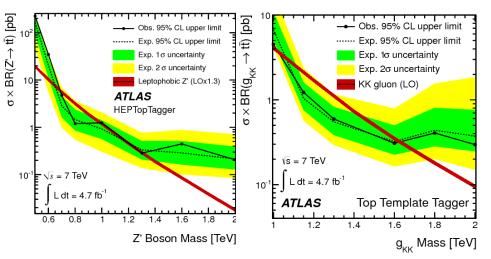
• Main backgrounds: top production. Both measurement are compatible with theoretical prediction: σ_{Wt-ch} (theory) = 15.7 ± 1.1 pb

Top Physics and Heavy Flavor measurements with ATLAS and CMS SILAFAE 2012. December 10-14, 2012. São Paulo, Brazil

Carlos Escobar

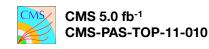
Search for resonances decaying to top quark pairs

High mass top pair resonances can lead to strongly boosted top decays:

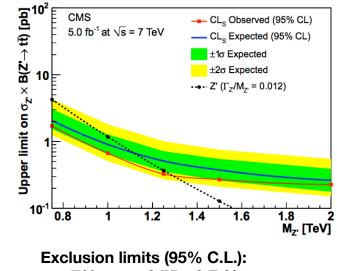

top decay products start to merge

ATLAS 4.7 fb⁻¹ CERN-PH-EP-2012-291

Fully hadronic event selection


2 massive jets with large $\ensuremath{p_{\text{T}}}$ with associated b-quark decay. Two different methods:

- HEPTopTagger (fat-jets)
- Top Template Tagger (comparison with patterns of E deposition from MC decays).


Exclusion mass limits (95% C.L.):

- Z' boson: 0.7 1 TeV
- Leptophobic topcolor Z':1.28-1.32 TeV
- Kaluza-Klein gluons: 0.70-1.62 TeV

Di-lepton event selection

A multivariate analysis, based on Bayesian Neural Network (BNN).

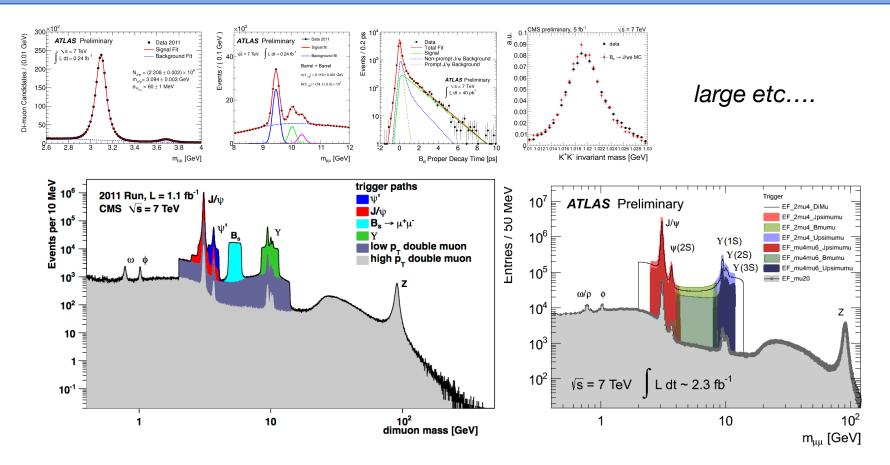
- Z' boson: 0.75 3 TeV
- Leptophobic topcolor Z':1.3-1.9 TeV

No evidence for a top pair resonance is observed.

Contents

Top quark Physics

- Top quark mass measurements
- Top quark pair production
 - Cross section
 - Differential cross section
 - Top quark pair + jets
 - Charge Asymmetry
 - Polarization
 - Spin correlations
- Single top quark measurements
 - Cross section
 - Cross section ratio
- Search for resonances


Heavy flavor measurements

- Mass, lifetime production cross section measurements
- Observations of new particles

Very rich heavy flavor physics program for ATLAS and CMS which is impossible to be covered in this talk.

