

Higgs Results from CMS

Xavier Janssen On behalf of the CMS Collaboration

SILAFAE 2012 Sao Paulo, Brazil December 11, 2012

The Large Hadron Collider @ CERN

THE REPORT OF A DESCRIPTION OF A DESCRIP

Proton-proton collisions at 7 TeV (2010/11) & 8 TeV (2012) (and ~14 TeV after 2013/14 upgrade)

The Large Hadron Collider @ CERN

Company of the State of the State of the State of the State

Proton-proton collisions at 7 TeV (2010/11) & 8 TeV (2012) (and ~14 TeV after 2013/14 upgrade)

CMS Integrated Luminosity, pp

The CMS Collaboration

The CMS Collaboration

CMS

SM Higgs Boson Production and Decay at LHC

Gluon fusion (gg \rightarrow H) it the dominant production mechanism at LHC but VBF, VH and ttH allow to test H properties.

WW and ZZ decays are largest contributions but $\gamma\gamma$, $\tau\tau$ and bb decays important at low mass due to large SM irreducible backgrounds: WW, ZZ, ...

Look for a "Higgs"-needle in a "SM process"-stack

Searches for Higgs Boson require control of SM background normalization, dedicated triggers and good understanding of experimental effects but several backgrounds remain irreducible (e.g. ZZ vs $H \rightarrow ZZ$)

Observation of a new boson at a mass of 125 GeV

Results from "July 4th" papers:

	CMS
Local p-value	5.0 σ + Nothing else significant
Mass [GeV]	125.3 ± 0.4 (stat.) ± 0.5 (syst.)
Signal Strength (γγ+ZZ+WW+ττ+bb)	0.87 ± 0.23

Observation of a new boson at a mass of 125 GeV

Results from "July 4th" papers:

	CMS	ATLAS
Local p-value	5.0 σ + Nothing else significant	6.0 σ + Nothing else significant
Mass [GeV]	125.3 ± 0.4 (stat.) ± 0.5 (syst.)	126.0 ± 0.4 (stat.) ± 0.4 (syst.)
Signal Strength	$\boldsymbol{0.87 \pm 0.23}$	1.4 ± 0.3

→ Compatible with Standard Model expectation

Melbourne

But is it THE Standard Model Higgs Boson ?

- \Box Does it decay to fermions (τ , b) as expected in the SM ?
- \Box Are all the couplings (γ , W, Z, t, b, gluons, ...) SM-like ?
- □ What are its quantum numbers (Spin and CP) ?

□ What about individual production mechanism strength (gg, VBF, VH, ttH) ?

CMS Higgs Analyses Overview

Higgs	Higgs	Mass	Data used		Maria		
decay mode	production mechanism	range [GeV]	7 TeV [fb ⁻¹]	8 TeV [fb ⁻¹]	resolution	combination	
γγ	Untag (~gg) VBF-tag	110 - 150 110 - 150	5.1 5.1	5.3 5.3	1-2% 1-2%	~ ~	
bb	VH-tag ttH-tag	<mark>110</mark> – 135 110 – 140	5.0 5.0	12.1	10% -	~	
ττ	1-jet (~gg) VBF-tag ZH-tag WH-tag	$\frac{110 - 145}{110 - 145}$ $\frac{110 - 160}{110 - 140}$	4.9 4.9 5.0 4.9	12.1 12.1 _	20% 20% _	< < < <	
$ZZ \rightarrow 4l$ $ZZ \rightarrow 2l2\tau$ $ZZ \rightarrow 2l2\nu$ $ZZ \rightarrow lljj$	Inclusive Inclusive Inclusive Inclusive	$\frac{110 - 1000}{180 - 1000}$ $200 - 600$ $120 - 600$	5.0 5.0 4.7 4.7	12.2 12.2 5.0 -	1–2% 10–15% –	v v	
WW $\rightarrow 212v$ WW $\rightarrow 11jj$	0/1-jets (~gg) VBF-tag WH-tag Untag (~gg)	$\frac{110 - 600}{110 - 600}$ $\frac{110 - 200}{170 - 600}$	4.9 4.9 4.9 5.0	12.1 12.1 5.1 12.1	20% 20% _	v v v	

