

Neutrinos: Experimental Review

SILAFAE 2012

Sao Paulo, December 13th 2012

Thierry Lasserre CEA-Saclay

Established Neutrino Physics

- 3 types, spin $\frac{1}{2}$, neutral, left handed, $\sigma(1 \text{ MeV}) \approx 10^{-45-43} \text{ cm}^2$
- Neutrinos have tiny masses and mix: 0.04 eV < m_v < \approx 1 eV
- Two views on W decay:

- PMNS matrix U relates mass & flavor: $|v_i\rangle = \Sigma U_{\alpha i} |v_{\alpha}\rangle$
- A compelling evidence of physics Beyond the Standard Model

SuperKamiokande Breaktrough (1998)

 $\Phi^{\text{Atm}}_{\nu_{\mu}}(\text{up}) / \Phi^{\text{Atm}}_{\nu_{\mu}}(\text{down}) = 0.54 \pm 0.04$

50 kt of pure water, 12 000 PMTs Good E-resolution e/μ discrimination at low energy

Neutrino do have mass and they mix (oscillation)

Neutrino Oscillation: Established

reactors

Homestake, SAGE, GALLEX SuperK, SNO, Borexino

KamLAND, CHOOZ

- $v_{\mu} \rightarrow v_{\tau}$ or anti- $v_{\mu} \rightarrow$ anti- v_{τ}
- $v_e \rightarrow v_{\mu,\tau}$
- anti- v_e \rightarrow anti- v_{other}
- (anti-) $v_{\mu} \rightarrow$ (anti-) v_{other}
- $v_{\mu} \rightarrow v_{e}$

atmosphere

accelerators

SuperKamiokande

K2K, MINOS, T2K

atmospheric & beam experiments solar experiments reactor experiments atmospheric & beam experiments beam experiments

$$P(\overline{\nu}_{x} \rightarrow \overline{\nu}_{x}) = 1 - \sin^{2} \left(2\theta_{i}\right) \sin \left(1.27 \frac{\Delta m_{i}^{2} (ev^{2})L(m)}{E(MeV)}\right)$$

3 ν Oscillation Formalism

PMNS mixing matrix

• 3 masses m_1, m_2, m_3 : $\Delta m_{sol}^2 = m_2^2 - m_1^2 \& \Delta m_{atm}^2 = |m_3^2 - m_1^2|$

• 3-flavour effects are suppressed since: $\Delta m_{sol}^2 << \Delta m_{atm}^2 (1/30) \& \theta_{13} << 1$

Open questions

What are the masses of the mass eigenstates v_i?

• Is there any conserved Lepton Number (Dirac or Majorana neutrino)? $\beta\beta 0 \nu$

v flavor

- Precise measurements of the leptonic mixing matrix?
- Do the behavior of ν violate CP?
- Is leptonic OP responsible for the matter-antimatter asymmetry?
- Are there additional (sterile) neutrino states v flavor change, Cosmology

Question 1) What are the leptonic mixing parameters?

$\Delta m_{31}^2 \& \theta_{23}$

 $\nu_{e} \square |U_{ei}|^{2} \quad \nu_{\mu} \square |U_{\mu i}|^{2} \quad \nu_{\tau} \square |U_{\tau i}|^{2}$

 $\Delta m^2 \sim L / E$

Atmospheric: - L ~ 10⁴ km & E ~ 1-30 GeV

Reactors: - L ~ 1 km & E ~ 3 MeV

Accelerators: - L ~ 1000 km & E ~ 3 GeV

Addressing Atmospheric Sector

 $\nu_{e} \square |U_{ei}|^{2} \quad \nu_{\mu} \square |U_{\mu i}|^{2} \quad \nu_{\tau} \square |U_{\tau i}|^{2}$

Addressing Solar Sector

Leading Order Oscillation Picture

Atmospheric Oscillation

- $v_{\mu} \rightarrow v_{\tau}$ $\Delta \mathbf{m}^2 \approx \mathbf{10}^{-3} \, \mathbf{eV}^2$
- $sin^{2}(\theta) \approx 0.5$ (but non max)