- This talk will cover <u>some of the latest analyses and some of the most important results</u> achieved by ATLAS and CMS <u>but not all</u>. Please, visit:
- ATLAS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
- CMS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

Heavy flavor mass and lifetime measurements


All mass and lifetimes measurements in the charm, onia and beauty production are consistent with PDG values.

• <u>Impossible to review all the measurements here</u> so I will show you only one of the latest measurements.

$\Lambda_{\rm b}$ (nS) lifetime and mass measurements

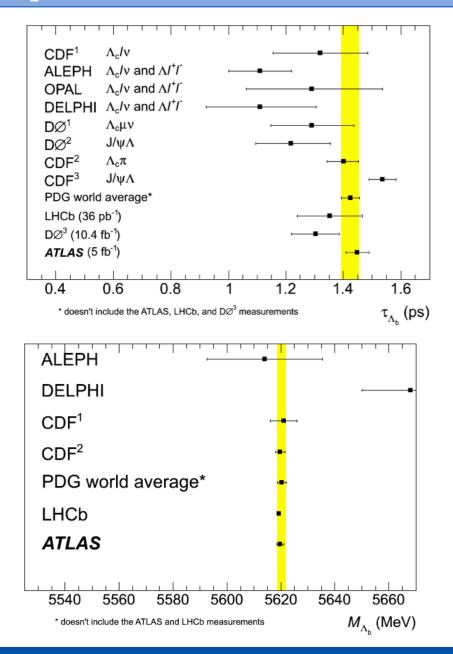
Measurement performed on the decay $\Lambda_b \rightarrow J/\psi \Lambda^0 \rightarrow \mu \mu \rho \pi$, with mass constraints.

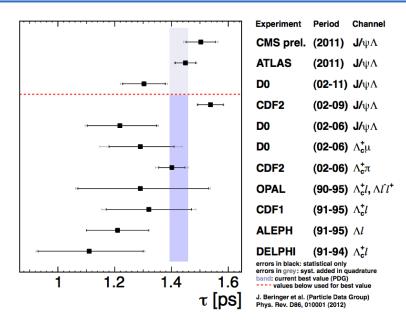
• Cross checks performed on mass and lifetime of B₀.

The results are compatible and competitive with previous best measurements:

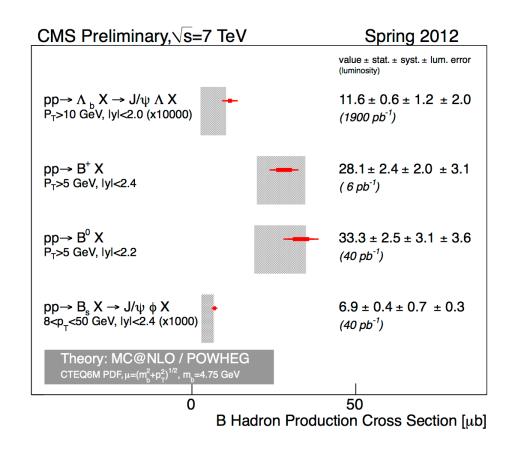
 $m(\Lambda_b) = 5619.7 \pm 0.7 \text{ (stat.)} \pm 1.1 \text{ (syst.) MeV}$ $\tau(\Lambda_b) = 1.449 \pm 0.036 \text{ (stat.)} \pm 0.017 \text{ (syst.) ps}$ $\tau(\Lambda_b) = 1.503 \pm 0.052$ (stat.) ± 0.031 (syst.) ps

