Fermions on Thick *D*-branes Localisation and physical implications

Oscar Castillo-Felisola o.castillo.felisola(at)gmail.com

UTFSM, Valparaiso

December 10, 2012

O. Castillo-Felisola (UTFSM, Valparaiso)

Fermions on Thick D-branes

Outline

- 2 Localisation of Fermions
- 3 Analytic and Numerical Analysis
- 4 Results and Conclusions

O. Castillo-Felisola (UTFSM, Valparaiso)

Motivation

- *D*-branes appear in the AdS/CFT correspondence.
- May 'solve' the hierarchy problem.
- May be used as a new way of compactification.
- Different behaviour of chiralities in brane-world scenarios.
- May be thought as realization of 'string' phenomenology.

Randall-Sundrum 1

- Setup: Couple of *D*3-branes.
- Interaction: 5-dimensional Gravity.

but

$$M_p^{(5)} e^{-2\pi k r_c} \sim M_W.$$

Randall-Sundrum 2

- Setup: Single *D*3-branes.
- Interaction: 5-dimensional Gravity.

4-dimensional Gravity

The induced gravity on the brane is Newton's plus consistent corrections with GR.

Domain Wall Scenarios

- Coupled Einstein-Scalar field.
- Self-interacting scalar field.
- V(φ) with degenerated minima.
- Types:
 - Static DW's.
 - Dynamical DW's.

Localisation of Gravity

Most of the Domain Walls share the property of gravity localisation, depending on the Z_2 symmetry of the spacetime.

Early Stages

- Imposition that matter is localised. [ADD, 1998]
- Matter is not localised on RS scenarios. [Bajc and Gabadadze, 2000]
- Move to generalised models...
- Add new interactions. [BG, 2000]

General Set Up

Metric:

$$\hat{g}_{\hat{\mu}\hat{\nu}} = e^{2A(\xi)} \left(-\mathbf{d}t_{\hat{\mu}} \mathbf{d}t_{\hat{\nu}} + e^{2B(\xi,t)} \mathbf{d}\vec{x}_{\hat{\mu}} \mathbf{d}\vec{x}_{\hat{\nu}} \right) + e^{2C(\xi)} \mathbf{d}\xi_{\hat{\mu}} \mathbf{d}\xi_{\hat{\nu}}.$$

• Fermions in curved spacetime,

$$\mathscr{L} = -\sqrt{\hat{g}}\bar{\Psi}\;\hat{\nabla}\;\Psi$$

• Yukawa-like coupling with the scalar of the DW,

$$\mathscr{L}_{I} = \sqrt{\hat{g}} \bar{\Psi} \left(\lambda \phi^{n} - M \operatorname{sgn}(\phi) \right) \Psi.$$

• $n \in 2\mathbb{N} + 1$.

- < ⊒ →

< 🗇 🕨

General Set Up

Metric:

$$\hat{g}_{\hat{\mu}\hat{\nu}} = e^{2A(\xi)} \left(-\mathbf{d}t_{\hat{\mu}} \mathbf{d}t_{\hat{\nu}} + e^{2B(\xi,t)} \mathbf{d}\vec{x}_{\hat{\mu}} \mathbf{d}\vec{x}_{\hat{\nu}} \right) + e^{2C(\xi)} \mathbf{d}\xi_{\hat{\mu}} \mathbf{d}\xi_{\hat{\nu}}.$$

• Fermions in curved spacetime,

$$\mathscr{L} = -\sqrt{\hat{g}}\bar{\Psi} \ \hat{\nabla} \ \Psi$$

• Yukawa-like coupling with the scalar of the DW,

$$\mathscr{L}_I = \sqrt{\hat{g}} \bar{\Psi} \left(\lambda \phi^n - M \operatorname{sgn}(\phi) \right) \Psi.$$

• $n \in 2\mathbb{N} + 1$.

- < ⊒ →

< 🗇 🕨

- Find the e.o.m. for the 5-dimensional spinor.
- Separate the diff. op. in 4-dimensional part and extra terms.
- Oecompose,

$$\Psi = f_+\psi_+ + f_-\psi_-.$$

Ind the e.o.m. for f_{\pm}

$$\hat{\nabla}\Psi + M\Psi = \lambda\Phi\Psi$$

Vielbein Formalism

When spinors in curve spacetimes are considered, the vielbein formalism is the right way to follow.