Solar Oscillation

- $v_e \rightarrow v_{\mu,\tau}$ $\Delta m^2 \approx 10^{-4} eV^2$
- sin²(θ) ≈ 0.3

Th. Lasserre – SILAFAE 2012

 θ_{13}

- Need to connect the v_e flavour with the isolated neutrino (Δm_{atm}²)
 - L~1 km, E~MeV
 - disappearance expt. @reactor
 - θ_{13} only \rightarrow 'clean'
 - L~1000 km, E~GeV
 - accelerator experiments
 - appearance expt. @Beam
 - ■(θ₁₃, NH/IH, δ_{CP})
 - \rightarrow correlations & degeneracies

→ Complementary projects

 $\nu_{e} \square |U_{ei}|^{2} \quad \nu_{\mu} \square |U_{\mu i}|^{2} \quad \nu_{\tau} \square |U_{\tau i}|^{2}$

Beam Neutrino Experiments

V-Beam: Oscillation Physics

- Complex oscillation formula
- → depends on sin²($2\theta_{13}$), Δm_{31}^2 , sign(Δm_{31}^2), δ
- Seven and the seven appearance experiments
- → $sin^2(2\theta_{13})$ measurement depends on δ -CP
- >> MeV neutrinos + >>100 km baseline \rightarrow matter effects
- → $sin^2(2\theta_{13})$ measurement independent of $sign(\Delta m_{13}^2)$

Very sensitive to apparition

Correlation & degeneracies

- Channel: $v_{\mu} \rightarrow v_{e}$ (1st goal: search for non-zero θ_{13} , beam contamination, NC-1 π_{0}) • Channel: $v_{\mu} \rightarrow v_{\mu}$ (sin² 2 θ_{23} @ 1% & Δm^{2}_{23} @ 2%, single pion production)
- Detection, CCQE: $\nu_{I} + n \rightarrow p + l^{-}$ (l=e, μ)

Beam Setup:

- Off-axis beam (2.5°), ramping to 750 kW...
- Quasi-monochromatic ν_{μ} beam (400 MeV)
- Small intrinsic ν_{e} contamination
- Reduced high-E non-CCQE backgrounds
- Far Detector at 295 km:
 - Super Kamiokande (50 kt)
- Near Detector at 280 m:
 - On & Off-Axis detectors (Ingrid & ND280)

Latest T2K results on θ_{13}

- New results on $\nu_{\mu} \rightarrow \nu_{e}$ based on 3 x 10²⁰ pot (4% exposure's goal)
- Expected Background: 3.22±0.43
 intrinsic ν_e contamination
 π⁰ from NC interactions
- 11 candidate events Indication of ν_{e} appearance
- Under θ_{13} =0 hypothesis, P(obs>11 events) = 0.08% (3.2 σ)
- Next Goals:
 - Still limited by stat!
 - Achieve 5 σ in 2012 (8 x 10²⁰ pot)
 - Upgrade JPARC (7.5x 10²¹ pot in 2021)

Reactor Neutrino Experiments

Reactor: Oscillation Physics

 $P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \sin^{2}(2\theta_{13}) \left[\sin\left(1.27 \frac{\Delta m_{atm}^{2} (eV^{2})L(m)}{E(MeV)}\right) + O(\frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}}) \right]$

- Simple oscillation formula
- \rightarrow depends sin²(2 θ_{13}) & Δm_{atm}^2 , weakly on Δm_{sol}^2
- → $sin^2(2\theta_{13})$ measurement independent of δ -CP
- MeV neutrinos + 1 km baseline → no matter effects O[10⁻⁴]
- → $sin^2(2\theta_{13})$ measurement independent of $sign(\Delta m^2_{13})$

'clean' information on θ_{13}

```
Th. Lasserre – SILAFAE 2012
```

Reactor: Experimental Concept

Cea

Double Chooz: Site

Double Chooz

New 4-region large detector concept from Double Chooz Coll. (2003)

Daya Bay and Reno

Cea

2 detectors, Gd-volume: 40 m³

Cea

Reactor Results on $sin^2(2\theta_{13})$

Rate+shape analysis BG constraints with reactor off-off data

0.089±0.011(0.010stat±0.005sys)

Leading precision now 15% error But still rate only analysis

Th. Lasserre – SILAFAE 2012

Rate only measurement **Concerns on the analysis** [5-12] MeV region used for osc. analysis...

