Mating Systems and Population Dynamics

Group IV:
Matheus Dalloz, Matías Federico,
Sofía Jijón, Carolina Reigada,
Cristina Schultz, Si Tang, Marcos Vieira

Southern-Summer School on Mathematical Biology
Introduction

1 Mating Systems\(^1\)
 - Monogamy
 - Polygamy
 - Polygyny

2 Negative Interactions
 - Predator-Prey
 - Competition
 - Parasite-Host
1 Mating Systems[1]
 - Monogamy
 - Polygamy
 - Polygyny

2 Negative Interactions
 - Predator-Prey
 - Competition
 - Parasite-Host
Some Examples

* Images from Google.com
Do Mating Systems affect the outcome of Species Interactions?

Does sex-selective predation stabilize or destabilize predator-prey dynamics?[4]

Mating Function

\[
p(m, f, \theta) = 1 - \exp\left(-\frac{m}{\theta}\right)
\]

\[
p(m, f, \theta) = \frac{hm \exp\left(\frac{hm-f}{h\theta}\right) - hm}{hm \exp\left(\frac{hm-f}{h\theta}\right) - f}
\]

\[
p(m, f, \theta) = \min\left(\frac{hm}{f}, 1\right)
\]
Do Mating Systems affect the outcome of Species Interactions?

Does sex-selective predation stabilize or destabilize predator-prey dynamics?[^4]

Mating Function

\[
p(m, f, \theta) = 1 - \exp \left(- \frac{m}{\theta} \right)
\]

\[
p(m, f, \theta) = \frac{hm \exp \left(\frac{hm - f}{h\theta} \right) - hm}{hm \exp \left(\frac{hm - f}{h\theta} \right) - f}
\]

\[
p(m, f, \theta) = \min \left(\frac{hm}{f}, 1 \right)
\]
Sex-selective Predator-Prey Model

How sex-selective predation affects system stability?

\[
\begin{align*}
\frac{dm}{dt} & = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx \\
\frac{df}{dt} & = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx \\
\frac{dx}{dt} & = -Mx + e_1 \lambda_1 mx + e_2 \lambda_2 fx
\end{align*}
\]

...So it does, when it comes to Predator-Prey Interaction.
How sex-selective predation affects system stability?

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx \\
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx \\
\frac{dx}{dt} = -Mx + e_1 \lambda_1 mx + e_2 \lambda_2 fx
\]

...So it does, when it comes to Predator-Prey Interaction.
How about competition?

Lets consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f)m
\]

\[
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f)f
\]

\[
\frac{dx}{dt} = rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f)x
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} = r x \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f) x
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\begin{align*}
\frac{dm}{dt} &= \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} &= \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} &= rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f) x
\end{align*}
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

$$
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} = rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f)x
$$

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} = rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f) x
\]

where:

- b : birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d : mortality rate of species A.
- λ_1, λ_2 : effect of competitor x on males and females.
- α_1, α_2 : effect of internal competition of A on males and females.
- r : intrinsic growth rate of competitor x.
- k : carrying capacity of competitor x.
- μ_1, μ_2 : effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m
\]

\[
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f
\]

\[
\frac{dx}{dt} = r x \left(1 - \frac{x}{k} \right) - (\mu_1 m + \mu_2 f) x
\]

where:

- b : birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d : mortality rate of species A.
- λ_1, λ_2 : effect of competitor x on males and females.
- α_1, α_2 : effect of internal competition of A on males and females.
- r : intrinsic growth rate of competitor x.
- k : carrying capacity of competitor x.
- μ_1, μ_2 : effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\begin{align*}
\frac{dm}{dt} &= \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} &= \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} &= rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f) x
\end{align*}
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

$$\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f)m$$

$$\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f)f$$

$$\frac{dx}{dt} = rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f)x$$

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} = rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f)x
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\begin{align*}
\frac{dm}{dt} &= \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} &= \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} &= r x \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f) x
\end{align*}
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

$$\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f)m$$

$$\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f)f$$

$$\frac{dx}{dt} = rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f)x$$

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\frac{dm}{dt} = \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f) m \\
\frac{df}{dt} = \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f) f \\
\frac{dx}{dt} = r x \left(1 - \frac{x}{k} \right) - (\mu_1 m + \mu_2 f) x
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.

