Posts Tagged ‘LHC’

Novos resultados de experimento do LHC confirmam cálculos antigos de físico brasileiro sobre a interação de káons e prótons

Written by Artur Alegre on April 7th, 2020. Posted in Blog do ICTP-SAIFR

No dia 6 de março de 2020 foi publicado na revista Physical Review Letters o resultado de um experimento de autoria da Colaboração ALICE realizado no Grande Colisor de Hádrons – o LHC (da sigla em inglês para Large Hadron Collider). A publicação sobre o experimento, que tinha como objetivo o estudo da interação entre prótons e um tipo de partículas chamadas de káons, fez uso de um modelo aprimorado por um pesquisador do IFT-UNESP em um de seus trabalhos anteriores, confirmando seus cálculos de quase uma década atrás.

A Colaboração ALICE (do inglês para A Large Ion Collider Experiment) é constituída por pesquisadores de mais de 30 países e destina-se a estudar um estado da matéria chamado plasma de quark-glúons, possível apenas em condições energéticas muito extremas. Quarks são partículas que ligam-se umas às outras através de outro tipo de partícula chamada glúon para formar partículas compostas, como prótons e nêutrons. O plasma de quark-glúons é um estado da matéria na qual prótons e nêutrons se dissolvem e liberam seus constituintes, os quarks e os glúons. Conforme esse plasma esfria e se expande, as ligações entre quarks e glúons se rearranjam e formam novamente as partículas compostas: prótons, nêutrons e outras partículas como os mésons, entre eles os káons. Por isso, embora a ALICE tenha sido criada com o objetivo de estudar o próprio plasma de quark-glúons, os seus experimentos oferecem a oportunidade perfeita para estudar a interação entre essas partículas compostas que são colididas, dissolvidas e rearranjadas no processo de criação do plasma.

ALICE é um detector instalado no LHC para o estudo da matéria em densidades e energias muito elevados. A Colaboração ALICE usa o detector para estudar a formação do plasma de quark-glúons. (Imagem: CERN)

O artigo publicado na Physical Review Letters relata os resultados de um experimento que aproveitou essa oportunidade para analisar a maneira como o káon interage com prótons em meio à essa sopa de partículas em colisão, uma interação ainda muito pouco entendida, considerando a existência de tão poucos dados experimentais sobre ela até então. Os autores do trabalho compararam o novo conjunto de dados com os modelos criados por outros pesquisadores e aquele que melhor se ajustou foi o modelo publicado em um artigo de 2011 pela colaboração entre o físico brasileiro Gastão Inácio Krein, pesquisador do Instituto de Física Teórica da UNESP, e seus colegas: Johann Haidenbauer, do Centro de Pesquisa Jülich, Ulf-G. Meißner, do Centro de Pesquisa Jülich e da Universidade de Bonn, e Laura Tolos, atualmente da Universidade Autônoma de Barcelona.

O Prof. Krein dedica seu trabalho à área de Cromodinâmica Quântica, que é uma teoria de interações fortes, isto é, busca entender as interações entre as partículas que formam os núcleos atômicos. O pesquisador, que por conta da pandemia de COVID-19 retirou-se de São Paulo para continuar seu trabalho remotamente de uma cidade pequena em meio à Serra da Mantiqueira, concedeu entrevista ao ICTP-SAIFR por chamada de voz. Na conversa explica que em seu trabalho de 2011, ele e seus colaboradores não tinham por objetivo desenvolver um modelo para a interação entre prótons e káons, mas sim entre prótons e outro tipo de partícula: o méson-D. Para isso, trabalharam na melhoria de um modelo pré-existente da interação com káons, o chamado modelo de Jülich, e então desenvolveram o modelo para mésons-D de maneira análoga.

