S₄ Flavored CP Symmetry for Neutrinos

Mohapatra, Nishi, PRD86, 073007(2012)

Celso C. Nishi¹

Universidade Federal do ABC Santo André, SP, Brazil

IX Latin American Symposium on High Energy Physics December - 2012

¹celso.nishi@ufabc.edu.br

◆□ > ◆檀 > ◆臣 > ◆臣 > 三臣 -

2 The model

• Harrison, Perkins, Scott ('02) \rightarrow TBM

$$V_{
m MNS} pprox {\cal U}_{
m TB} = egin{pmatrix} \sqrt{2\over 3} & rac{1}{\sqrt{3}} & 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix} \,.$$

- Very good approximation until recently!
- Daya-Bay, RENO, 2012: $heta_{13} \approx 9^\circ$
- Assume still good approximation in some limit
- TBM from flavor symmetry?
- 3 families \rightarrow groups with 3-dim irreps

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

• Harrison, Perkins, Scott ('02) \rightarrow TBM

$$V_{\rm MNS} pprox U_{\rm TB} = egin{pmatrix} \sqrt{2\over 3} & rac{1}{\sqrt{3}} &
eq 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

- Very good approximation until recently!
- Daya-Bay, RENO, 2012: $\theta_{13} \approx 9^{\circ}$
- Assume still good approximation in some limit
- TBM from flavor symmetry?
- 3 families \rightarrow groups with 3-dim irreps

・ロット (雪) (日) (日)

• Harrison, Perkins, Scott ('02) \rightarrow TBM

$$V_{\rm MNS} pprox U_{\rm TB} = egin{pmatrix} \sqrt{2 \over 3} & rac{1}{\sqrt{3}} &
eq 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

- Very good approximation until recently!
- Daya-Bay, RENO, 2012: $\theta_{13} \approx 9^{\circ}$
- Assume still good approximation in some limit
- TBM from flavor symmetry?
- 3 families \rightarrow groups with 3-dim irreps

・ロット (雪) (日) (日)

• Harrison, Perkins, Scott ('02) \rightarrow TBM

$$V_{\rm MNS} pprox U_{\rm TB} = egin{pmatrix} \sqrt{2\over 3} & rac{1}{\sqrt{3}} &
eq 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

- Very good approximation until recently!
- Daya-Bay, RENO, 2012: $\theta_{13} \approx 9^{\circ}$
- Assume still good approximation in some limit
- TBM from flavor symmetry?
- 3 families \rightarrow groups with 3-dim irreps

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• Harrison, Perkins, Scott ('02) \rightarrow TBM

$$V_{\rm MNS} pprox U_{\rm TB} = egin{pmatrix} \sqrt{2\over 3} & rac{1}{\sqrt{3}} &
eq 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

- Very good approximation until recently!
- Daya-Bay, RENO, 2012: $\theta_{13} \approx 9^{\circ}$
- Assume still good approximation in some limit
- TBM from flavor symmetry?
- 3 families \rightarrow groups with 3-dim irreps

A D > A P > A D > A D >

• Harrison, Perkins, Scott ('02) \rightarrow TBM

$$V_{\rm MNS} pprox U_{\rm TB} = egin{pmatrix} \sqrt{2 \over 3} & rac{1}{\sqrt{3}} &
eq 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

- Very good approximation until recently!
- Daya-Bay, RENO, 2012: $\theta_{13} \approx 9^{\circ}$
- Assume still good approximation in some limit
- TBM from flavor symmetry?
- 3 families \rightarrow groups with 3-dim irreps

・ロット (雪) (日) (日)

Tribimaximal mixing & flavor symmetries

- U_l diagonalizes $\overline{M}_l = M_l M_l^{\dagger}$ • $V_{\rm MNS} = U_l^{\dagger} U_{\nu}$ U_{μ} diagonalizes M_{μ} (Majorana)
- Fix a basis \rightarrow Flavor basis \rightarrow diagonal $\bar{M}_l = \text{diag}(m_e^2, m_\mu^2, m_\tau^2)$
- Symmetries of TBM