TRT

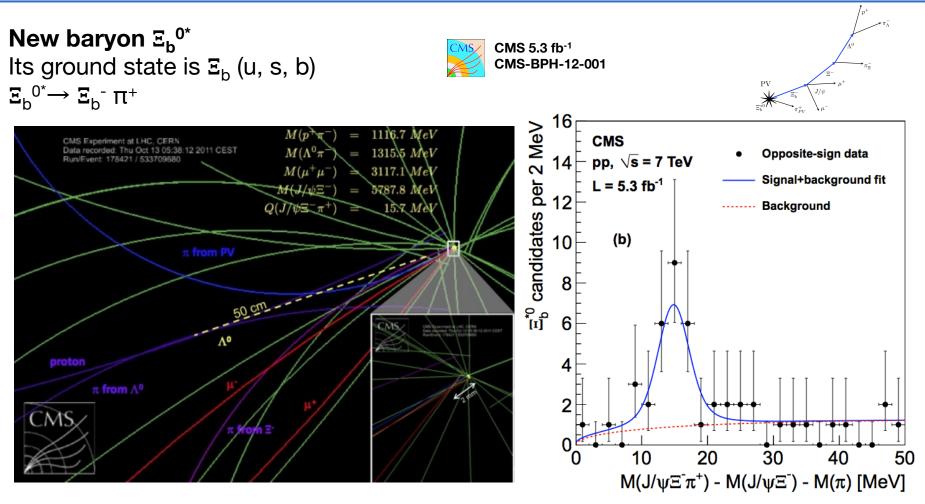

54-103 cm


π

p


 μ^+

$\Lambda_{\rm b}$ (nS) lifetime and mass measurements



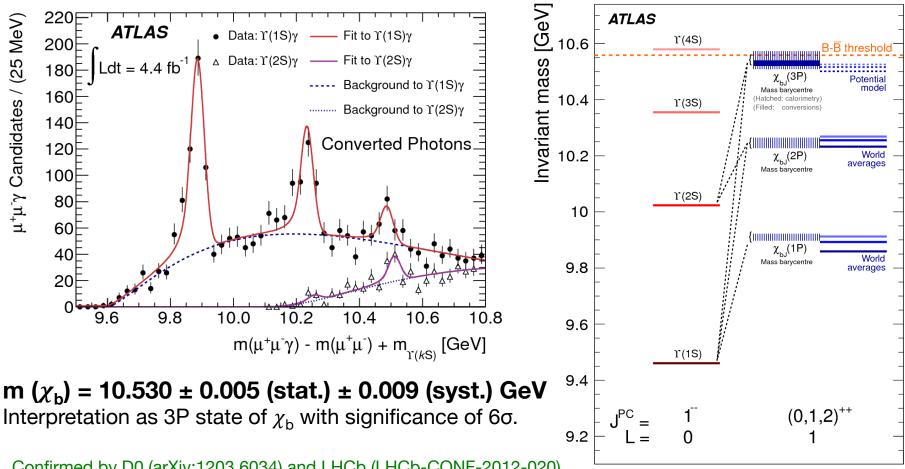
 Λ_b (nS) lifetime and mass measurements are consistent with PDG values.

Cross section measurements mostly in agreement with NLO predictions.

Observation of new particle states

A peak is observed in the distribution of the $m(\Xi_b^- \pi^+) - [m(\Xi_b^-) + m(\pi^+)]$ with a significance exceeding 5σ .

m $(\Xi_b^{0^*}) = 5745.0 \pm 0.7$ (stat.) ± 0.3 (syst.) ± 2.7 (PDG) MeV


Observation of new particle states

New $\chi_{\rm b}$ (*bb*) quarkonium state

Search for radiative decays of $\chi_{\rm b}$ (nP) $\rightarrow \Upsilon(iS)\gamma \rightarrow \mu^+\mu^-\gamma$ with i=1,2. Mass balance built as $m(\mu\mu\gamma) - [m(\mu\mu) + m(\Upsilon(iS))]$ and fitted.