Summary of the θ_{13} Results

Global Fit (NuFit 2012)

First 'constraint' on δ

0.4

0.7

360

Question 2) What is the spectral mass pattern ?

Sign of Δm^2_{31}

Cea

MH: middle term projects

2012: Large θ_{13} open the door to new initiatives:

- Atmospheric neutrino L/E measurement
 Pingu (Ice-Cube) & Orca (KM3net)
- 50 kt scale reactor experiment at 55 km
 Daya-Bay II
- Atmospheric neutrino in magnetized detector
 INO
- Beam of Neutrinos in Matter

Prospects: results before 2020?

MH & Matter Effect

 Coherent neutrino forward scattering from ambient matter

- CC interaction of $\nu_{\rm e}$ with the electrons creates a potential for $\nu_{\rm e}$

A $\alpha \pm \mathbf{G}_{\mathsf{F}} \mathbf{N}_{\mathsf{e}} \mathbf{E}_{\mathsf{v}}$ (+ for v, - for anti-v)

• 'A' modifies the mass eigenstates values and thus the oscillation prob.

- 'A' lead to $P(v_{\alpha} \rightarrow v_{\beta}) \neq P(\overline{v_{\alpha}} \rightarrow \overline{v_{\beta}})$
- \rightarrow Mimicking CP- δ effect

Th. Lasserre – SILAFAE 2012

Nova: 40% chance tagging MH @2 σ

IceCube Neutrino Telescope

Existing: 1 km³ antarctic ice instrumented with 5160 PMTs + Deep Core 20 strings to reduce threshold

Next: PinGU → Add 20 strings within DeepCore

MH with PINGU (& ORCA)

- Lower Threshold to few GeV
 - Fine mesh string array
- Keep Megaton volume
- Matter Effects:

IH/NH has up to a 20% difference in oscillation probability for specific energies and zenith angles

- Promising but sensitivity under study...
- Deployment by 2018
- Similar project in the Mediterranean see (Orca)

Length (km)

Question 3) Do the behavior of ν violate CP?

MH & CPV: long term projects

$\overset{\text{cea}}{=} \text{LBNO: Mass Hierarchy} (\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

Excellent prospect – Earliest schedule for 5\sigma : 2026 (start + 3 years)

Towards CP-violation Search

$$P(v_{e} \rightarrow v_{\mu}) = |A|^{2} + |S|^{2} + 2 A S \sin \delta$$

$$P(v_{e} \rightarrow v_{\mu}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})$$

$$A_{CP} \alpha \frac{P(v_{e} \rightarrow v_{\mu}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})}{P(v_{e} \rightarrow v_{\mu}) + P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})}$$

$$A_{CP} = \frac{2 \text{ AS } \sin \delta}{|A_1'^2 + |S_1'^2|} = \frac{\sin (\Delta m^2 \text{ L}/4\text{E}) \sin \theta_{12} \sin \theta_{13} \sin \delta}{\sin^2 2\theta_{13} + \text{ solar term...}}$$

HK: CPV signal $(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$

- Identity CC v_e events
- Comparison between $P(v_{\mu} \rightarrow v_{e}) \& P(anti-v_{\mu} \rightarrow anti-v_{e})$
 - Up to 25% difference expected
- Need statistics → 1 Mt H₂O for HK (x25 SK)

CPV Signal in LBNO (1.5e21 pot)

- Search for a P($v_{\mu} \rightarrow v_{e}$) / P(anti- $v_{\mu} \rightarrow$ anti- v_{e}) asymmetry
- LBNO: 20 kt, 12 years of data → <u>limited by statistics!</u>
 - Maximize #events at 1st max osc. peak
 - While enhancing 1st / 2nd oscillation peak ratio

Th. Lasserre – SILAFAE 2012

LBNO(E), HK: CPV Sensitivity

Rejection of the null hypothesis for different CP values

Th. Lasserre – SILAFAE 2012

Question 4)

What are the masses of the mass eigenstates ?

