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Introduction

After the experimental confirmation (SNO, KamLAND,
BOREXINO, etc.) of the existence of neutrino oscillations,
we believe that neutrinos are massive particles.

The mass of the neutrinos is small. From the probes of the
large-scale structure and of the cosmic microwave
background anisotropies we get that ) m <1 eV (Wong,
2011).

The smallness of the neutrino mass is explained in a most
natural way by suggestion that neutrino mass eigenstates
are Majorana particles (Schechter & Valle, 1980).

Despite great experimental efforts (CUORICINO, NEMO,
COBRA, etc.) to reveal the nature of neutrinos, i.e. to say
whether neutrinos are Dirac or Majorana, this issue is still
open.



Majorana and Weyl spinors

Majorana condition in an . -
extended sense WC _17/29” = Ky,

We can choose a specific form of
y-matrices to make a Majorana

K =1

spinor real.

One can express a Majorana io,n &
spinor in terms of the two Yy = TV s £
component Weyl spinors. 1 2

The representation via Weyl
spinors is preferable since
standard model neutrinos are
left-handed particles.

The wave equations for a Weyl n—-@Vn+mo,n =0
spinors can be formally derived . )
from the Dirac equation. S+(OV)s—mo,c =0



Variation methods to describe Weyl
fields dynamics

* A Lagrangian for a Dirac field

is valid for both first- and [ = W(U/“aﬂ —my

second-quantized spinors

* A Lagrangian for a Weyl field et
can be obtained by a direct L =in (o aﬂ)n
substitution of a Majorana i i )
spinor (expressed in terms of ——m?]TO'277 + —m?]TO'277

Weyl spinors) in the Dirac 2 2
Lagrangian :
1 T
e Mass term in the Weyl L, =——mn o,n

Lagrangian vanishes if i is a 2

_ i 1 :
c-numbers spinor +5m77T0'277 0



Possible solutions of the mass term

puzzle

Case (1957) suggested that, since # is a %2 spin field, it should be
expressed via anti-commuting variables. This kind of suggestion is
reasonable but not logical. Case (1957) also “quantizes” this field,
i.e. he expresses it via creation and annihilation operators.
However, this procedure is just a re-expression of already
guantized objects in terms new variables rather than a generic
guantization.

Schechter & Valle (1981) claimed that a massive Weyl field does
not have a proper description in terms of first quantized c-number
spinors. The only possible description of a classical Weyl field can
be made using Grassmann variables (g-numbers). However it is in
contradiction to the fact that a classical fermionic system should
have equivalent c- & g-numbers descriptions.

Ahluwalia et al. (2010) introduced an exotic filed, Eigenspinoren des
LadungsKonjugationsOperators (ELKO), which allowed them
construct a Lagrange formalism for a c-number Majorana spinor.



Hamilton approach for the description
of massive Weyl fields (c-numbers)

H=[ee{z" GV GV +m{n'omsn'on]]

If the particle mass m is real, the functional H is also real, as it
should be for a classical Hamiltonian.

n= o _ (cVyn-mo,n, i= o _ (6"V)r+mo,rx
or on

If we introduce the new variable § = 16, &, we reproduce the
wave equation for a right-handed neutrino.

The canonical equations for # and r decouple. It means that
one cannot reconstruct a Lagrangian.



Quantization of c-number Weyl

spinors
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Two independent ways of quantization

(2) a,(p)="b_(p)

(1) a,(p)=>b,(p) ]
A,

= — (c_ T ci )
| a,(k),a,(p) | =8 (k—p) V2
¢, (K)c,(p)] =& (k—p)

S S A

Expressions (1) and (2) may be regarded as
quantum Majorana conditions.