ATLAS 4.4 fb⁻¹ Phys. Rev. Lett. 108 (2012) 152001

Observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^{1}$

Confirmed by D0 (arXiv:1203.6034) and LHCb (LHCb-CONF-2012-020)

Conclusions

This talk will cover <u>some of the latest analyses and some of the most important results</u> achieved by ATLAS and CMS <u>but not all</u>. Please, visit:

- ATLAS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
- CMS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

Top Physics and Heavy Flavor measurements with ATLAS and CMS SILAFAE 2012. December 10-14, 2012. São Paulo, Brazil

Conclusions

ATLAS and CMS have a very rich top quark and heavy flavor physics program.

• This could <u>never</u> be a complete summary!

After the discovery of the top quark at the Tevatron and its "re-discovery" at the LHC, the era of **precision measurements** of its properties has come!

- High production cross section at LHC: top factory!
- Measurements being performed at 7 TeV and 8 TeV.

Top quark physics can answer fundamental questions.

- SM precision measurements.
- Production mechanism: mass, cross section, $|V_{tb}|$ and angular distributions, etc...
- Direct search for resonances.
- Top production is background for most of searches and Higgs production.
- Top quark measurements as a powerful probe of physics BSM.

Heavy Flavor:

- Mass and lifetime measurements.
- Observations of new states.
- Inclusive and exclusive production cross sections.
- Test of BSM phenomena.

So far no hint of new physics or discrepancies from SM.

- In good agreement with SM predictions.
- Generally current precisions are comparable to theoretical predictions.

All measurements are limited by systematic uncertainties.

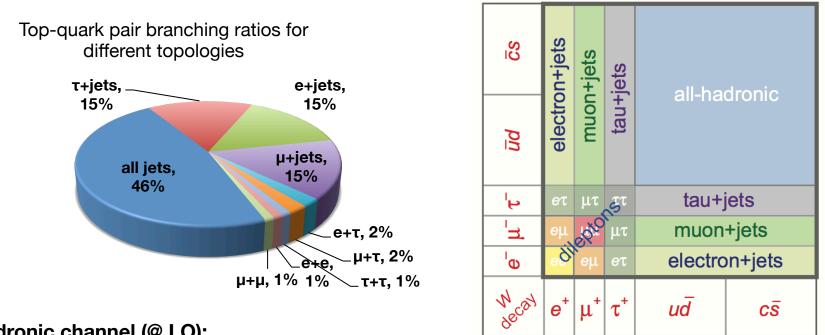
- New data being analyzed, need to improve our understanding of detector (calibrations) and MC simulation of fundamental processes.
- Higher energy collisions will come with higher pile-up, but not a show stopper.

Looking forward to calibrate and refine the analysis using full statistics at 8 TeV!

• Stay tuned!

Thank you very much for your attention!

Backup slides



Carlos Escobar (University of Pittsburgh)

on behalf of the ATLAS and CMS Collaborations

Top Physics and Heavy Flavor measurements with ATLAS and CMS SILAFAE 2012. December 10-14, 2012. São Paulo, Brazil

Top decay modes and selections

Fully hadronic channel (@ LO):

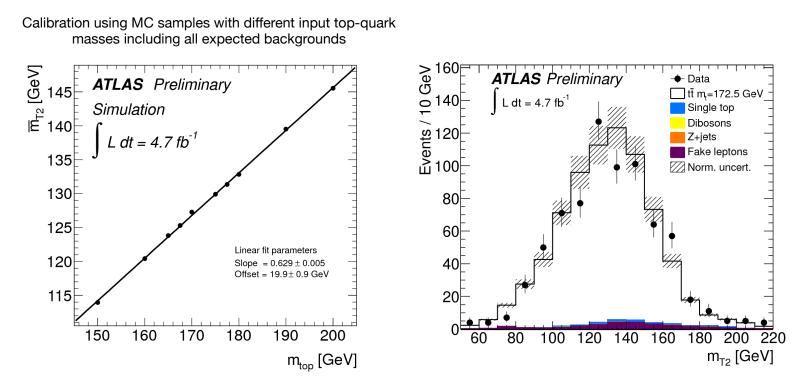
- Largest statistics: 6 high p_T jets in the final state (4 light jets and 2 b-jets).
- No leptons to trigger on. Important presence of multijets background (low S/B).