CMS Higgs Expected Performance

HCP: L <= ~ 17 fb⁻¹ **ICHEP/PLB:** L = ~ 10 fb⁻¹ (γγ as ICHEP) CMS Preliminary $\sqrt{s} = 7$ TeV, $L \le 5.1$ fb⁻¹ $\sqrt{s} = 8$ TeV, $L \le 12.2$ fb⁻¹ 1 10⁻¹ 10⁻² 10⁻² 10⁻³ 10⁻⁴ p-value 1σ lσ 10⁻¹ 2σ 2σ Зσ 3σ 4σ 10⁻⁴ 4σ 10⁻⁵ oca 5σ 10⁻⁶ 5σ 10^{-7} 6σ 10⁻⁸ 10⁻¹⁰ 10⁻⁹ 6σ **10**⁻¹⁰ Expected p-values 7σ Combined 10⁻¹¹ $1 \rightarrow bb$ 7σ 10⁻¹² **CMS** Preliminary 10⁻¹³ 10⁻¹⁵ $\rightarrow \gamma \gamma$ $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}$ 8σ 10⁻¹⁴ $\sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1}$ Combined 10⁻¹⁵ $H \rightarrow bb$ 116 118 120 122 124 126 128 130 Higgs boson mass (GeV) $H \rightarrow \tau \tau$ 10⁻²⁰ $H \rightarrow \gamma \gamma$ $H \rightarrow WW$ Increase in performance: $H \rightarrow ZZ$ HCP **Expected ICHEP** 125 110 115 120 130 135 140 145 p-value m_H (GeV) 5.8 7.8 (*a*) 125 GeV

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

No update since ICHEP

Overall small signal BR between 0.14% and 0.23% for 110<M_H<150 GeV

Clean final-state topology: two isolated and high-Pt photons
 Small-narrow peak on large continuous background

Crucial ingredients m_{γγ}² = 2*E₁E₂(1 - cos α)
 Robust photon reco, isolation and identification
 Good energy calibration and primary vertex reconstruction (α depends on PV and cluster position)
 Good background modeling

$H \rightarrow \gamma \gamma$: Limit and Significance

- Analysis separated in several diphoton categories to exploit different S/B ratio.
- Dedicated VBF categories: 2 jets well separated in pseudo-rapidity
- Background shape fitted from the data

□ Nice peak around 125 GeV
 □ Over 4σ observed local significance

$H \rightarrow \gamma \gamma$: Mass and signal strength

 $M\gamma\gamma = 125.1 \pm 0.4 \text{ (stat)} \pm 0.6 \text{ (sys) GeV}$

 σ/σ_{SM} = 1.56 ± 0.43

Compatible with SM within the present uncertainties
 No difference between gg and VBF signal strength within uncertainties
 New data being analyzed but need a bit more time/scrutiny

The "golden channel": $H \rightarrow ZZ \rightarrow 41$

Signal:

- 4 isolated high pT leptons
- from same vertex
- consistent with Z decays
- good mass resolution \rightarrow 2-4 GeV

Backgrounds: • Irreducible: $pp \rightarrow ZZ^{(*)} \rightarrow 4I$ (precise EWK prediction) Reducible: Z+jets, Zbb, tt (lepton from b-decays are non-isolated / displaced)

→ Small Signal rates but high Signal/Background

- Channels: ZZ \rightarrow 4I ; I = e, μ
 - ZZ \rightarrow 2l2 τ ; l = e, μ

 \rightarrow Both channels extended to $m_H = 1$ TeV since ICHEP

CMS Experiment at LHC, CERN Data recorded: Wed May 23 21:09:26 2012 CEST Run/Event: 194789 / 164079659

$H \rightarrow ZZ \rightarrow 4I$: Invariant mass

- → Z→4I peak in agreement with expectation / 4I mass fit shows $\delta m \sim 0.4\pm0.28 \text{ GeV} \rightarrow \text{expected resolution}$
- → Peak around 126 GeV increased since July 4th
- \rightarrow m_{Z1} vs m_{Z2} distributions in 126 GeV peak looks as expected

$H \rightarrow ZZ \rightarrow 4I$: Kinematic Discriminant

enhances analysis sensitivity

$H \rightarrow ZZ \rightarrow 4I$: Results

H→ZZ→4I: Parity Measurement

$H \rightarrow ZZ \rightarrow 4I$: Extending to 1 TeV

New since ICHEP:

Reweight of high mass Higgs lineshape Including interference effects according to:

- N. Kauer et al. [arXiv:1201.1667,1206.4803]
- G. Passarino [arXiv:1206.3824]
- S. Goria et al. [arXiv:1112.5517]
- J.-M. Campbell [arXiv:1107.5569]
- V. Hirshi et al. [in preparation]

→ Effect important for mH >~ 500 GeV

- → Also applied in all post-ICHEP high mass analysis:
 - $-H \rightarrow WW \rightarrow 2I2v$
 - $H \rightarrow WW \rightarrow I_V j j$

+ future updates $(H \rightarrow ZZ \rightarrow 2l_{2\nu}, ...)$ \Box Merged with $H \rightarrow ZZ \rightarrow 2l_{2\tau}$ channel

→No significant SM Higgs-like excess beyond 126 GeV one

22

$H \rightarrow WW \rightarrow 212v$

Event Signature:

- 2 isolated, high p_T leptons (e or m only in this analysis) with small opening angle
- High Missing E_{T} from escaping n's
- Analysis performed on exclusive jet multiplicities (0, 1, 2-jet bins)
 - → WW (and Top for 1/2-jet bins) are "irreducible" backgrounds

Signal Extraction:

CMS

Data

Run/

.um

- Optimized Cut Based selection for each Higgs mass hypothesis:
 - $-p_{T}(I)$, m_I, m_T and Df(II) as discriminating variables in 0/1 jet bins
 - Dedicated VBF selection for 2-jet bin
- Shape Analysis for 0/1 jet bins

→Channel with best S/B in a wide mass range but no mass peak (resolution) → event counting analysis Use of different helicity correlations of the leptons for WW and H->WW to further separate them (smaller opening angle for H->WW) :

$H \rightarrow WW \rightarrow 2l_{2v}$: Analysis Strategy

□ 12.1 fb⁻¹ @ 8 TeV:

0-jets, <mark>shape</mark>	1-jet, <mark>shape</mark>	2-jets, VBF	different flavor, DF
0-jets	1-jets	2-jets, VBF	same flavor, SF substantial DY
			background

jets with p_{τ} > 30 GeV

- different flavor (DF) most sensitive (0 and 1 jet categories)
- shape analysis for those two DF categories only
- other categories use easier to control cut-and-count strategy
- New for HCP
 - shape analysis uses $(m_{I}-m_{T})$ plane
 - mass independent DY rejection, VBF selection optimized

Combine with published 7 TeV analysis (4.9 fb⁻¹)

$H \rightarrow WW \rightarrow 2l_{2v}$: Cut&Count (0 jet DF)

m_{H}	$\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$	$\rightarrow \overset{pp}{W^+W^-}$	$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data
0-jet category $e\mu$ final state								
120	34.0 ± 7.3	162 ± 16	5.3 ± 0.5	8.6 ± 2.0	38 ± 14	23.1 ± 8.8	237 ± 23	285
125	58 ± 12	203 ± 19	6.6 ± 0.6	11.0 ± 2.5	44 ± 16	25.6 ± 9.5	291 ± 27	349
130	86 ± 18	226 ± 21	7.1 ± 0.7	12.2 ± 2.8	47 ± 17	27 ± 10	319 ± 29	388
160	238 ± 51	125 ± 12	3.7 ± 0.4	13.1 ± 3.1	5.9 ± 2.7	2.6 ± 1.5	160 ± 13	197
200	95 ± 21	204 ± 19	6.3 ± 0.6	28.9 ± 6.4	7.7 ± 3.5	1.3 ± 0.9	278 ± 21	309
400	40 ± 11	133 ± 15	6.2 ± 0.7	50 ± 11	7.6 ± 3.3	3.5 ± 2.1	200 ± 19	198
600	6.6 ± 2.3	42.2 ± 4.8	2.5 ± 0.3	16.5 ± 3.8	4.4 ± 2.0	2.4 ± 1.8	67.9 ± 6.7	64

$H \rightarrow WW \rightarrow 2l2v : 2D$ Shape Analysis

- Easier interpretation than multivariate discriminants
- Use of mass-like variables
 - m_T: higgs transverse mass

$$m_T = \sqrt{2 p_T^{\ell \ell} E_T^{\mathrm{miss}} \left(1 - \cos \Delta \phi_{E_T^{\mathrm{miss}} \ell \ell}
ight)}$$

- mee: di-lepton invariant mass
- Different backgrounds peaking at different location