Neutrino Mass Scale

Th. Lasserre – CIPANP 2012

Finding the Neutrino Mass Scale

- Astrophysics
 - Supernovae, from 1987A m < 23eV</p>
- Cosmology (look forward for Planck results in 2013)
 - CMB+ Large Scale Structures +... $\sum m_i < 0.6 2 \text{ eV}$
- Fermion Decays
 - μ , τ decays relatively poor sensitivity
 - β decay
 - β β decay
- Neutrino Oscillations
 - No absolute scale but only square of mass differences

Beta Decay

•
$$\beta^{-}$$
 Decay: $_{Z}^{A}X \rightarrow _{Z+1}^{A}X + e^{-} + \overline{\nu_{e}}$

Energy spectrum shape depends on v mass

- Based on kinematics and energy conservation
- Weak dependence on theory
- Sensitive to incoherent sum:

$$\langle \mathbf{m}_{\beta} \rangle = \sqrt{\sum_{1,2,3,\dots} |\mathbf{U}_{ei}|^2 \mathbf{m}_i^2}$$

 Best constraint by Mainz & Troitsk Experiments

■ <m_β> < 2.2 eV

Absolute Mass From Beta decay

Tritium beta decay ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + e^{-} + \overline{\nu_{e}}$

Beta Decay: KATRIN

- Measure both shape and energy of e⁻ in the last few eV below the Tritium beta decay endpoint energy
- Detector:
 - Gaseous Tritium Source (³H decay, t_{1/2}=12.3 y, Q=18.57 keV)
 - I0 m diameter Magnetic Spectrometer (MAC-E Filter)
- Status: commissioning detector components. Data in 2015
- 90% C.L sensitivity : 0.2 eV

Prospects of Beta Decay (β)

cea

Direct Measurement of the mass scale but no experimental prospect to disentangle NH & IH

Question 4)

Is there a conserved Lepton Number? Eq. Dirac or Majorana ν ?

Double Beta Decay (ββ)

 Second-order process only detectable if first-order β decay is energetically forbidden

•
$$2v:_{Z}^{A}X \rightarrow _{Z+2}^{A}X + 2e^{-} + 2\overline{v_{e}}$$
 (detected)

•
$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |M_{2\nu}|^2 \approx 10^{18-21} \text{ y}$$

• $\mathbf{0}\mathbf{v}: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}X + 2e^{-}$ (not yet seen) • $\Delta \mathbf{L}=2 - \mathbf{M}$ ajorana Neutrino • $\left(T^{0\nu}_{1/2}\right)^{-1} = G_{0\nu} \left|M_{0\nu}\right|^{2} \left|m_{\beta\beta}\right|^{2}$ • $\beta\beta$ mass: $\left\langle m_{\beta\beta} \right\rangle = \left|\sum_{i,2,2} U^{2}_{ei}m_{i}\right|$

^{cea} 2v0β: experimental signature

- Peak at Q = E_{e1} + E_{e2} $2m_e \rightarrow$ Calo (Gerda, KamLAND-Zen)
- Two electrons from same vertex → Tracking (Super Nemo)
- Production of grand-daughter isotope \rightarrow EXO

Rate

Claim of $0v2\beta$ in Ge

- Part of the Heidelberg-Moscow Coll.
 - 72 kg.year Bkg 0.1/(kg.y.keV)
- A Majorana v at large mass scale?
 - Claim of evidence at 4.2 \sigma
 - $T_{1/2}$ = [0.7-4.2] x 10²⁵ y (3 σ)
 - $|m_{\beta\beta}| = [0.17-0.45] \text{ eV} (90\% \text{ CL})$
 - Analysis controversial
- Benchmark for current projects
 - Need O(10² kg·y)
 - Need background reduction x10