Di-lepton channel (@ LO):

- Clean in terms of trigger and selection: 2 high p_T isolated leptons and 2 high p_T b-jets.
- 2 neutrinos in the final state which can introduce reconstruction ambiguities due to the high E_T^{miss}.

Lepton + jets channel (@ LO):

- Large statistics: 4 high p_T jets in the final state (2 light jets and 2 b-jets) and 1 high p_T isolated lepton → high trigger efficiency and good multijets background rejection.
- 1 neutrino in the final state which is easy to reconstruct using E_T^{miss} .


Top-quark mass @ 7 TeV

Di-lepton event selection

Based on the transverse mass (m_{T2}) measurement.

m_{T2} < 220 GeV (reject events with at least one wrongly identified b-jet: eff. 92%)

 m_t (7TeV, 4.7 fb⁻¹) = 175.2 ± 1.6 (stat.) +3.1 -2.8 (syst.) GeV

- Main backgrounds: *Z*+jets and fake leptons from *W*+jets and top production
- Main Systematics: JES, b-jet Energy Scale, Color reconnection and MC modeling.

Top quark mass @ 7 TeV

Lepton + jets event selection

S Щ 1.005⊾

0.995

0.99

0.985

0.98

172

The analysis employs a kinematic fit of the decay products to a *tt* hypothesis (all permutations are considered) and 2D likelihood functions for each event to estimate simultaneously both the top quark mass and the JES.

25

20

15

10

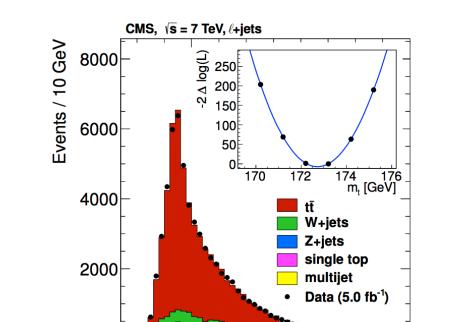
5

m_t (7TeV, 5.0 fb⁻¹) = 173.49 ± 0.43 (stat.) ± 0.98 (syst.) GeV JES = 0.994 ± 0.003 (stat.) ± 0.008 (syst.)

• Main backgrounds: multijets, *W*+jets and top production.

173

The ellipses correspond to statistical uncertainties on m_t and JES of one, two, and three standard deviations.


174

CMS, 5.0 fb⁻¹, √s = 7 TeV, ℓ+jets

• Main Systematics: JES, b-JES, JER, Renorm. and factorization scale and Fit calib.

175 m_t [GeV]

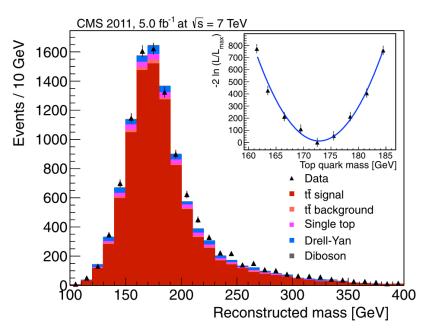
200

400

600

m^{fit} [GeV]

Dileptonic channel


The top-quark mass is reconstructed with an Analytical Matrix Weighting Technique (AMWT) using distributions derived from simulated samples.

A maximum-likelihood fit is used to derive the top-quark mass.

Event selection:

- 2 leptons (e, μ) (p_T>20 GeV), at least 2 jets (p_T > 30 GeV) being at least 1 of them tagged.
- $E_T^{miss} > 40 \text{ GeV}$

Main backgrounds: Z+jets and fake leptons from W+jets and top production

m_t (CMS, 5.0 fb⁻¹) = 172.5 ± 0.4 (stat.) ± 1.5 (syst.) GeV

Main Systematics: Jet Energy Scale, b-jet Energy Scale, Renorm. and factorization scale and Fit calib.