Group IV (SSSMB)
How about competition?

Let's consider two species: the structured species A, distinguishing males (m) and females (f); and an unstructured species x, the competitor.

\[
\begin{align*}
\frac{dm}{dt} &= \frac{b}{2} p(m, f, \theta) f - dm - \lambda_1 mx - \alpha_1 (m + f)m \\
\frac{df}{dt} &= \frac{b}{2} p(m, f, \theta) f - df - \lambda_2 fx - \alpha_2 (m + f)f \\
\frac{dx}{dt} &= rx \left(1 - \frac{x}{k}\right) - (\mu_1 m + \mu_2 f)x
\end{align*}
\]

where:

- b: birth rate of species A.
- $p(m, f, \theta)$: mating function.
- d: mortality rate of species A.
- λ_1, λ_2: effect of competitor x on males and females.
- α_1, α_2: effect of internal competition of A on males and females.
- r: intrinsic growth rate of competitor x.
- k: carrying capacity of competitor x.
- μ_1, μ_2: effect of males and females over the competitor x.
Now, changing the scale, we have:

\[
\frac{dm'}{d\tau} = \frac{b}{2r} p(m', f', \theta)f' - \frac{d}{r} m' - \frac{\alpha_1}{r} (m' + f') m' - \frac{\lambda_1 k}{r} m' x' \\
\frac{df'}{d\tau} = \frac{b}{2r} p(m', f', \theta)f' - \frac{d}{r} f' - \frac{\alpha_2}{r} (m' + f') f' - \frac{\lambda_2 k}{r} f' x' \\
\frac{dx'}{d\tau} = (1 - x') x' - \left(\frac{\mu_1}{r} m' + \frac{\mu_2}{r} f' \right) x'
\]

where all parameters are positive.
Parameters in the simulations

<table>
<thead>
<tr>
<th>b^4</th>
<th>d^4</th>
<th>r</th>
<th>K</th>
<th>(λ_1, λ_2)</th>
<th>(μ_1, μ_2)</th>
<th>(α_1, α_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2</td>
<td>2</td>
<td>4</td>
<td>(0.1 0.1)</td>
<td>(0.1 0.1)</td>
<td>(0.1 0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.2 0.2)</td>
<td>(0.2 0.2)</td>
<td>(0.2 0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.4 0.4)</td>
<td>(0.4 0.4)</td>
<td>(0.4 0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.1 0.2)</td>
<td>(0.1 0.2)</td>
<td>(0.1 0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.2 0.4)</td>
<td>(0.2 0.4)</td>
<td>(0.2 0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.4 0.8)</td>
<td>(0.4 0.8)</td>
<td>(0.4 0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.8 0.4)</td>
<td>(0.8 0.4)</td>
<td>(0.8 0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.4 0.2)</td>
<td>(0.4 0.2)</td>
<td>(0.4 0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.2 0.1)</td>
<td>(0.2 0.1)</td>
<td>(0.2 0.1)</td>
</tr>
</tbody>
</table>

$m_0 = 4, f_0 = 4, x_0 = 4$
Species Dynamics (sp. A goes extinct)

Limited Polyandry, $h=0.3$

- male w/o comp.
- female w/o comp.
- male w/ comp.
- female w/ comp.
- competitor

Parameters:
- $b=3$, $d=(0.2,0.2)$, $\lambda=(0.4,0.4)$, $\mu=0.4,0.4$, $\alpha=(0.2,0.1)$, $r=2$, $K=4$, $\text{initX}=(4,4,4)$

Time

density

Group IV (SSSMB)
Species Dynamics (competitor \times \text{goes extinct})

