Recent results from MiniBooNE on neutrino oscillations

Alexis A. Aguilar-Arévalo (ICN-UNAM) (for the MiniBooNE collaboration)

Outline

- LSND and MiniBooNE
- Experiment description
- Oscillations results (v_e , \overline{v}_e appearance)
- Future plans
- Conclusions

MiniBooNE motivation: LSND

- LSND Experiment (Los Alamos, 1993-1998)
- Excess of \overline{v}_{e} in \overline{v}_{μ} beam: Excess= 87.9 ± 22.4 ± 6 (3.8 σ)
- Source is Pion decay at rest: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$, $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e$

 v_e signal: Cherenkov light from e^+ with delayed *n* capture (2.2 MeV γ)

• Interpreted as 2v oscillations: $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \sin^{2}2\theta \sin^{2}(1.27 \Delta m^{2} L/E)$

 $= (0.245 \pm 0.067 \pm 0.045)\%$

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

São Paulo, Brazil 10-14 December 2012

Implication of a high Δm^2 signal

4

Mini-Booster Neutrino Experiment

A. Aguilar-Arévalo (ICN-UNAM)

(SILAFAE-2012)

São Paulo, Brazil

10-14 December 2012

WS: "wrong sign"

Uses π^{\pm} production data from HARP experiment (CERN) 6

(SILAFAE-2012)

Events in MiniBooNE

- Identification based on timing and event *topology.*
- Uses primarily Cherenkov light, but also scintillation light

7

Detector calibration

Experiment progress (10 yr running)

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

São Paulo, Brazil

10-14 December 2012

Background predictions (v & \overline{v})

Similar backgrounds in neutrino and anti-neutrino modes

Backgrounds (v mode)

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

10-14 December 2012

Backgrounds (\overline{v} mode)

Backgrounds (v mode)

 $\Delta \rightarrow N\gamma$ is constrained by the measured resonant NC π^0 rate.

Backgrounds (v mode)

- Events from v interactions with surrounding dirt
- Events at high R pointing towards the center of the detector

São Paulo, Brazil

Fit dirt-enhanced sample to extract dirt event rate with ~18% uncertainty.

Background predictions (v & \overline{v})

Similar backgrounds in neutrino and anti-neutrino modes

Oscillation analysis method Combined fit to $v_e \& v_{\mu}$ data

• For each bin *i*:

$$\Delta_i = N_i^{DATA} - N_i^{MC}$$

• Scan in Δm^2 & sin²20 to calculate -2ln(\mathcal{L}) over v_e & v_μ bins

$$-2 \ln(\mathcal{L}) = \mathbf{\Delta} M^{-1} \mathbf{\Delta}^T + \ln(|M|)$$

- Error matrix M includes systematic errors for $v_e \& v_\mu$ and correlations. $M = M_{om} + M_{Xsec} + M_{flux} + M_{\pi 0} + M_{dirt} + M_{K0} + M_{beam} + \dots$
- \bullet Large ν_{μ} sample constrains many of the uncertainties.

The v_{μ} sample works as a near detector.

Improvements since 2010 publication

In situ measurement of WS contamination in anti-v beam.

• v_{μ} -CCQE angular fit and new constraint from CC π + rate ... agree w/expectation

New SciBooNE constraint on intrinsic v_{c} from K+.

- Found production to be 0.85+-0.12 relative to prediction, consistent with prior MiniBooNE assessment of 1.00 +-0.30.
- Leading error on K+ bkgd becomes ~20% error from cross section.

São Paulo, Brazil

10-14 December 2012

(SILAFAE-2012)

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

Improvements since 2010 publication

Few other minor updates:

- Higher statistics for all MC samples → reduces fluctuations in error matrices
- Added new error matrix for intrinsic v_{a} from K-.
- Improved smoothing algorithm that was being used to assess systematics due to discriminator thresholds and PMT response.
- Applied Q^2 reweighing to CC π + events based on internal MB measurement.

neutrino and anti-neutrino modes, full data sets (2012)

19

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

What we know about the low-E excess

- Not a stat fluctuation, statistically 6σ
- Unlikely to be intrinsic $\nu_{_{\rm e}}$, small bkg at low E
- NC π^0 background dominates
 - → Reduces significance to 3σ
 - → Heavily constrained by NC π^0 in situ measurement
- Region where single γ can contribute
- MB ties $\Delta \rightarrow N\gamma$ expected rate to be 1% of measured NC π^0 rate
 - Number of theory calculations for various single γ processes
 - All find total cross section within 20% of MB ~5x10⁻⁴² cm²/N
 - → Would need nearly 300% change