Relaxed selection with respect to cut-based

- Exploit the full range of the variables
- Improved sensitivity at low m_H from additional sideband constraint of backgrounds
- Mass independent selection for low/high mass searches

Applied to DF 0/1-jet channels

Most sensitive channels with sufficient statistics for a 2D analysis

$H \rightarrow WW \rightarrow 2l2v$: Results

$H \rightarrow WW \rightarrow lvjj$

- Reconstruct m_{ww} = m_{Injj}
- 4 categories (e | μ) x (2j | 3j)
 - apply the same techniques
- Implement MVA
- Data-driven techniques for high rate backgrounds

CMS:

Expected limit: 220-560 GeV Observed limit: 225-485, 550-600 GeV

$H \rightarrow \tau \tau$

$H \rightarrow \tau \tau$: Analysis overview

\Box Search in ggH, VBF and VH production modes and five di- τ final states:

- $H \rightarrow \tau \tau \rightarrow e + had.$
- $H \rightarrow \tau \tau \rightarrow had. + had.$

□ Separation in categories to enhance S/B:

H→ττ : Dominant backgrounds (0/1-jet & VBF)

CMS

H→ττ : VH Analysis

□ Signal extracted from mass of visible decay products (m_{vis}). □ Small background wrt. to inclusive H $\rightarrow \tau \tau$ decay channels.

$H \rightarrow \tau \tau$: Results

- Sensitivity(125 GeV)=1.05. Observed limit(125 GeV)=1.66.
- Compatible with Higgs boson signal at 125 GeV but also with background only hypothesis.
- Signal strength after fit: 0.72±0.52 (well compatible with SM).

VH → bb

Largest number of Higgs decays at low mass but Lots of background (jets)
 Trigger based on leptons and missing E_T
 b-jets identified through displaced tracks
 Go to high p_T where Higgs is enhanced
 Main background: W/Z+jets and top

VH → bb

□ Multivariate Discriminants (BDT) to separate signal:

→Small Excess of events observed for all channels in the BDT fit

$VH \rightarrow bb : Results$

Mild excess of 2.2 standard deviation building up

Coherent picture between the sub channels

Small excess in the signal region observed in the M_{bb} distribution

COMBINED RESULTS

Mass measurement & Signal strength

- □ Combine information from the high resolution channels measurements:
 H → ZZ
 - H \rightarrow $\gamma\gamma$ (ggH and VBF)
- Signal cross section for the channels left floating independently in the fit

→ m_x = 125.8 ± 0.4 (stat) ± 0.4 (syst) GeV

Signal strength from all channels at $m_{\rm H} = 125.8$ GeV if SM Higgs √s = 7 TeV, L = 5.1 fb⁻¹ √s = 8 TeV, L = 12.2 fb⁻¹ CMS Preliminary m_L = 125.8 GeV $H \rightarrow bb$ (VH tag) $H \rightarrow bb$ (ttH tag) H --- ττ (0/1 jet) $H \rightarrow \tau \tau$ (VBF tag) $H \rightarrow \tau \tau$ (VH tag) $H \rightarrow \gamma \gamma$ (untagged) $H \rightarrow \gamma \gamma$ (VBF tag) $H \rightarrow WW (0/1 \text{ jet})$ $H \rightarrow WW (VBF tag)$ $H \rightarrow WW (VH tag)$ $H \rightarrow ZZ$ -2 O Best fit σ/σ_{SM}

 $\rightarrow \sigma/\sigma_{SM} = 0.88 \pm 0.21$

→ Compatible with SM Higgs

→ Compatibility within ~1σ for each decay channel / production mode

Custodial symmetry & Coupling to fermions

Couplings to W and Z boson should scale together: cornerstone of electroweak Symmetry Breaking
 Parameterization: κ_F, κ_Z, λ_{WZ}=κ_W/κ_Z

Fermions versus vector bosons

- → Couplings consistent within 1σ with SM Higgs
- → Fermiophobic scenario exclude at >4σ level

Individual couplings

- □ Assess individual couplings assuming only custodial symmetry and without resolving the loops structure
- **D** End up with 6 scale factors: κ_V , κ_t , κ_b , κ_τ , κ_g , κ_γ
- **Fit individually each of those, while profiling the others**

Coupling summary

[0.57-1.65]

[0.67 - 1.55]

[0.78-1.19]

[0.40 - 1.12]