Lagrange and Hamilton formalisms
for g-number Weyl spinors

e We start from the

. L =in'(6"d, -~mn'on+=my'cn
Lagrangian 2 2

. ®=r-in"=0,®, =71"=0,
* This system has two

. 0L . 9L

second class constraints =T T

. - - : i 1 )
The Hamiltonian H :IUT(GV)MEMUT%U—EW?T%U

* The extended Py
Hamiltonian =3 +@ 414D,

* The Dirac bracket 0,0 (v,0) =10 j~{n.®,}C, @, 1"} = 8 (x~y),

G = {(Di P, }_1
* Wave equation in the n={nx} =(Vn+io,mn,

equivalent form t={m 2} =(&"V)m+ic,mn



Quantization of massive Weyl
fermions (g-numbers)

The quantization of a fermionic field can be made by
the replacement (Gitman & Tyutin 1990)

n—n, T, [(6X).a@y) | =inex).ziy)}, =is(x-y)
The realization of the quantized fields

3
n(x)= lj d p3/2 Ex[p| aw — m aw, e 4 &Iw_ L &jw+ e |,
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[&O' (k)a &jr’ (k,)l_ = 50'0’53 (k _ k,), [aa (k)a Ay (k )]+ — 09 [&; (k)a &;’ (k,)l_ =

The total energy of quantized fields
E_ —Jd3r5{ jd3pE a a_+aa )+divergentterms



Majorana neutrinos in external fields

Now we generalize our treatment to arbitrary neutrino types. Thus
wave functions acquire an indexa=1,2...

We will be mainly interested in neutrino interactions with a
background matter and an external electromagnetic field.

Despite the neutrino charge is zero, a neutrino may participate in
electromagnetic interaction owing to the possible presence of
anomalous magnetic moments (Giunti & Studenikin, 2009).

The interaction of active neutrinos with matter is diagonal in the
flavor basis.

We work with mass eigenstates since only in mass eigenstates basis
we can say if neutrinos are Dirac of Majorana particles (Schechter &
Valle, 1980).

The effective potentials should be transformed to the mass
eigenstates basis.

The interaction with external fields is non-diagonal in the mass
basis unless we discuss a specific case.



Lagrangian for Majorana neutrinos in background
matter and electromagnetlc fields

L =inl(c“d,)m, ——m 1,01, T = ‘0,1, — ghnio,m,
1 . . |
5 [ﬂabﬂiﬁ(B ~iE)o,1, + (1) 41, 0,(B+iE)o7, }

1 . '
—[eno®+iBos; + (€m0, E+iBon,]

*The matrices of magnetic moments (u,,) and electric dipole moments (¢,,) are
Hermitian and antisymmetric. No diagonal interaction with electromagnetic field
is possible.

*The matrix of the interaction with background matter (g#,,) is Hermitian. The
components of this this matrix for different oscillations channels were found by
MD & Studenikin (2002). The zero component, g°_,, is proportional to the effective
matter density. The spatial components, g ,, are the linear combinations of matter
velocities and polarizations

*The complete system which involves terms nondiagonal in neutrino types can be
analyzed only in frames of the perturbation theory. That is why we shall keep only
diagonal interaction with external fields.



Propagators of massive Weyl fermions (g-numbers)
in background matter

The evolution equaﬁons O'ﬂa“n—iaszt+igﬂ0'ﬂ7720, Gzaﬂﬂ—iazmnﬂgﬂoiﬂzo
The causal propagator (Gitman & Tyutin 1990)
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The modified propagator
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The path integral representation of a propagator
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Wave equations for Weyl fermions (c-numbers) in
a background matter and an external
electromagnetic field

The wave equations for # and & can be derived directly from the Dirac equation.
We should recall that the vector term ~ g# , y, , of the matter interaction is
absent for Majorana neutrinos and the axial vector term ~ g , v, Pw, is twice
the corresponding contribution for Dirac neutrinos.

n,-(@Vm, +mon, -u,oB-iE)o,n, +i(g,, +5g,)n,=0
E+(GV)E —mo,& +u 6B+iE)o.E —i(g’ —6g )E =0

The interaction with matter is characterized by a four vector g# , = (g°.,, €.1)-
We discuss the situation when only active neutrinos are present and CP
invariance is conserved. In this case the matrix (g*,,) is symmetric.



Hamiltonian for Weyl spinors
(c-numbers) in external fields

H = J‘d3r[2{ﬂj(5 Vin, —-ni(eVr +m, [772627% +7,0,1, ]}
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Quantization of Weyl fields
(c-numbers) in matter

We separate the total Hamiltonian into H, and H,, parts. H,, contains terms
diagonal in neutrino types whereas H, . is nondiagonal in neutrino types.

Let us discuss the case nonmoving and unpolarized matter, g , = 0.