R. Hill, arxiv:0905.0291 Jenkins & Goldman, arxiv:0906.0984 Serot & Zhang, arxiv:1011.5913

MicroBooNE experiment will study this excess

21

Updated result with anti-neutrinos

Excess (200-1250 MeV):78.2 \pm 20.0 \pm 23.4 No tension between fits in two energy regions Caveat: WS v_{μ} assumed not to oscillate

anti-v mode	E > 200 MeV	E > 475 MeV
χ²(null)	16.6	7.8
Prob(null)	5.4%	24.6%
χ²(bf)	4.8	3.3
Prob(bf)	67.1%	49.2%

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

L/E dependence

- A model independent way to look at the data
- Excess dependence on L/E consistent in the 3 data sets: (MB-v, MB-v, LSND)
- 3+1 and 3+2 models with sterile nu's can fit the data.

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

Simultaneous 3+1 fit to v and anti-v data

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

10-14 December 2012

3+2 model

Allows CP violation effects.

Fits better the shape of MiniBooNE

Better fit to world data (see e.g.

arXiv:1207.4809

excess

(SILAFAE-2012)

10-14 December 2012

Conclusions

- Current MiniBooNE run ended. Collected (6.46_(v)+11.27_(\overline{v})×10²⁰ POT
- In the energy range 200-1250 MeV, MiniBooNE observes an excess of nue candidates in neutrino mode (3.4 σ) and in antineutrino mode (2.8 σ).

The combined excess is 240±34.56±52.6 (3.8σ)

- Simultaneous v_e , \overline{v}_e fits show some tension in data within a simple 2 neutrino oscillation model.
 - Some theoretical ideas exist to alleviate the tension (arXiv:1211.1523)
 - → Much better fit achieved with 3+2 model.
- Future plans/ideas include:
 Run with beam off-target mode to make light Dark Matter search
 - Add scintillator to mineral oil to increase sensitivity to oscillations in low energies.

26

Thank you ! Cartan a Millio Bonda ini si

A. Aguilar-Arévalo (ICN-UNAM)

IX Simposio Latino Americano de Física de Altas Energías

(SILAFAE-2012)

São Paulo, Brazil

10-14 December 2012

Backup

Mini-Booster Neutrino Experiment

A. A. Aguilar-Arevalo¹², C. E. Anderson¹⁵, S. J. Brice⁶, B. C. Brown⁶, L. Bugel¹¹, J. M. Conrad¹¹, Z. Djurcic²,
B. T. Fleming¹⁵, R. Ford⁶, F. G. Garcia⁶, G. T. Garvey⁹, J. Mirabal⁹, J. Grange⁷, J. A. Green^{8,9}, R. Imlay¹⁰, R. A. Johnson³, G. Karagiorgi¹¹, T. Katori^{8,11}, T. Kobilarcik⁶, S. K. Linden¹⁵, W. C. Louis⁹, K. B. M. Mahn⁵,
W. Marsh⁶, C. Mauger⁹, W. Metcalf¹⁰, G. B. Mills⁹, C. D. Moore⁶, J. Mousseau⁷, R. H. Nelson⁴, V. Nguyen¹¹,
P. Nienaber¹⁴, J. A. Nowak¹⁰, B. Osmanov⁷, Z. Pavlovic⁹, D. Perevalov¹, C. C. Polly⁶, H. Ray⁷, B. P. Roe¹³,
A. D. Russell⁶, M. H. Shaevitz⁵, M. Sorel^{5*}, J. Spitz¹⁵, I. Stancu¹, R. J. Stefanski⁶, R. Tayloe⁸, M. Tzanov⁴,
R. G. Van de Water⁹, M. O. Wascko^{10†}, D. H. White⁹, M. J. Wilking⁴, G. P. Zeller⁶, E. D. Zimmerman⁴ (The MiniBooNE Collaboration)

Result with neutrinos (c. 2009)

Result with neutrinos (c. 2009)

MicroBooNE Region E<475 MeV showed excess of v_e -like events: $128.8 \pm 20.4 \pm 38.3$ (3 σ) Shape inconsistent with 2v osc. MicroBooNE will study its origin 475 MeV (G. Karagiorgi) Liquid Ar TPC e/γ discrimination Data v. from µ v_ from K* from K^a π^o misid 0.16 -> Ny 0.14 е other 0.12 Const. Syst. Error 0.1 0.08

1.4 1.5

E_v^{QE} (GeV)

3.

1.2

1

Events / MeV

2.5

1.5

0.5

02

0.6

PRL 102, 101802 (2009)

04

0.8

Result with anti-neutrinos (c. 2011)

Future plans of MiniBooNE

Proposal: Beam off-target running \rightarrow light Dark Matter (DM) search.