[0.98-1.92]

[0.55 - 1.07]

[0.00-0.62]

[0.45 - 1.66]

[0.00-2.11]

[0.58 - 1.41]

[0.00 - 1.80]

[0.43 - 1.92]

[0.81-2.27]

CONCLUSIONS

- The analyses performed on the dataset delivered by the LHC till September 2012 strengthened the significance of the new bosonic state announced on July 4th.
 - \rightarrow Over 4 σ in both H \rightarrow $\gamma\gamma$ and H \rightarrow ZZ
 - \rightarrow 3.1 σ evidence in H \rightarrow WW \rightarrow 2I2 ν (@ 125 GeV)
 - \rightarrow Mild excess in H \rightarrow $\tau\tau$ compatible with both SM Higgs and background
 - \rightarrow 2.2 σ excess in H \rightarrow bb
- □ M_x = 125.8 ± 0.4 (stat) ± 0.4 (sys) GeV
- **D** Best fit value for $\sigma/\sigma_{SM} = 0.88 \pm 0.21$
- □ 2.5 standard deviations disfavoring particle to be pseudo-scalar
- □ The coupling structure has been confronted to the SM predictions.
 → Overall very good agreement observed but too early to draw any conclusions although most couplings are within 1σ of SM
 - → Everything still compatible with SM expectations
 → Stay tuned, winter conferences will include more data

BACKUP

$H \rightarrow ZZ \rightarrow 4l$: CMS Data Reco&Sel

m_{z2} (GeV)

Building 4I-candidates

& Pair #1

- ষ 40<m(II)<120 GeV, nearest to Z0 mass
- a, Final state radiation recovery (FSR)
- ন্ব Lepton isolation

& Pair #2

- a 12<m(II)<120 GeV, highest PT leptons
- ର୍କ FSR
- ম Lepton isolation

\aleph Note on FSR photon:

- a accept if dR(I,y)<0.07 PT>2 GeV OR: dR(I,y)<0.5 PT>4 GeV plus isolated Condition: |m(IIy)-mZ⁰|<|m(II)-mZ⁰|
- a FSR expected in 6.8% events (observed: 6±2%)

$H \rightarrow ZZ \rightarrow 2l2\nu$

□ No significant excess → Excluding SM Higgs for m_H in [228,600] GeV
 □ One of the most sensitive channel at high mass → looking forward for more luminosity and extending to 1 TeV mass range.

$H \rightarrow ZZ \rightarrow 2l2j$

- Since LP: Added low mass in M_{2l2i} distribution
- Events categorized by presence of 0, 1, 2 b-jets
- Major background: Z+jets ; ttbar suppressed by ME_T significance requirement
- Use 5 angles of scalar H → ZZ → 2I 2q in an angular likelihood discriminant
- Quark-gluon discriminant to reject Z +jets
- Background shape, normalization ← data sideband

$H \rightarrow WW \rightarrow 212v$: Backgrounds

$H \rightarrow WW \rightarrow 212v$: Backgrounds

$H \rightarrow WW \rightarrow 2l2\nu$: CMS Cut&Count (1 jet DF)

	$m_{\rm H}$	$\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$	$\rightarrow \overset{pp}{w^+w^-}$	$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data
Ī	1-jet category $e\mu$ final state								
	120	14.9 ± 4.3	38.9 ± 6.4	5.3 ± 0.6	40.3 ± 3.0	19.1 ± 7.4	7.1 ± 3.4	111 ± 11	123
	125	27.3 ± 8.0	47.9 ± 7.8	6.5 ± 0.7	49.5 ± 3.3	22.4 ± 8.6	7.1 ± 3.4	134 ± 13	160
Т	130	40 ± 12	53.9 ± 8.8	7.3 ± 0.8	55.2 ± 3.6	24.5 ± 9.4	7.1 ± 3.4	148 ± 14	182
	160	131 ± 37	44.4 ± 7.0	5.3 ± 0.7	51.8 ± 3.5	9.0 ± 3.9	0.6 ± 0.4	111.1 ± 8.8	145
	200	58 ± 15	80 ± 13	6.8 ± 0.8	114.6 ± 6.5	16.1 ± 6.5	0.4 ± 0.3	238 ± 16	276
	400	29.4 ± 8.1	81 ± 13	7.9 ± 1.2	129.0 ± 7.1	16.8 ± 6.6	0.6 ± 0.5	235 ± 16	226
	600	6.9 ± 1.8	30.0 ± 4.8	3.1 ± 0.4	40.3 ± 3.0	8.4 ± 3.5	0.0 ± 0.0	81.8 ± 6.6	74