- Find the e.o.m. for the 5-dimensional spinor.
- Separate the diff. op. in 4-dimensional part and extra terms.
- Oecompose,

$$\Psi = f_+\psi_+ + f_-\psi_-.$$

Ind the e.o.m. for f_{\pm}

 $\hat{\nabla}\Psi + M\Psi = \lambda\Phi\Psi$

Vielbein Formalism

When spinors in curve spacetimes are considered, the vielbein formalism is the right way to follow.

$$\hat{\nabla} = e^{A(\xi)} \nabla + e^{C(\xi)} \gamma^* \partial_{\xi}$$

- Find the e.o.m. for the 5-dimensional spinor.
- Separate the diff. op. in 4-dimensional part and extra terms.
- Oecompose,

 $\Psi = f_+\psi_+ + f_-\psi_-.$

• Find the e.o.m. for f_{\pm}

$$\nabla^{(4)}\psi_{\pm} \sim m\psi_{\mp}$$
$$\gamma^*\psi_{\pm} = \pm\psi_{\pm}.$$

Factorise them Factorise the ψ_+ and ψ_-

< ∃⇒

- Find the e.o.m. for the 5-dimensional spinor.
- Separate the diff. op. in 4-dimensional part and extra terms.
- Oecompose,

 $\Psi = f_+\psi_+ + f_-\psi_-.$

• Find the e.o.m. for f_{\pm}

E.O.M.

Decouple and transform to Schödinger-like equation.

4 E 5

Generalised Coupling

If general polynomial coupling is considered,

 $\mathscr{L}_I = \sqrt{\hat{g}} \lambda \bar{\Psi} \Phi^n \Psi,$

the e.o.m. might be integrated for $n \in \mathbb{Z}$.

Most Interesting Cases

For $n \in 2\mathbb{N} + 1$ the profile potential gives a condition on the coupling, λ , for localisation to occur.

For $n \in 2\mathbb{N}$ the profile potential gives a condition on the dimension of the extra dimension for localisation to occur.

Curiosity

The e.o.m. might be solved formally for $n \in -\mathbb{N}$.

4 **A** N A **B** N A **B** N

Possible Choices of E.O.M.

 ψ_{\pm}

$$f_{\pm}(\xi) = e^{-\frac{1}{4}(4A'+3B')\pm\lambda\int d\xi \mathcal{P}(\phi)e^C}$$

$$f_{\pm}(\chi)=e^{-A\pm\lambda\int d\chi \mathcal{P}(\phi)e^{A}}$$

O. Castillo-Felisola (UTFSM, Valparaiso)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Possible Choices of E.O.M.

•
$$B(\xi = 0) = 0$$
 and $\partial {}^{(4)}\psi_{\pm} = 0$.

•
$$B(\xi = 0) = 0$$
 and $\partial {}^{(4)}\psi_{\pm} = -m\psi_{\mp}$.

•
$$\nabla (4) \psi_{\pm} = 0.$$

•
$$\nabla (4) \psi_{\pm} = -m \psi_{\mp}.$$

Profile solutions

$$f_{\pm}(\xi) = e^{-\frac{1}{4}(4A'+3B')\pm\lambda\int d\xi \mathcal{P}(\phi)e^C}$$

 $f_{\pm}(\chi) = e^{-A \pm \lambda \int d\chi \mathcal{P}(\phi) e^A}$

O. Castillo-Felisola (UTFSM, Valparaiso)

э

Possible Choices of E.O.M.

•
$$B(\xi = 0) = 0$$
 and $\partial {}^{(4)}\psi_{\pm} = 0$.
• $B(\xi = 0) = 0$ and $\partial {}^{(4)}\psi_{\pm} = -m\psi_{\mp}$.
• $\nabla {}^{(4)}\psi_{\pm} = 0$.
• $\nabla {}^{(4)}\psi_{\pm} = -m\psi_{\mp}$.

Profile solutions

$$f_{\pm}(\xi) = e^{-\frac{1}{4}(4A'+3B')\pm\lambda\int d\xi \mathcal{P}(\phi)e^C}$$

$$f_{\pm}(\chi) = e^{-A \pm \lambda \int d\chi \mathcal{P}(\phi) e^A}$$

O. Castillo-Felisola (UTFSM, Valparaiso)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

For massive cases

The initial e.o.m. is,

$$f'_{\pm} + A'f_{\pm} \mp \lambda \mathcal{P}(\phi)e^A f_{\pm} = \pm m f_{\mp}.$$

Decoupling the profiles equations, and changing,

$$f_{\pm} = e^{-A} u_{\pm},$$

these equations are rewritten in a Schrödinger-like form,

$$\left[-\partial_{\chi}^2 + V_{qm}^{\pm}\right]u_{\pm} = m^2 u_{\pm},$$

with

$$V_{qm}^{\pm} = \left(\lambda \mathcal{P}(\phi) e^A\right)^2 \pm \partial_{\chi} \left(\lambda \mathcal{P}(\phi) e^A\right).$$

∃ ► < ∃ ►</p>

Numerov's Method

Numerov's method is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear.