Quando perguntado sobre o que tornava possível o desenvolvimento desses dois modelos de maneira análoga, o Prof. Krein diz: “O que muda [de um méson-D para um káon] é o conteúdo de quarks. Enquanto o méson-D tem um quark charme, o káon tem um quark estranho”, explica. Os nomes que o Prof. Krein usa ao se referir aos quarks vêm do Modelo Padrão da Física de Partículas, que é a teoria responsável por descrever as partículas fundamentais que formam a matéria, bem como as forças que regem as interações entre elas. Segundo o Modelo Padrão, existem seis tipos de quarks que diferem entre si pela quantidade de massa e por um tipo de carga que possuem, que os físicos chamam de sabor (flavor, em inglês): up (acima), down (abaixo), charm (charme), strange (estranho), top (topo) e bottom (base). Prótons são formados por dois quarks up e um quark down, enquanto ambos káons e mésons-D são formados por dois quarks (mais especificamente um quark e um antiquark): no caso do méson-D, um dos quarks sempre é um quark charm, enquanto no caso de um káon um dos quarks sempre é um quark strange.

“Estávamos completamente no escuro em relação à interação do méson-D. Agora, como o méson-D só difere do káon porque troca o [quark] estranho pelo charme, pensamos o seguinte: ‘essa interação entre káons e prótons já tem dados experimentais.’ Então retomamos a interação com káons. Tinha certas predições que não haviam sido feitas ainda, então nós as fizemos. E agora a Colaboração ALICE mediu essa interação e comparou com os modelos que existem na literatura – e o nosso passou bem no meio dos dados experimentais! Ficamos muito felizes quando vimos isso porque é raro acertar na mosca assim.” Embora o modelo atualizado pelo Prof. Krein e seus colaboradores não fosse o produto principal de seu trabalho na época, mostrou-se indispensável para o avanço científico em um experimento realizado quase uma década depois. “Agora estamos esperando que algum dia alguém meça a interação do méson-D com o próton também.”

Existe uma série de dificuldades técnicas envolvidas no processo para realizar medidas de alta precisão como as que permitiram a confirmação desse modelo. Para se medir a probabilidade de um káon interagir com um próton, primeiro é preciso criar um káon a partir da colisão entre dois prótons, por exemplo, e então fazer esse káon colidir com um outro próton.  “[Dentro de um acelerador] você pode construir um feixe de prótons. Você tem prótons em abundância [na natureza], ele não decai e vive por muito tempo. Agora, káons não. Eles vivem por muito pouco tempo, decaem muito rápido. São todos experimentos indiretos.” O tempo de vida médio de um káon é de 0,00000001 segundos. “Esse é o grande desafio: você ter toda essa eletrônica, essa criogenia e esses aceleradores para medir isso.”

Todo o investimento técnico direcionado aos estudos dessas interações entre partículas não apenas contribui para complementar o nosso conhecimento do Modelo Padrão de física de Partículas – através do entendimento de como as partículas do núcleo atômico se ligam e interagem entre si – mas também produz diversos subprodutos de utilidade para outras áreas da ciência, como é o caso para a astrofísica: estudos como esses possuem um papel a desempenhar em pesquisas sobre estrelas de nêutrons, objetos astronômicos tão densos que estima-se que seu interior seja um ambiente propício para a ocorrência natural do plasma de quark-glúons e de partículas como káons.

O trabalho realizado pelo Prof. Krein e seus colaboradores, intitulado “DN interaction from meson exchange” publicado em 2011 no The European Physical Journal é em si próprio um exemplo de pesquisa que cria subprodutos intelectuais ou tecnológicos – como é, em geral, o costume da ciência. “Junto com isso tem todo um desenvolvimento tecnológico que tem ramificações para outras áreas, principalmente para a medicina, agricultura e ciências materiais. Essa é a grande coisa que passa despercebida com esses grandes projetos.”, conta o cientista.