 $G_l \simeq U(1) \times U(1)$ of \bar{M}_l : $T^{\dagger} \bar{M}_l T = \bar{M}_l$ $T = egin{pmatrix} e^{ilpha_1} & 0 & 0 \ 0 & e^{ilpha_2} & 0 \ 0 & 0 & e^{-i(lpha_1+lpha_2)} \end{pmatrix}$ $G_{\nu} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ of M_{ν} : $G_i^{\mathsf{T}} M_{\nu} G_i = M_{\nu}$ $G_2 = -rac{1}{3} egin{pmatrix} 1 & -2 & -2 \ -2 & 1 & -2 \ -2 & -2 & 1 \ \end{pmatrix} \quad G_3 = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \ \end{pmatrix} \quad G_1 = G_2 G_3$ "magic" symmetry μ - τ symmetry automatic (Grimus,Lavoura,Ludl,'09) ٠ specific to TBM

<□> <@> <良> <良> <良> □

٠

Tribimaximal mixing & finite flavor symmetries

- Restrict to finite groups \rightarrow finite *T*
- Model: $G_F \rightarrow G_I$ or G_{ν} in each sector
- Flavor group G_F containing $G_l, G_{\nu}|_{TR} \rightarrow$ should contain

 S_4 .am.'08

$$G_{F} = S_{4}$$

$$G_{I} = \langle T \rangle \simeq \mathbb{Z}_{3} \qquad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \end{pmatrix} \qquad \omega \equiv e^{i2\pi/3}$$

$$G_{\nu} = \langle G_{2}, G_{3} \rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \qquad G_{2} = -\frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

$$G_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

• In another basis of $G_F = S_4$

$$\begin{array}{c} G_{l} = \langle T \rangle \simeq \mathbb{Z}_{3} \\ \hline G_{\nu} = \langle G_{2}, G_{3} \rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\ \hline G_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ \hline G_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{array}$$

usual **3** representation of S_4

• can be generated by T and

nd
$$S = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

ж

- Flavor symmetries v.s. residual symmetries of \overline{M}_l and M_{ν}
- Some residual symmetries may be accidental
- Different groups $A_4, S_4, \Delta(27), T_7, \ldots$
- $\theta_{13} \neq 0 \implies \text{TBM is not exact!}$
 - Include corrections
 - Different symmetries

•
$$\mu$$
- τ symmetry $\implies \theta_{13} = 0$

• μ - τ reflection \implies $\theta_{23} = 45^{\circ}, \delta_D = \pm 90^{\circ}$ if $\theta_{13} \neq 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} M_{\nu}^{*} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = M_{\nu}$$

 μ - τ interchange w/ c.c. Harrison & Scott, '02 Grimus & Lavoura, '03

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

- Flavor symmetries v.s. residual symmetries of \bar{M}_l and M_{ν}
- Some residual symmetries may be accidental
- Different groups $A_4, S_4, \Delta(27), T_7, \ldots$
- $\theta_{13} \neq 0 \implies \text{TBM is not exact!}$
 - Include corrections
 - Different symmetries

•
$$\mu$$
- τ symmetry $\implies \theta_{13} = 0$

• μ - τ reflection $\implies \theta_{23} = 45^\circ, \delta_D = \pm 90^\circ \text{ if } \theta_{13} \neq 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} M_{\nu}^{*} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = M_{\nu}$$

 μ - τ interchange w/ c.c. Harrison & Scott, '02 Grimus & Lavoura, '03

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

- Flavor symmetries v.s. residual symmetries of \overline{M}_l and M_{ν}
- Some residual symmetries may be accidental
- Different groups $A_4, S_4, \Delta(27), T_7, \ldots$
- $\theta_{13} \neq 0 \implies \text{TBM is not exact!}$
 - Include corrections
 - Different symmetries

•
$$\mu$$
- τ symmetry $\implies \theta_{13} = 0$ \times

• μ - τ reflection \implies $\theta_{23} = 45^{\circ}, \delta_D = \pm 90^{\circ}$ if $\theta_{13} \neq 0$

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} M_{
u}^{*} egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} = M_{
u}$$

 μ - τ interchange w/ c.c. Harrison & Scott, '02 Grimus & Lavoura, '03

(日)