X. Janssen – 11/12/2012 Higgs Results from CMS

$H \rightarrow WW \rightarrow 212\nu$

CMS

New Shape Analysis – Ex. DF 0-jet ²

$H \rightarrow WW \rightarrow 212\nu$

Shape – 2 D (m_{μ}, m_{τ}) – 0 jet

Higgs Results from CMS

$H \rightarrow WW \rightarrow 212v$

Shape – 2 D (m_{μ}, m_{τ}) – 1 jet

Higgs Results from CMS

$H \rightarrow WW \rightarrow 212v$ Shape - 2 D (m_{μ}, m_{τ}) projected

Projected the signal is better visible

- clear enhancement in data where signal is predicted

30

 $H \rightarrow WW \rightarrow 212v$

Signal Strength

- Steeply falling signal strength versus mass
 - measure signal strength: 0.74 \pm 0.25 (at m_{μ} = 125 GeV)
 - 7 TeV as published, 8 TeV data with new 2D shape analysis

32

- $\sigma(WH_{SM}(m_H=125))\sim 0.7 \text{ pb}, \text{ drops rapidly}$
- Analysis based on ICHEP dataset (10 fb⁻¹)
- Cut-and-count, optimize for $M_{\rm H} = 125 \, {\rm GeV}$
- Include WH $\rightarrow \tau \tau$ in the signal
- Apply many of the same techniques as 212v
- Good agreement between data and background prediction
- Upper limits calculated on 10 fb-1 of data from 2011 and 2012
- The limits are ~ 5 times larger than SM expectation for M_{H} = 125 GeV
- Analysis of 2012 data continues

ttH , H→bb

w

н

mmmmm

.....

- Main opportunity to directly probe the ttH vertex.
- Categorisation
 - di-lepton and lepton+jet
 - number of jets and b-tags
- Trigger: Isolated lepton
- Main background from top pair (+jets)
- Signal extraction
 - Simultaneous fit of neural network (ANN) shape.
 - Main inputs to ANN: b-tag, kinematic and angular correlations.
- Data: 5.0 fb⁻¹ at 7 TeV

MSSM $H \rightarrow bb$

tanβ

g

Upper 95% CL limit on $\sigma x BR(H \rightarrow b\overline{b})$ [pb]

н

- MSSM neutral Higgs boson produced in association with b guark(s)
- Two analyses:
 - All-hadronic (CMS PAS-HIG-12-026)
 - Semi-leptonic (CMS PAS-HIG-12-027)
- Triggers: jets + b-tagging (+ muon)
- Event selection; ≥ 3 jets + 3 leading jets b-tagged (+ ≥ 1 muon)
- Data: 2.7 fb⁻¹ 4.8 fb⁻¹ at 7 TeV
- Background: heavy flavour multi-jet
 - Derived from the data.

- Combination of both analyses (new for HCP12):
 - All-hadronic and semi-leptonic analysis are almost orthogonal, 2-3% overlap.
 - Set upper limits at the 95% CL on $\sigma(pp \rightarrow b\Phi) \times BR(\Phi \rightarrow bb).$

H \rightarrow ττ: 0-jet Category (low+high p_T)

Summary

- most events go here
- minimal signal
- background fit only
- constrains
 background for all categories

H \rightarrow ττ: 1-jet Category (low+high p_T)

Summary

- enhanced gluon fusion production
- Improved mass resolution

H→ττ: VBF Category

$H \rightarrow \tau \tau$

Compatibility of Results with ICHEP Results (1)

- •Low observed in ICHEP analysis was driven by VBF category.
- Three major changes since ICHEP:
 - Re-reconstruction of 2012 dataset improved description of forward jet response.

 - Simplification of VBF selection (unification across all Higgs decay channels, stricter selection than before).

$H \rightarrow \tau \tau$

Compatibility of Results with ICHEP Results (2)

- Event overlap small: treat limits as independent.
- Estimated statistical compatibility of the two observed results: ~12% corresponding to 1.6σ.
- Sensitivity of the analyses at 125 GeV:

	ICHEP	HCP
VBF only	2.04	1.93
comb	1.27	1.25