Assim como o Prof. Krein, obrigado a lecionar suas aulas remotamente e a continuar seu trabalho como pesquisador longe do Instituto de Física Teórica da UNESP por conta da pandemia, o CERN, que é a Organização Européia para Pesquisa Nuclear que abriga o LHC e os pesquisadores da Colaboração ALICE, entre outros grupos, também encontra-se operando em modo remoto. Desde o dia 20 de março, atividades presenciais foram reduzidas apenas àquelas essenciais para a segurança e cuidado do local e dos equipamentos. “Eu estou aqui escondido e meus alunos na casa deles. Então tem um impacto direto no desenvolvimento do trabalho.”, diz o professor. “Apesar de estarmos nos falando todos os dias, não é a mesma coisa (…) No meu caso, em particular, eu estou sentindo isso agora, e meus alunos também estão sentindo. [Para eles] é a dissertação de mestrado, a tese de doutorado: esse é o primeiro impacto. Aí tem o impacto maior, que é o impacto nos laboratórios (…) Do ponto de vista do pessoal que opera o CERN, eles também estão sendo prejudicados.” Apesar disso, o professor preserva o otimismo de que a ciência levantará mais forte após essa crise. “Talvez a pessoa comum veja o quanto a ciência é importante (…) Quem é que faz a vacina? É um trabalho científico: são os médicos, os biólogos, os químicos. É a ciência que vai trazer essa vacina. Então chama a atenção do público que não pensa muito sobre ciência no seu dia a dia ou não enxerga a importância desse trabalho.”

Escola de física de partículas ICTP Trieste-SAIFR

Written by Victória Flório on July 16th, 2018. Posted in Blog do ICTP-SAIFR

O evento aconteceu entre os dias 18 e 29 de junho, no ICTP-SAIFR, no Instituto de Física Teórica da Unesp, em São Paulo, e trouxe os mais recentes resultados e técnicas de física de partículas para os alunos sul-americanos.

 

A física tecida no LHC continuará a surpreender a comunidade científica detectando mais e mais componentes fundamentais da matéria? Créditos da imagem: CERN, Colaboração CMS (Compact Muon Solenoid).

O início do século 21 têm movimentado a área de física de partículas, área que pretende descrever interações e decifrar a natureza dos constituintes fundamentais da matéria e da radiação. Em 2012, o Bóson de Higgs – teorizado por Peter Higgs, em 1964 – foi confirmado experimentalmente pelo LHC, o Grande Colisor de Hádrons do CERN, localizado em Genebra, Suíça. Cinco anos depois, as ondas gravitacionais – previstas em 1916 por Albert Einstein – foram detectadas pelas colaborações científicas LIGO, nos EUA, e VIRGO, sediada na Itália. Eventos de grande importância como esses deram um novo fôlego para o Modelo Padrão – teoria mais aceita sobre partículas e forças que compõem o Universo – e para a Relatividade Geral – teoria que descreve a gravidade como uma propriedade geométrica do tecido do espaço-tempo.

Apesar do entusiasmo da comunidade com os novos achados, fantasmas assombram a completa aceitação do Modelo Padrão, dentre eles, a necessidade de confirmações experimentais para matéria e energia escura – propostas para fechar a conta da quantidade total de matéria no Universo -, e para um gama enorme de partículas. Esse dinâmico período na física desperta novas possibilidades e aumenta as expectativas dos cientistas sobre o que está por vir no LHC.

 

Participantes da primeira escola conjunta de física de partículas ICTP Trieste-SAIFR, no auditório do IFT-Unesp, no campus da Barra Funda. À frente, da esquerda para a direita: os organizadores Eduardo Pontón (ICTP-SAIFR) e Enrico Bertuzzo (USP), os palestrantes Laura Covi (Institute for Theoretical Physics, Göttingen, Alemanha); Benjamin Grinstein (UCSD, EUA); Giulia Zanderighi (Universidade de Oxford, Reino Unido), e o organizador Giovanni Villadoro (ICTP-Trieste).