- Flavor symmetries v.s. residual symmetries of \bar{M}_l and M_{ν}
- Some residual symmetries may be accidental
- Different groups $A_4, S_4, \Delta(27), T_7, \ldots$
- $\theta_{13} \neq 0 \implies \text{TBM is not exact!}$
 - Include corrections
 - Different symmetries

•
$$\mu$$
- τ symmetry $\implies \theta_{13} = 0$ \times

• μ - τ reflection $\implies \theta_{23} = 45^{\circ}, \delta_D = \pm 90^{\circ}$ if $\theta_{13} \neq 0$

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} M_{
u}^{*} egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} = M_{
u}$$

 μ - τ interchange w/ c.c. Harrison & Scott, '02 Grimus & Lavoura, '03

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

- Flavor symmetries v.s. residual symmetries of \bar{M}_l and M_{ν}
- Some residual symmetries may be accidental
- Different groups $A_4, S_4, \Delta(27), T_7, \ldots$
- $\theta_{13} \neq 0 \implies \text{TBM is not exact!}$
 - Include corrections
 - Different symmetries
- μ - τ symmetry $\implies \theta_{13} = 0 \times$
- μ - τ reflection $\implies \theta_{23} = 45^\circ, \delta_D = \pm 90^\circ \text{ if } \theta_{13} \neq 0$

$$egin{pmatrix} (1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} M_{
u}^{*} egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} = M_{
u}$$

 μ - τ interchange w/ c.c. Harrison & Scott, '02 Grimus & Lavoura, '03

・ ロ ト ・ 雪 ト ・ 目 ト ・

Incorporating **CP** in S_4

$$S_{4} \text{ generated by } S = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad T^{3} = S^{4} = 1, \quad ST^{2}S = T$$

$$\tilde{S}_{4} \text{ generated by } \tilde{S} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \cdot CP \qquad T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\tilde{S}_{4} \simeq S_{4} \text{ once we factor } CP^{2} = -1 \text{ for fermions}$$

$$\text{erecipe: extract } \tilde{S}_{4} \text{ subgroup from } S_{4} \otimes \langle CP \rangle$$

$$\text{e irreps of } \tilde{S}_{4} : 3, 1, 1_{\omega}, 1_{\omega^{2}} \text{ from}$$

$$\text{e irreps of } S_{4} : 3, 3', 1, 1', 2$$

The model

3 families of	leptons L_i, I_i	3 Higgs doublets4 Higgs triplets	$egin{array}{c c} \phi_i \ \Delta_0, \Delta_i \end{array} \sim$	(3,2)
Fransforming	under \tilde{S}_4 as			
$L_i \sim 3$	$L_i(x) \stackrel{\tilde{S}}{\longrightarrow} S_{ij}CL_j^*$	$f^*(\hat{x}), \ L_i(x) \stackrel{T}{\longrightarrow} T_{ij}$	$_{j}L_{j}(x); \hat{x}$	$\dot{x} = (x_0, -\mathbf{x})$
$\phi_i \sim 3$	$\phi_i(\mathbf{x}) \stackrel{\tilde{\mathbf{S}}}{\longrightarrow} \mathbf{S}_{ij}\phi_j^*(\mathbf{x})$	\hat{x}), $\phi_i(x) \stackrel{T}{\longrightarrow} T_{ij}\phi$	$\phi_j(x); \sim$	$\Delta_i \sim 3$
$l_1 \sim 1$	$l_1(x) \stackrel{\tilde{s}}{\longrightarrow} Cl_1^*(\hat{x})$	$, I_1(x) \xrightarrow{T} I_1(x);$	\sim	$\Delta_0 \sim \textbf{1}$
$I_2 \sim 1_\omega$	$l_2(x) \stackrel{\tilde{S}}{\longrightarrow} Cl_2^*(\hat{x})$	$\mathbf{k}), \ \mathbf{l}_2(\mathbf{x}) \xrightarrow{T} \omega \mathbf{l}_2(\mathbf{x})$	x);	$\omega = e^{i2\pi/3}$
$I_3 \sim 1_{\omega^2}$	$l_3(x) \stackrel{\tilde{\mathbf{S}}}{\longrightarrow} Cl_3^*(x)$	\hat{x}), $l_3(x) \xrightarrow{T} \omega^2 l_3$	3(<i>X</i>);	문 (문) 문