Overview of experiments

lsotope	Experiment	Technique	Mass	Enriched	Q _{ββ} [MeV]	Start/Stage
¹³⁰ Te	Cuoricino	TeO ₂ bolometers	40.7kg	No	2.6	Done
⁸² Se, ¹⁰⁰ Mo	NEMO-3	tracko-calo	0.9kg/6.9kg	Yes	3.37	Done
⁷⁶ Ge	GERDA	Ge diodes in LN ₂	34.3kg	86%	2.04	2009
¹³⁶ Xe	EXO-200	LXe [tracking]	l 50kg	80%	2.47	2010
¹³⁶ Xe	KamLAND	Isotope in LS	400kg	90%	2.47	2012
¹³⁰ Te	CUORE	TeO ₂ bolometers	204kg	No	2.53	2014
¹⁵⁰ Nd	SNO+	Isotope in LS	56kg	No/50%	3.37	2014
⁷⁶ Ge	Majorana	Ge diodes	30-60kg	86%	2.04	2015
⁸² Se, ¹⁵⁰ Nd	SuperNEMO	tracko-calo	l 00kg	Yes	3.37	2014
¹⁰⁰ Mo	MOON	tracking	lt	No	3.03	Prototype
116Cd	COBRA	CdZnTe semicond	?	No	2.80	Prototype
⁴⁸ Ca	CANDLES	CaF ₂ cryst in LS	few t	No	4.27	Prototype

GERDA at **LNGS**

Target: ⁷⁶Ge

- Low $2\nu\beta\beta$ rate ($T_{1/2}$ =1.4×10²¹ y)
- High $Q_{\beta\beta}$ value (2039 keV)
- Detector: high purity ⁷⁶Ge-diodes (source & detector) immerged in Lar as shielding and coolant
- Status (Phase 1):
 - Data taking since end 2011
 - Bkg: 0.017+0.009-0.005/(keV·kg·y)
 - \rightarrow Factor 10 bkg reduction wrt HDM
- Future (Phase 2):
 - Factor 10 bkg reduction by LAr scintillation and novel HP-Ge detectors

KamLAND-Zen at Kamioka

- KamLAND LS detector
- Liquid ¹³⁶Xe (92%) in balloon
- 77.6 day x 129 kg of ¹³⁶Xe

2ν2β

- T_{1/2} = (2.38±0.14) x 10²¹ yr
- Consistent with EXO
- **Ο**ν2β
 - T_{1/2} > 5.7 x 10²⁴ yr (90% CL)
 - But Fukushima Contamination
- Upgrade plan:
 - 1 ton ¹³⁶Xe
 - KamLAND upgrade

Th. Lasserre - SILAFAE 2012

EXO-200 at WIPP

- 200 kg liquid enriched ¹³⁶Xe
- TPC (energy and position)
- Data taking since may 2011
 - 32.5 kg-yr
 - Bkg: 1.5 × 10⁻³ kg⁻¹yr⁻¹keV¹
- 2v2β (2011)
 - T_{1/2} = (2.11±0.21) x 10²¹ yr
- **0**ν2β (2012)
 - T_{1/2} > 1.6 x 10²⁵ yr (90% CL)
 - |m_{ββ}| < 140–380 meV
- Prospect: Barium tagging

Prospect of $\beta\beta0\nu$

■ 1- Test the ⁷⁶Ge Claim – $m_{\beta\beta} \approx 100 \text{ meV} \rightarrow \text{ongoing}$ 2- Test the IH scheme - $m_{\beta\beta} \approx 10 \text{ meV}$ 3- Need new ideas / technology - $m_{\beta\beta} \approx 1 \text{ meV}$?

Question 5) Are there additional (sterile) ν states?