Top quark pair cross section @ 7 TeV

Lepton + jets event selection

Semileptonic *b* decays are identified by a lower p_T muon close to a jet:

• Soft Muon Tagging (SMT) technique.

≥ 4000 ບິ tagged e + \geq 3 jets ATLAS Preliminary 🔶 Data LO 3500 ö $L dt = 4.66 \text{ fb}^{-1}$ Events / 3000 2500 Top quark pair cross section is W+jets Multijets computed with: Other 🕅 uncertainty 2000 $\frac{N_{\text{data}} - N_{\text{bkg}}}{L \, dt \cdot \epsilon \cdot BR (\text{noFullHad})}$ 1500 $\sigma_{t\bar{t}} =$ 1000 500 Data / Prediction 1.3 1.2 0.9 0.8 0.7 0.6 SMT muon p_rel [GeV]

σ_{tf} (7TeV, 4.66 fb⁻¹) = 165 ± 2 (stat.) ± 17 (syst.) ± 3 (lumi.) pb

- Main backgrounds: multijets, *W*+jets and top production.
- Main Systematics: JES, NLO generator, PDF and $b \rightarrow \mu X$ BR.

Dileptonic channel

Cross section measurement using a profile likelihood ratio (counting analysis as a cross-check). Event selection:

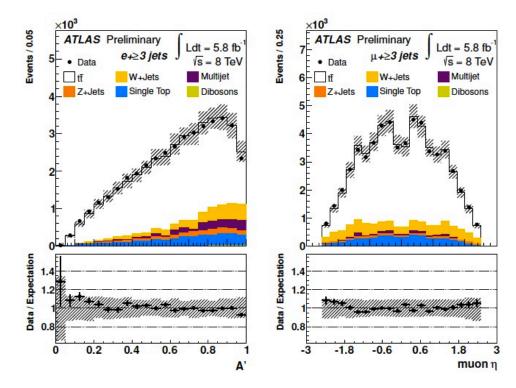
• 2 leptons (e, μ) (p_T>20 GeV), at least 2 jets (p_T > 30 GeV) being at least 1 of them tagged. Main backgrounds: multijets, *W*+jets and top production.

The measured σ_{tt} depends on the value of the top quark mass used to simulate *tf* events:

$$\sigma_{t\bar{t}}/\sigma_{t\bar{t}}(m_t = 172.5) = 1.00 - 0.008 \times (m_t - 172.5) - 0.000137 \times (m_t - 172.5)^2$$

Channel	PLR method	Counting analysis
ee	$168.0\pm 6.6^{+7.6}_{-7.0}\pm 3.7$	$165.9 \pm 6.4 \pm 7.0 \pm 3.6$
μμ	$156.3 \pm 5.6^{+7.7}_{-6.6} \pm 3.5$	$153.8 \pm 5.4 \pm 6.6 \pm 3.4$
еµ	$161.9 \pm 3.1^{+5.8}_{-5.4} \pm 3.6$	$161.6 \pm 3.1 \pm 5.6 \pm 3.6$
Combined	$161.9 \pm 2.5^{+5.1}_{-5.0} \pm 3.6$	$161.0 \pm 2.6 \pm 5.6 \pm 3.6$

σ_{tf} (7TeV, 2.3 fb⁻¹) = 161.9 ± 2.5 (stat.) ± 5.1 (syst.) ± 3.6 (syst.) pb

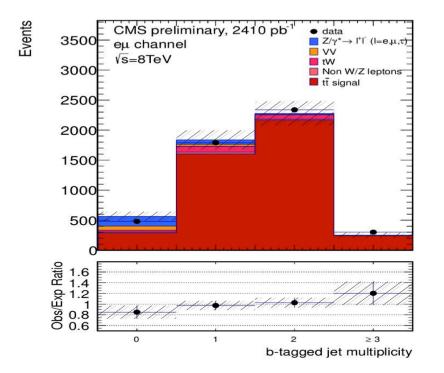

Main Systematics: lepton efficiencies, W BR fraction and E_T^{miss} efficiency.