The model: charged leptons

• Yukawa Lagrangian for charged leptons

$$\begin{split} -\mathcal{L}'_{Y} &= y_{1}(\bar{L}_{1}\phi_{1} + \bar{L}_{2}\phi_{2} + \bar{L}_{3}\phi_{3})l_{1} + y_{2}(\bar{L}_{1}\phi_{1} + \omega^{2}\bar{L}_{2}\phi_{2} + \omega\bar{L}_{3}\phi_{3})l_{2} \\ &+ y_{3}(\bar{L}_{1}\phi_{1} + \omega\bar{L}_{2}\phi_{2} + \omega^{2}\bar{L}_{3}\phi_{3})l_{3} + h.c., \end{split}$$

 y_i real due to \tilde{S}

・ロト ・ 四ト ・ ヨト ・ ヨト

• doublet vevs
$$\langle \phi_i \rangle = \frac{v}{\sqrt{3}}(1,1,1)$$
 $\tilde{S}_4 \rightarrow \tilde{S}_3$
• mass matrix $M_l = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \operatorname{diag}(m_e, m_\mu, m_\tau)$
 $U_\omega^* \implies U_l^\dagger = U_\omega$

э

The model: neutrinos

• Type II seesaw

$$\begin{split} -\mathcal{L}^{\nu} &= \frac{1}{2} \textit{f}_0 \overline{\textit{L}_i^c} \epsilon \Delta_0 \textit{L}_i + \textit{f}_1 \left(\overline{\textit{L}_2^c} \epsilon \Delta_1 \textit{L}_3 + \overline{\textit{L}_3^c} \epsilon \Delta_2 \textit{L}_1 + \overline{\textit{L}_1^c} \epsilon \Delta_3 \textit{L}_2 \right) + \textit{h.c.}, \\ & \textit{f}_0, \textit{f}_1 \text{ real due to } \tilde{\textit{S}} \end{split}$$

• Triplet vevs
$$\langle \Delta_0^{(0)} \rangle = u_0, \ \langle \Delta_i^{(0)} \rangle = u_i$$

• Mass matrix $M_{\nu} = \begin{pmatrix} a & f & e \\ f & a & d \\ e & d & a \end{pmatrix}$ a, d, e, f real
• In flavor basis $U_{\omega}^{\dagger} M_{\nu} U_{\omega}^* = \begin{pmatrix} x & z & z^* \\ z & -2z^* & y \\ z^* & y & -2z \end{pmatrix}$

æ

The model: neutrinos

• Type II seesaw

$$\begin{split} -\mathcal{L}^{\nu} &= \frac{1}{2} f_0 \overline{L_i^c} \epsilon \Delta_0 L_i + f_1 \big(\overline{L_2^c} \epsilon \Delta_1 L_3 + \overline{L_3^c} \epsilon \Delta_2 L_1 + \overline{L_1^c} \epsilon \Delta_3 L_2 \big) + h.c., \\ f_0, f_1 \text{ real due to } \tilde{S} \end{split}$$

• Triplet vevs
$$\langle \Delta_0^{(0)} \rangle = u_0$$
, $\langle \Delta_i^{(0)} \rangle = u_i$ real
• Mass matrix $M_{\nu} = \begin{pmatrix} a & f & e \\ f & a & d \\ e & d & a \end{pmatrix}$ a, d, e, f real
• In flavor basis $U_{\omega}^{\dagger} M_{\nu} U_{\omega}^* = \begin{pmatrix} x & z & z^* \\ z & -2z^* & y \\ z^* & y & -2z \end{pmatrix}$

æ

The model: neutrinos

• Type II seesaw

$$\begin{split} -\mathcal{L}^{\nu} &= \frac{1}{2} f_0 \overline{L_i^c} \epsilon \Delta_0 L_i + f_1 \big(\overline{L_2^c} \epsilon \Delta_1 L_3 + \overline{L_3^c} \epsilon \Delta_2 L_1 + \overline{L_1^c} \epsilon \Delta_3 L_2 \big) + h.c., \\ f_0, f_1 \text{ real due to } \tilde{S} \end{split}$$