Anomalies & 4th Neutrino

Anomaly	Source	Туре	Sensitivity to Oscillation	Channel	Significance
LSND	Decay-at- Rest	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$	<u>Total Rate,</u> Energy	CC	3.8 σ
MiniBoone	Short baseline	$v_{\mu} \rightarrow v_{e}$	<u>Total Rate,</u> Energy	CC	3.8 σ
Gallium	Electron Capture	v _e dis.	Total Rate	CC	3 σ
Reactor	Beta-decay	\overline{v}_e dis.	<u>Total Rate,</u> Energy	CC	3 σ
Cosmology	Big-Bang	All	Number of v, N _{eff}	CC	≈2 o

 \rightarrow could be interpreted by an existing eV² 4th neutrino state...

The Reactor Anomaly

i) v_{emission} : Improved reactor neutrino spectra $\rightarrow +3.5\%$

The reactor anomaly

- 19 experiments reanalyzed
- 7% deficit wrt the new prediction
 - ≈3%: reevaluation of emitted flux
 - ≈3%: reevaluation of
 - IDB cross section parameters
 - Neutron lifetime
 - Accounting for off eq. effect
- 99.7 % C.L. deviation from unity
- Artifact or new physics?

The Reactor Antineutrino Anomaly

The Gallium Neutrino Anomaly

Cea

Gallium & Reactor: v_e disappearance

v_{μ} disappearance data

- No anomaly for $\Delta m^2 \approx 1 \text{ eV}^2$ but limited sensitivity
- No contradiction with v_e disappearance data but v_μ dis must be observed if $\approx eV^2$ sterile neutrino exists
- But strong constraint for $v_{\mu} \rightarrow v_{e}$ channel :

 $sin^2 2\theta_{\mu e} = 0.25 sin^2 2\theta_{\mu\mu} sin^2 2\theta_{ee}$

Impact on global fits: no satisfactory solution (tension with Miniboone)

Number of v's From Cosmology

Universe Expansion Rate $H^2 \approx (\rho_v + \rho_v)$ - ρ_v given by CMB data

12

-4	-2	0	2	4	6	8	10	
	тттртт							
X		Ģ+SN+H0				- 4.30	+1.40 +2.30 0.54 - 1.09	
X	V7+CMB+BA	O+SN+H0		•		4.20	+1.10 +2.00 ∙0.61 -1.14	
V	V7+CMB+LR	G+H0	H		A	- 4.87	±2.02	
X	V7+CMB+BA	O+H0	-			3.68	⊧1.90 · 1.84	
X	V-7+ACT+SF	PT+BAO+H	10	-		4.00	± 0.43	
Ņ	V-7+ACT+SF	PT+BAO+H	10	-		4.03	± 0.45	
Х	V-7+BAO+H()		<u>+</u>		4.61 :	± 0.96	
V	V-7+ACT+SF	PT+BAO+H	0	I	*	- 4.87	⊧1.86 · 1.75	
V	V-7+CMB+B/	AO+H0	H	*		4.47	⊧1.82 · 1.74	
Ķ	V-7+ACT+SF	PT+BAO+H	10	⊢▲⊣		3.890	±0.410	
Ņ	V-7+ACT+SF	PT+LRG+H	0	⊢ ▲	•	4.080	+0.710 - 0.680	
V	V-7+SPT+BA	O+H0		⊢ ▲-1		3.850	±0.420	
Ņ	V-7+SPT			⊢ ▲•		3.850	±0.620	
Ņ	V-7+ACT+BA	AO+H0		⊢▲		4.560	±0.750	
V	V7+ACT			⊢	*	- 5.300	±1.300	
Ķ	V-7+LRG+H0)		│ ⊢ ⊸▲─		4.250	+0.860 - 0.880	
Ň	V-7+BAP+HC)				4.340	+0.860 - 0.880	
V	V-5+LRG+ma	axBCG+H0)3 H	⊢ ▲ →		3.770	±0.670	+1.370 - 1.240
V	V-5+CMB+B/	AO+XLF+f	gas+H0			3.400	+0.600 - 0.500	
Ņ	V-5+LRG+H0)	н	⊢ ••▲		4.160	±0.670	+1.370 - 1.240
				bew	are: cor	related n	neasurer	nents
							<u> </u>	
-4	-2	0	2	4	6	8	10	