Semileptonic channel

Selection similar to the one at 7 TeV with few updates to cope with a higher pile-up.

• p_T (e, μ) > 40 GeV

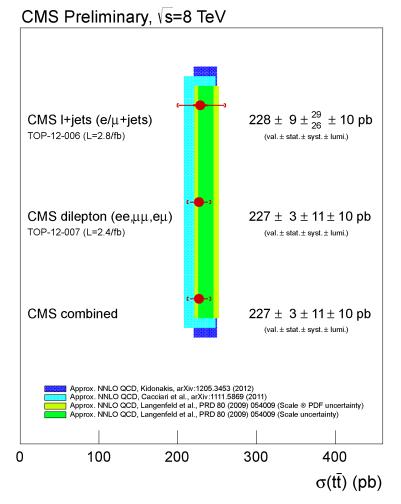
Kinematic fit using likelihood discriminant function based on lepton η and transformed aplanarity (A'=e^{-8A}).


 m_{tf} (ATLAS, 5.8 fb⁻¹) = 241 ± 2 (stat.) ± 31 (syst.) ± 9 (lumi.) pb

Main Systematics: MC modeling (generator, ISR/FSR), PDF, PS) and Jet/E_T^{miss} reconstruction.

Semileptonic channel

Counting experiment. Very small background contributions \Rightarrow High purity allows precision measurement with 6% overall uncertainty.

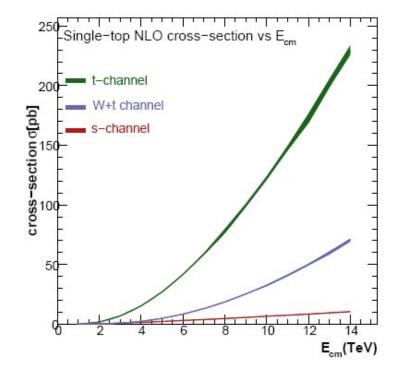

 σ_{tt} (CMS, 2.4 fb⁻¹) = 227 ± 3 (stat.) ± 10 (syst.) ± 10 (syst.) pb cross section ratio: $\sigma(8\text{TeV})/\sigma(7\text{TeV}) = 1.41 \pm 0.11$

Main Systematics: JES (2.5%), lepton efficiencies (1.8%) and JER (1.7%).

Top quark pair cross section @ 8 TeV

Top quark cross section is being measured in the lepton + jets and di-lepton channels.

σ_{tf} (8TeV, 2.4 fb⁻¹) = 227 ± 3 (stat.) ± 21 (syst.) pb

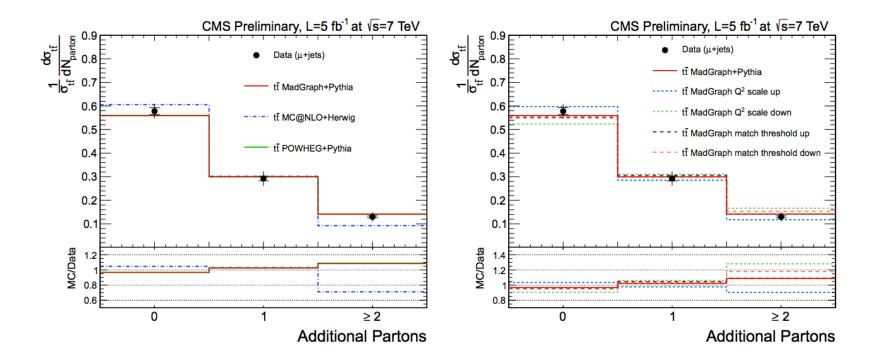


 σ_{tf} (8TeV, 4.7 fb⁻¹) = 241 ± 2 (stat.) ± 40 (syst.) pb No plot available yet for ATLAS