• Triplet vevs
$$\langle \Delta_0^{(0)} \rangle = u_0$$
, $\langle \Delta_i^{(0)} \rangle = u_i$ real
• Mass matrix $M_{\nu} = \begin{pmatrix} a & f & e \\ f & a & d \\ e & d & a \end{pmatrix}$ a, d, e, f real
• In flavor basis $U_{\omega}^{\dagger} M_{\nu} U_{\omega}^* = \begin{pmatrix} x & z & z^* \\ z & -2z^* & y \\ z^* & y & -2z \end{pmatrix}$ μ - τ reflection!
accidental

æ

- Decompose $V_{\text{MNS}} = U_l^{\dagger} U_{\nu} = U_{\text{TB}} \operatorname{diag}(1, 1, i) U_{\epsilon}$ $U_{\nu} = U U_{\epsilon}$
- U_{ϵ} diagonalizes $M'_{\nu} = U^{\mathsf{T}} M_{\nu} U = \begin{pmatrix} a+d & b & 0 \\ b & a & c \\ 0 & c & a-d \end{pmatrix}$ $U = U^*_{\omega} U_{\mathsf{TB}} \operatorname{diag}(1,1,i)$ $b = \frac{e+f}{\sqrt{2}}, c = \frac{e-f}{\sqrt{2}}$
- TBM : *b* = *c* = 0
 - $m_1 = |d| a, m_2 = a, m_3 = a + |d|$
- $c \neq 0$ controls $\theta_{13} \neq 0$
- $\bullet \ \text{maximal} \ \ \text{Dirac CP phase} \ \leftrightarrow \text{one maximal} \ \ \text{Majorana phase}$
- approximate sum-rule $m_3 2m_2 m_1 \approx 0$
- $a, b, c, d \rightarrow \theta_{12}, \theta_{13}, m_1, m_2, m_3$

no phases

- Decompose $V_{\text{MNS}} = U_l^{\dagger} U_{\nu} = U_{\text{TB}} \operatorname{diag}(1, 1, i) U_{\epsilon}$ $U_{\nu} = U U_{\epsilon}$
- U_{ϵ} diagonalizes $M'_{\nu} = U^{\mathsf{T}} M_{\nu} U = \begin{pmatrix} a+d & b & 0 \\ b & a & c \\ 0 & c & a-d \end{pmatrix}$ $U = U^*_{\omega} U_{\mathsf{TB}} \operatorname{diag}(1, 1, i)$ $b = \frac{e+f}{\sqrt{2}}, c = \frac{e-f}{\sqrt{2}}$
- TBM : *b* = *c* = 0

 $m_1 = |d| - a$, $m_2 = a$, $m_3 = a + |d|$ only normal hierarchy

- $c \neq 0$ controls $\theta_{13} \neq 0$
- $\bullet \ \text{maximal} \quad \text{Dirac CP phase} \quad \leftrightarrow \text{one maximal} \quad \text{Majorana phase}$
- approximate sum-rule $m_3 2m_2 m_1 \approx 0$ no phases

• $a, b, c, d \rightarrow \theta_{12}, \theta_{13}, m_1, m_2, m_3$

- Decompose $V_{\text{MNS}} = U_l^{\dagger} U_{\nu} = U_{\text{TB}} \operatorname{diag}(1, 1, i) U_{\epsilon}$ $U_{\nu} = U U_{\epsilon}$
- U_{ϵ} diagonalizes $M'_{\nu} = U^{\mathsf{T}} M_{\nu} U = \begin{pmatrix} a+d & b & 0 \\ b & a & c \\ 0 & c & a-d \end{pmatrix}$ $U = U^*_{\omega} U_{\mathsf{TB}} \operatorname{diag}(1,1,i)$ $b = \frac{e+f}{\sqrt{2}}, c = \frac{e-f}{\sqrt{2}}$
- TBM : *b* = *c* = 0