X _
n” (.= o { ame s a,w em;t}eipr J{(a*)* w_ e + o (a_)* w ew”t}e_ipr}
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Energy levels of a neutrino in a background matter: E” = \/mj +(|p|$g2a)2

a(p)(ES+|pl gl )=4b:(p)(Ip|7el, ). [a:(k),[a:(p)]*l _5 5'(k-p)
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Nondiagonal neutrino interaction

We work in the forward scattering regime, i.e. only the terms, which conserve the
number of particles, should be left.

5 (p-K)p,@ ={ay(Pa,K), A=(xa) ip=[p.H, ]|

We discuss the case when E = 0 and two ultrarelativistic neutrinos, a = 1,2, with
”12 — iﬂ, ”21 = - iﬂ, and k >> maX(ma, goaa).

E* =k |+ ZITE{ | T gga +ooe P =UpUT, U = diag(e—i(¢)+g{)1)f’ei(¢—ggz)t,e—i(‘1>—g101)t,ei(d>+ggz)t), _ %
O+g, g1 0 —ig |B|sind,,
P =| H P |+ H = & | ‘q’+$32 iu|B]| sirz% 00
0 —ip |B[sind, g d-g ~g’
i |B[sind, g 0 _ggl —<I>—g§2

Here we reproduce the standard effective Hamiltonian for the description of
neutrino flavor and spin-flavor oscillations in a background matter and a magnetic
field (Lim & Marciano, 1988; Mannheim 1988, Giunti, et al., 1992).




The self-interaction of neutrinos

Neutrinos can interact between themselves by exchanging a Z-boson. This kind of

interaction is significant when the neutrino density is high, e.g., in a supernova
explosion.

Hy=[&rY GG 0.7, ¥R, - [ Y, G, G nlon, 0o,
abcd abcd

In the forward scattering approximation for ultrarelativistic neutrinos we get the
contribution to the effective quantum mechanical Hamiltonian:

H (k) =diag(H __,H..), po =(p p+]

Pie Pis
H_=2f 72 (1-cosn, J{GulGp_)-G'p.®]+ 6o @)~ .06}
H . =2 d’p

Sy meost {oTu[67p. 0= Gp_ @]+ 6" [ .. (1) - pL0) ]G]

We can reproduce the case of Dirac neutrinos (Sigl & Raffelt, 1993) if we set
H,. =0and H _#0, as well as introduce the antineutrino density matrix p= p._..



Discussion: Weyl fields in vacuum

We applied the Hamilton formalism to the description of
classical (or c-number, or first-quantized) massive Weyl fields.
Previously it was claimed by Schechter & Valle (1981) that a
massive Weyl spinor cannot be desctibed in terms of a first-
guantized field.

We carried out a canonical quantization of a system. It was
found that, owing to the degeneracy of the energy levels, two

independent ways to quantize a Weyl field are possible.

We introduced quantum Majorana conditions, which connects
“particle”, n, and “antipatricle”, &, degrees of freedom. The
classical Majorana condition, w° ~ w, cannot be regarded as
equality of “particles” and “antiparticles” since it is applied on a
classical level before quantization.

The description of massive Weyl fermions in terms of c-number
spinors is consistent with the standard g-number description.



Discussion: Interacting Weyl fields

We generalized our formalism to include the interaction with a
background matter and an external electromagnetic field.

We obtained a classical Hamiltonian which then was used to quantize the
system in case when only the diagonal interaction with nonmoving and
unpolarized matter is present.

The account of the nondiagonal interaction with external fields, if we work
in the forward scattering approximation, allowed us to reproduce the
effective Hamiltonian for the description of neutrino spin-flavor
oscillations in matter and magnetic field.

We also studied the neutrino self-interaction. Again in the forward
scattering limit, we derived the contribution to the effective Hamiltonian.
It was shown that the self-interaction does not directly cause a spin-flip,
but certainly it influences the process of spin-flavor oscillations of
neutrinos. Although there is no direct correspondence to Dirac neutrinos
case, we showed how one can reconstruct an effective Hamiltonian for
Dirac neutrinos.

We derived the most general representation of a propagator of a massive
Weyl field interacting with a background matter. The characteristics of the
background matter (number density, velocity, and polarization) can
depend on time and spatial coordinates.
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