- Recent theoretical work highlights light WIMP's (m_{χ} <200 MeV/c²) as good DM candidates. ¹⁰
- Sub-GeV WIMP's could couple to the SM via a mediator with renormalizable interactions. Constraints from particle physics, astrophysics, and cosmology select a U(1) vector V^{μ} as the most viable mediator candidate.
- MiniBooNE has unique opportunity to search for light mass WIMP's/mediators (10-200 MeV/c²) in region consistent with g-2 anomaly.
- How? Run beam off-target to impact protons against 25 m absorber (neutrino production severely reduced), and look for excess of elastic scatters due to WIMP's.

proton
beam
$$\begin{array}{c} \xrightarrow{\pi^+ \to \mu^+ \mathbf{v}_{\mu}} & \mu^+ \to e^+ \mathbf{v}_e \bar{\mathbf{v}}_{\mu} \\ \hline p + p(n) \longrightarrow V^* \longrightarrow \bar{\chi} \chi \\ \pi^0, \eta \longrightarrow V \gamma \longrightarrow \bar{\chi} \chi \gamma \end{array} \xrightarrow{\chi^+ \mathcal{O}} \begin{array}{c} \chi^+ \mathcal{O} \\ \hline \text{(near)} \\ \chi^+ \mathcal{N} \xrightarrow{\chi^+ \mathcal{N}} \chi_+ \chi \end{array}$$

P. deNiverville, D. McKeen and A. Ritz, Phys. Rev. D 86, 035022 (2012)

Future plans of MiniBooNE

LOI: Add scintillator to MB detector oil \rightarrow enhance low E detection

- Add scintillator to the MB oil to allow a test of the NC/CC nature of thelow-E excess. Run for 3 yr to get ~6.5E20 POT. Complementary to MicroBooNE.
- NC neutrino interactions have a higher probability to have associated neutrons than CC interactions. Detection of 2.2 MeV γ from n capture will allow measuring the neutron fraction in low-E events.
- A $\nu_{\rm e}$ appearance search with neutron-fraction measurement, would increase the excess significance beyond 5σ .
- Will allow a study of the strange-quark contribution to nucleon spin, measurement of $v_{\mu}^{12}C \rightarrow \mu^{-12}N$ reaction, test of CCQE assumption in v energy reconstruction.

arXiv:1210.2296

Mini-Booster Neutrino Experiment

Neutrino Interactions (v & \overline{v})

Cross sections modeled with NUANCE event generator (D. Casper, U.C. Irvine)

CCQE events in MiniBooNE

CCQE: Charged-Current Quasi-Elastic Single μ events + decay e

Muon's Energy (E_{μ}) and angle (θ_{μ}) give the neutrino energy:

$$E_{\nu}^{QE} = \frac{2M'_{n}E_{\mu} - [M'^{2}_{n} + m^{2}_{\mu} - M^{2}_{p}]}{2[M'_{n} - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$$

 M_N : Mass of nucleon N

- Events produce Cherenkov light recorded by PMTs (charge, time).
- Two sets of hits separated in time (μ ,e)
- Minimal hits in the veto.
- Require 1st set of hits above decay electron energy endpoint, 2nd set below
- Endpoint of 1st track consistent of vertex of 2nd track.
- Also require events within fiducial volume beam timing, and data quality selections.

e candidate

Signal selection, $\overline{v_e}$ appearance

Identical in neutrino and anti-neutrino analyses.

- The Pre-cuts:
 - → No late time activity, removes μ decay e's, cuts ~80% of v_{μ} CCQE events.
 - → Veto Hits <6, contained & not cosmic ray.
 - → Tank Hits >200 & E_{vis} > 140 MeV, removes NC elastic bkgds. And remaining μ decay e's
 - Radius < 500 cm, far enough from PMT's to avoid hard to model region.</p>
 - → R-to-Wallbackward cut, removes bkgds from beam interacting outside of detector.

Aimed at selecting $\stackrel{(-)}{\nu_{e}}$ -CCQE events $\nu_{e}+n \rightarrow e^{-}+p$ $\overline{\nu_{e}}+p \rightarrow e^{+}+n$

Signal selection, $\overline{v_e}$ appearance

- Form charge (Q) and time (T) PDF's, and fit for track parameters under 3 hypotheses:
 - 1. Track is from electron
 - 2. Track is from Muon
 - 3. Two tracks from γ 's from π^0 decay
- Apply energy-dependent cuts on L(e/μ), L(e/π) and π⁰ mass to search for single electron events.

 Plot events passing cuts as a function of reconstructed energy and fit for two neutrino oscillations

SciBooNE

• SciBooNE: a fine-grained tracking detector 50 m Downstream of proton target in same v beam.

• Provides powerful check of upstream beam content