Cosmic Microwave Background / and Large Scale Structures

Big Bang Nucleosynthesis

 \rightarrow a 4th \vee favored at 2 σ

Number of Neutrino Types

Th. Lasserre – SILAFAE 2012

12

Neutrino Mass From Cosmology

- Standard candles (distance vs redshift)
 - Type I-a SN, BAO
- Cosmic microwave background anisotropies
 - COBE, WMAP, later Planck
- Large-scale structure (LSS) distribution
 - Galaxy clustering, Cluster abundance, Grav. lensing, Lyman
- \rightarrow flat \land CDM model
- Constraint on Neutrino mass and Number
 - m_{heavier} < about 1 eV</p>

$\overline{\mathbf{v}}_{\mathbf{e}}$ Testing $\overline{\mathbf{v}}_{\mathbf{e}}$ disappearance anomalies

- GA & RAA arise from comparisons between data and event prediction → Need a conclusive technique
- Input from Sterile Neutrino Fits

• $\Delta m^2 \approx eV^2 \rightarrow L_{osc}(m) = 2.5 \frac{E(MeV)}{\Delta m^2 (eV^2)} \approx 2 - 10 \text{ m}$

■ sin²(2 θ_{new}) \approx 0.1

- Experimental Specifications
 - Search for L, E, L/E pattern (shape only)
 - Complement with a <u>rate analysis</u> (direct test of RAA+GA)
 - $\Delta m^2 \approx eV^2$: <u>compact source</u> <<1m & <u>good vertex resolution</u> (<<1m)
 - sin²(2θ_{new}) : experiment with <u>few % stat. syst. uncertainties</u>

Many Other Projects: Overview

Experiment Type	Appearance / Disappearance	Oscillation Channel	Projects	
Reactor	Disappearance	$\bar{v_e} \rightarrow \bar{v_e}$	Nucifer, Stéréo, Scraam, Neutrino-4, DANSS, Poséidon, MARS,	
Radioactive Source Disappearance		$ \begin{array}{c} \bar{\nu_e} \rightarrow \ \bar{\nu_e} \\ \nu_e \rightarrow \nu_e \end{array} $	CeLAND, SOX (Cr & Ce), Sage2, SNO+, LENS-s	
Cyclotron	Disappearance	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	IsoDAR	
Pion / Kaon Decay- at-Rest	Apparition & Disappearance	$ \begin{array}{c} \bar{v_{\mu}} \rightarrow \bar{v_{e}} \\ v_{e} \rightarrow v_{e} \end{array} $	OscSNS, CLEAR, DAEδALUS, KDAR	
Pion Decay- in-Flight (Beam)	Appearance & Disappearance	$\begin{array}{c} \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu} \\ \mathbf{v}_{e} \rightarrow \mathbf{v}_{e} \end{array}$	MINOS+, MicroBooNE, LAr1kton+MicroBooNE, Icarus/Nessie@CERN	
Low-E Neutrino Factory	Appearance & Disappearance	$\begin{array}{c} \nu_{\underline{e}} \rightarrow \nu_{\underline{\mu}} \\ \overline{\nu_{e}} \rightarrow \nu_{\mu} \\ \nu_{\underline{\mu}} \rightarrow \nu_{\underline{\mu}} \\ \overline{\nu_{e}} \rightarrow \nu_{e} \end{array}$	vSTORM@Fermilab	