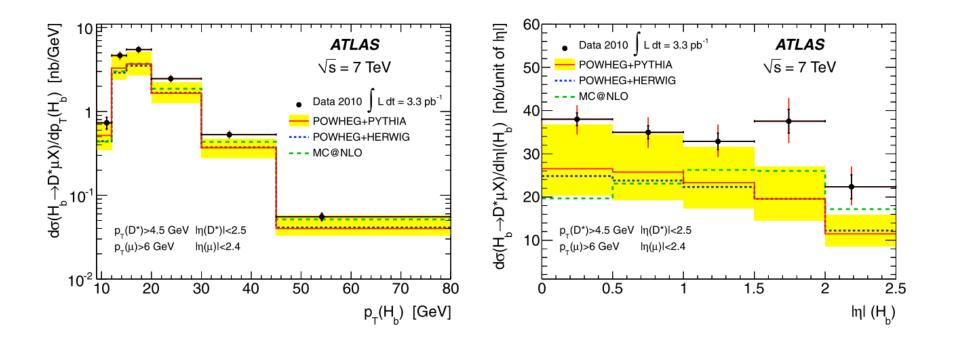
ATLAS and CMS measurements are in agreement with theoretical prediction: σ_{tt} (theory) = 238 ± 24 pb HATHOR, Comput. Phys. Commun., 182 (2011) 1034

Single top quark cross-sections for the different channels

t, s and Wt cross sections predicted at NLO using the MCFM generator.

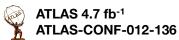


Top quark pair + jets @ 7 TeV



Equivalent measurement in CMS.

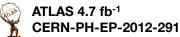
Additionally, the measurement of the **top quark pair differential cross section in the number** of radiated additional hard partons in the muon + jets channel is presented. The measured fractions of events with tt + 0, 1, and ≥ 2 additional partons are in good agreement with different MC predictions.


b-hadron production cross section estimated using decays to $D^{*+}\mu^-X$ final states.

Search for resonances decaying to top quark pairs

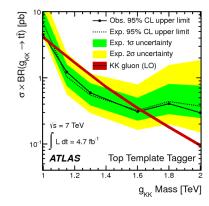
High mass top pair resonances can lead to strongly boosted top decays:

top decay products start to merge

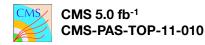


Semileptonic channel

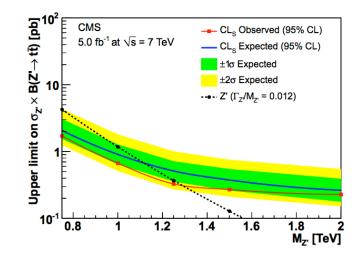
Use a combination of resolved (standard) and boosted ($\Delta R=1.0$ cone jets for hadronic top) reco schemes.


Exclusion limits (95% C.L.):

- Z' boson: 0.7 2 TeV
- Leptophobic topcolor Z':<1.7 TeV
- Kaluza-Klein gluons: <1.9 TeV


Fully hadronic channel

2 massive jets with large p_T with associated b-quark decay. Two different methods: HEPTopTagger (fat-jets) and Top Template Tagger (comparison with patterns of E deposition from MC decays).


Exclusion mass limits (95% C.L.):

- Z' boson: 0.7 1 TeV
- Leptophobic topcolor Z':1.28-1.32 TeV
- Kaluza-Klein gluons: 0.70-1.62 TeV

Dileptonic channel

A multivariate analysis, based on Bayesian Neural Network (BNN).

Exclusion limits (95% C.L.):

- Z' boson: 0.75 3 TeV
- Leptophobic topcolor Z':1.3-1.9 TeV

No evidence for atop pair resonance is observed.