The algorithm

For a ODE.,

$$\left(\frac{\partial^2}{\partial x^2} + f(x)\right)y(x) = 0,$$

Numerov's solution is,

$$y_{n+1} = \frac{\left(2 - \frac{5h^2}{6}f_n\right)y_n - \left(1 + \frac{h^2}{12}f_{n-1}\right)y_{n-1}}{\left(1 + \frac{h^2}{12}f_{n+1}\right)}$$

∃ ► < ∃ ►</p>

Implementation

- Numerov algorithm: for solving the ODE.
- Swept of energy: for finding the approx. eigen-energy.
- Bisection algorithm: For refining the energy eigenvalue.

Moduli Space

The five dimensional mass takes values from 0.00 to 1.00 in steps of 0.02, while $\lambda \in [1.45, 5.00]$ in steps of 0.05. Additionally, the computations have been restricted to values of s=1,3,5.

Double Domain Walls

Solution:

$$\phi(\xi) = \frac{\sqrt{6s-3}}{s} \arctan\left(\alpha\xi\right)^s,$$
$$A(\xi) = C(\xi) = -\frac{1}{2s} \ln\left(1 + (\alpha\xi)\right)^s,$$

• Parameters: $n, s \in 2\mathbb{N} + 1$.

Results

- Existence of a λ_* below which no positive chirality is localised. (n = 1)
- Existence of a λ_c above which no negative chirality is localised.

•
$$\lambda_* < \lambda_c$$
.

Physical Implications

Case n = s = 1:

Interpretation

- Lightest particles have no detectable right-handed chirality. (Neutrinos)
- Not so light particles might localise both chiralities. (Electrons)

Physical Implications

Case $n, s \neq 1$:

Interpretation

- Not so light particles might localise both chiralities.
- Mass difference could favour the See-Saw mechanism.

Additional Configurations

Kink Domain Wall:

$$\begin{split} A(\xi) &= -\frac{2}{3}\delta\left[\ln\left(\cosh\left(\frac{\alpha\xi}{\delta}\right)\right) + \frac{1}{4}\tanh^2\left(\frac{\alpha\xi}{\delta}\right)\right],\\ B(\xi) &= C(\xi) = 0,\\ \phi(\xi) &= \sqrt{3\delta}\tanh\left(\frac{\alpha\xi}{\delta}\right). \end{split}$$

O. Castillo-Felisola (UTFSM, Valparaiso)

크

Additional Configurations

Sine-Gordon Wall:

$$\begin{split} A(\xi) &= -\delta \ln \left(\cosh \left(\frac{\alpha \xi}{\delta} \right) \right), \\ B(\xi) &= C(\xi) = 0, \\ \phi(\xi) &= \sqrt{3\delta} \arctan \left(\sinh \left(\frac{\alpha \xi}{\delta} \right) \right). \end{split}$$

O. Castillo-Felisola (UTFSM, Valparaiso)

Fermions on Thick D-branes

크

∃ ► < ∃ ►</p>

Additional Configurations

Asymmetric Domain Wall:

$$A(\xi) = \alpha \xi - \delta \exp\left(-2e^{-\frac{\beta\xi}{\delta}}\right) + \delta \operatorname{Ei}\left(-2e^{-\frac{\beta\xi}{\delta}}\right),$$
$$B(\xi) = C(\xi) = 0,$$
$$\phi(\xi) = 2\sqrt{3\delta}\left(\exp\left(-e^{-\frac{\beta\xi}{\delta}}\right) - \varepsilon\right).$$

with

$$\operatorname{Ei}(x) = \int_{-\infty}^{x} dt \frac{e^{t}}{t}.$$

O. Castillo-Felisola (UTFSM, Valparaiso)

2

Results

Moduli space for the asymmetric domain wall, with n = 1, 3, 5. Negative and positive chirality respectively.

3 > 4 3

Results

Moduli space for the asymmetric domain wall, with n = 1, 3, 5. Negative and positive chirality respectively.

3 > 4 3

Results

Moduli space for the asymmetric domain wall, with n = 1, 3, 5. Negative and positive chirality respectively.

3 > 4 3

Conclusions

- More general profile equations were found. These are useful when more complex systems are considered.
- Restrictions to the moduli space of parameter where found, by restricting the lower dimensional theory to be tachyon free.
- Due to the mass difference between localised chiralities, it is interesting to consider the See-Saw mechanism.
- The mass difference between neutrinos and electrons makes natural the absence of right-handed part of the former, while the analog of the later is present in the low-dimensional theory.
- Similar behaviour for diverse DW's. Except the appearance of a sort of band structure of the moduli space.