Th. Lasserre – SILAFAE 2012

Light Sterile Neutrino White Paper arXiv:1204.5379

Oscillometry inside a v-detector

- Place the v-emitter inside or close to existing detectors
 - Very short Baseline (few m)
 - Low Background
- i) v-source at center

$$\frac{dN_{\nu}}{dR} \propto \left[1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 R}{\langle E \rangle}\right)\right]$$

ii) v-source Outside LS

 Specific oscillation pattern analytically computable

ν -source proposals Overview

Туре	channel	Backgroun d	Source	Production	Activity (Mci)		Proposal
	$\nu_{e} \mathbf{e} \rightarrow \nu_{e} \mathbf{e}$	radioactivity	⁵¹ Cr	n _{th} irrediction	in	>3	Sage LENS
$ u_{\rm e}$	Compton edge	(managable) Solar ν (irreducible)	0.75 MeV t _{1/2} =26d	in Reactor	out	5-10	<mark>SOX</mark> * SNO+
	5% F		³⁷ Ar 0.8 MeV t _{1/2} =35d	n _{fast} irradiation in Reactor (breeder)	in	>1	-
	15cm R _{res}	<pre> / -Source (out ok but in ?) </pre>			out	5	Ricochet (NC)
₽e	ν¯ _e p→e⁺ n	reactor ν & ν -Source → Background free!	¹⁴⁴ Ce E<3MeV t _{1/2} =285d ⁹⁰ Sr ¹⁰⁶ Rh ⁴² Ar	spent nuclear fuel reprocessing	in	0.005-0.05	CeLAND* SOX
	E _{th} =1.8 MeV				out	0.5	Daya-Bay
	(e⁺,n) Coincidence				-	-	-
	5% E _{res} 15cm R _{res}			?	-	-	-

Source proposal sensitivities Testing Gallium & Reactor Ano.

Cea

Conclusion (1/2)

Neutrinos mix and oscillate. A lot's of momentum to understand the neutrino mixing properties ! Neutrino ≠ Quark mixing

	1	0.2	0.001		0.8	0.5	0.16
U _{CKM} =	0.2	1	0.01	U _{PMNS} ≈	0.4	0.6	0.7
	0.001	0.01	1		0.4	0.6	0.7

 Large undergoing program towards the measurement of neutrino masses (Katrin, Gerda, EXO/KamLAND-Zen...)

- Two mixing angles and mass splitting measured
- NEW: θ₁₃ measured (DC/DB/RENO/T2K)
- \rightarrow Lot's of prospects for Mass Hierarchy determination
- \rightarrow Open the way for CP violation measurements (LBNE, LBNO, HK)

Conclusion (2/2)

A bunch of anomalies calling for clarification:

- LSND (ν_s , $\Delta m^2 \approx eV^2$?) & Miniboone ?
- Gallium Anomaly (ν_s , $\Delta m^2 \approx eV^2$?)
- Reactor Anomaly (ν_s , $\Delta m^2 \approx eV^2$?)
- Hint in favor of sterile neutrinos is compatible with cosmological data (CMB, LSS, BBN), though ≈1 eV-scale mass is a too heavy
- Bunch of 2 to 3 σ effects but cannot be ignored...
- Need for new conclusive short baseline experiments, more than
 20 projects under study or review

Additional Slides

Th. Lasserre – SILAFAE 2012

LBNO & LBNE CPV Sensitivity

Fraction of δ in % for which expected CPV (sin $\delta \neq 0$) significance is >3 σ

 Assume same systematic errors for both setups

Cea

- LBNE 10 kton
 @ 1300 km
- LBNO 20kton
 @ 2300 km

Hyper-K CPV Sensitivity

Fraction of δ in % for which expected CPV (sin $\delta \neq 0$) significance is >3 σ

Th. Lasserre – SILAFAE 2012

Puzzling 1981 ILL v-experiment

- Reactor at ILL with almost pure ²³⁵U, with compact core
- Detector 8.8 m from a COMPACT core
- Reanalysis in 1995 to account for overestimation of flux at ILL reactor by 10%... Affects the rate only but 20% deficit!

Large errors, but a striking pattern is seen by eye ?

Two mass hierarchies allowed

Th. Lasserre – SILAFAE 2012

Other proposal sensitivities

Th. Lasserre – SILAFAE 2012