Monogamy, $h=1$

- male w/o comp.
- female w/o comp.
- male w/ comp.
- female w/ comp.
- competitor

Parameters:
- $b=3$, $d=(0.2,0.2)$, $\lambda=(0.4,0.2)$, $\mu=0.4,0.4$, $\alpha=(0.2,0.1)$, $r=2$, $K=4$, $\text{initX}=(4,4,4)$

Time

Density

Group IV (SSSMB) Mating System SSSMB 10 / 19
Unlimited Polygyny, $h=NA$

- Male without competition
- Female without competition
- Male with competition
- Female with competition
- Competitor

Parameters:
- $b=3$, $d=(0.2,0.2)$, $\lambda=(0.4,0.2)$, $\mu=0.1,0.1$, $\alpha=(0.4,0.2)$, $r=2$, $K=4$, $\text{initX}=(4,4,4)$

Time and density trends are shown in the graph.
Some Results

- Only polyandry is excluded by competition with X
- Polyandry and monogamy are excluded by competition with X
- All mating systems are excluded by the competitor X
Some Results

- Only polyandry is excluded by competition with X
- Polyandry and monogamy are excluded by competition with X
- All mating systems are excluded by the competitor X
Some Results

- Only polyandry is excluded by competition with X
- Polyandry and monogamy are excluded by competition with X
- All mating systems are excluded by the competitor X
Some Results

\[\lambda \]

\[\alpha_1 = \alpha_2 \]

\[\alpha_1 < \alpha_2 \]

\[\alpha_1 > \alpha_2 \]

A = (01; 01) B = (02; 02) C = (04; 04) D = (01; 02) E = (02; 04) F = (04; 08) G = (02; 01) H = (04; 02) I = (08; 04)

Group IV (SSSMB) Mating System SSSMB
Conclusions

- Polyandry is the least stable mating system in our parameter space.
- Sex-biased competition toward females leads to exclusion by the competitor.
- Increasing the effect of the competitor over males and females will drive all four mating system extinct.
Conclusions

- Polyandry is the least stable mating system in our parameter space.

- Sex-biased competition toward females leads to exclusion by the competitor.

- Increasing the effect of the competitor over males and females will drive all four mating system extinct.
Conclusions

- Polyandry is the least stable mating system in our parameter space.

- Sex-biased competition toward females leads to exclusion by the competitor.

- Increasing the effect of the competitor over males and females will drive all four mating system extinct.
Conclusions

- Polyandry is the least stable mating system in our parameter space.

- Sex-biased competition toward females leads to exclusion by the competitor.

- Increasing the effect of the competitor over males and females will drive all four mating system extinct.

Unlimited Polygyny (stable if $b > 2d$)

$$m^* = \frac{b(b - 2d)}{4d(\alpha_2 - \alpha_1) + 2b(\alpha_1 + \alpha_2)}$$

$$f^* = \frac{(b - 2d)[2d(\alpha_2 - \alpha_1) + b\alpha_1]}{4d(\alpha_2 - \alpha_1) + 2b(\alpha_1 + \alpha_2)}$$

Limited Polygyny ($h > 1$), monogamy ($h = 1$) and limited polyandry ($0 < h < 1$) If $f^* < hm^*$, the equilibrium value is the same as the unlimited polygyny case, which is stable if $b > 2d$. If $f^* > hm$:

$$m^* = \frac{b(b - 2d)}{4d(\alpha_2 - \alpha_1) + 2b(\alpha_1 + \alpha_2)}$$

$$f^* = \frac{(b - 2d)[2d(\alpha_2 - \alpha_1) + b\alpha_1]}{4d(\alpha_2 - \alpha_1) + 2b(\alpha_1 + \alpha_2)}$$

which is stable if $bh > 2d$
Analytical Solution: w/ competitor, $\mu_1 = \mu_2$

- Unlimited Polygyny

\[x^* = \frac{4\alpha_2 - (b - 2d)\mu}{\alpha_2 - 2\mu\lambda_2} \]