 $m_1 = |d| - a$, $m_2 = a$, $m_3 = a + |d|$ only normal hierarchy

- $c \neq 0$ controls $\theta_{13} \neq 0$
- $\bullet \ \text{maximal} \ \ \text{Dirac CP phase} \ \leftrightarrow \text{one maximal} \ \ \text{Majorana phase}$
- approximate sum-rule $m_3 2m_2 m_1 \approx 0$ no phases

• $a, b, c, d \rightarrow \theta_{12}, \theta_{13}, m_1, m_2, m_3$

- Decompose $V_{\text{MNS}} = U_l^{\dagger} U_{\nu} = U_{\text{TB}} \operatorname{diag}(1, 1, i) U_{\epsilon}$ $U_{\nu} = U U_{\epsilon}$
- U_{ϵ} diagonalizes $M'_{\nu} = U^{\mathsf{T}} M_{\nu} U = \begin{pmatrix} a+d & b & 0 \\ b & a & c \\ 0 & c & a-d \end{pmatrix}$ $U = U^*_{\omega} U_{\mathsf{TB}} \operatorname{diag}(1,1,i)$ $b = \frac{e+f}{\sqrt{2}}, c = \frac{e-f}{\sqrt{2}}$
- TBM : *b* = *c* = 0

 $m_1 = |d| - a$, $m_2 = a$, $m_3 = a + |d|$ only normal hierarchy

- $c \neq 0$ controls $\theta_{13} \neq 0$
- approximate sum-rule $m_3 2m_2 m_1 \approx 0$ no phases

• $a, b, c, d \rightarrow \theta_{12}, \theta_{13}, m_1, m_2, m_3$

- Decompose $V_{\text{MNS}} = U_l^{\dagger} U_{\nu} = U_{\text{TB}} \operatorname{diag}(1, 1, i) U_{\epsilon}$ $U_{\nu} = U U_{\epsilon}$
- U_{ϵ} diagonalizes $M'_{\nu} = U^{\mathsf{T}} M_{\nu} U = \begin{pmatrix} a+d & b & 0 \\ b & a & c \\ 0 & c & a-d \end{pmatrix}$ $b = \frac{e+f}{\sqrt{2}}, c = \frac{e-f}{\sqrt{2}}$ $U = U_{\omega}^* U_{\text{TB}} \operatorname{diag}(1, 1, i)$
- TBM : b = c = 0

 $m_1 = |d| - a$, $m_2 = a$, $m_3 = a + |d|$ only normal hierarchy

- $c \neq 0$ controls $\theta_{13} \neq 0$
- maximal Dirac CP phase \leftrightarrow one maximal Majorana phase
- approximate sum-rule $m_3 2m_2 m_1 \approx 0$ no phases

• $a, b, c, d \rightarrow \theta_{12}, \theta_{13}, m_1, m_2, m_3$ correlations!
 11
 <□><</td>
 <</td>
 ≥>

 ≥>

 ≥
 <</td>
 <</td>

 <</td>

$(m_1, m_2, m_3) \approx (13, 16, 52) \,\mathrm{meV}$

- pts compatible within 1- σ
- "large masses", small mee
- similar to Ishimori & Ma ('12) but more restrictive

Relation with more general approaches

- Holthausen, Lindner, Schmidt, arXiv:1211.6953
 - General theory: **CP** \leftrightarrow outer automorphism of G_F
 - Clarification of geometric/calculable CP phases
 - Analysis of several relevant cases $A_4, \Delta(27), T_7, \ldots$
 - Consequence to our work:

Ŝ₄ is the only consistent CP extension of A_4 (if 3, 1' are present)

- Feruglio, Hagedorn, Ziegler, arXiv:1211.5560
 - General consequences of including CP
 - Focus on residual CP symmetry in neutrino sector G_{ν}

・ロット 御 とう ひょう く

- Dirac and Majorana phases depending on one angle
- Specific analysis for S₄ (not a complete model)

Conclusions

- A consistent way of incorporating CP into flavor groups
- The only way of defining CP to A₄ (Holthausen, et.al., '12)
- \tilde{S}_4 example, similar to A_4 but more constraining
- Can be further explored for flavor model-building
- Accidental μ - τ reflection leading to maximal δ_D , θ_{23}
- NH and approximate sum-rule (10-15%)
- One maximal Majorana phase

(日)