“O interesse do público em geral e dos estudantes universitários para o futuro da física de partículas e do LHC foi o que motivou a união com o ICTP-Trieste para organizar uma escola”, conta o pesquisador Enrico Bertuzzo, da USP, um dos organizadores da Primeira Escola Conjunta ICTP Trieste-SAIFR de física de partículas. Além de Bertuzzo, o comitê de organização foi composto pelos pesquisadores Eduardo Pontón, do ICTP-SAIFR, Andrea Romanino e Giovanni Villadoro, ambos do ICTP-Trieste, na Itália.

A parceria, segundo Bertuzzo, levou em conta a longa experiência do ICTP-Trieste na realização de escolas de física de partículas. O ICTP-SAIFR já tinha recebido outras duas escolas voltadas para a física do LHC, em 2013 e 2015, mas a parceria com o ICTP-Trieste foi o primeiro passo para iniciar uma nova tradição. “Como os cursos universitários não cobrem  os atuais resultados da física de partículas, a intenção é fornecer aos participantes da escola uma visão mais global e moderna”, complementa. Cerca de oitenta estudantes de pós-graduação, de quatorze nacionalidades (Venezuela, Peru, Chile, Colômbia, Argentina, Uruguai, Costa Rica, Cuba, México, França, Índia, Paquistão, Irã e Brasil) – a maior parte sediados em universidades brasileiras -, receberam para os cursos e palestras pesquisadores dos Estados Unidos, Itália, Alemanha, Reino Unido, Espanha e Brasil.

As palestras e cursos trataram sobre o Modelo Padrão, teorias fortemente interagentes em colisores, Universo Primordial, matéria escura, e tópicos em física experimental e teórica. “A escola foi mais teórica, com implicações na física de colisores, como o CERN”, avalia  Bertuzzo. O palestrante Alex Pomarol, da Universidade Autônoma de Barcelona, Espanha, discutiu a física além do Modelo Padrão. Outro ponto alto da escola, segundo Bertuzzo, foram a abordagem fortemente matemática da cosmologia sobre o Universo Primordial e as discussões filosóficas introduzidas pela pesquisadora Laura Covi, do Instituto de Física Teórica de Göttingen, Alemanha. Covi abordou questões como “Cosmologia é ciência?”; “Qual a reprodutibilidade dos experimentos em cosmologia?”; “É possível comparar modelos com dados experimentais?”.

A física teórica Laura Covi, graduada na Universidade de Trento, na Itália, atualmente é professora no Instituto de Física Teórica da Universidade de Göttingen, Alemanha. Covi pesquisa na fronteira entre física de partículas e cosmologia e, durante a escola, falou sobre os primeiros instantes do Universo.

A programação da escola entusiasmou os participantes. “Gostei da abordagem sobre as possibilidades experimentais em física de partículas”, menciona a estudante Milena Leal, da Universidade Pedagógica e Tecnológica da Colômbia. Já Felipe Fontineli, estudante do Instituto de Física da Universidade Nacional de Brasília, foi atraído pela apresentação de teorias além do Modelo Padrão, “A escola representou também uma oportunidade de entrar em contato com outros pesquisadores”, arremata.

“A largo prazo, nosso objetivo, é irradiar o conhecimento produzido durante a escola para outros centros. Questões financeiras dificultam viagens de estudantes até a Europa, então, temos que aproximar as possibilidades de investigação à realidade das pessoas”, enfatiza Bertuzzo. Apesar de os grandes colisores não existirem na América do Sul, há várias possibilidades de inserção internacional de pesquisadores. O Brasil, através de centros no Rio de Janeiro e em São Paulo, mantém colaborações com o LHC. Novas parcerias entusiasmam a comunidade, como os experimentos DUNE (sigla em inglês para Deep Underground Neutrino Experiment), com dois detectores que serão instalados nos EUA, e a colaboração internacional Dark Side, sediada no Laboratório Nacional do Gran Sasso, na Itália.

 

Durante a escola os participantes apresentaram trabalhos e resolveram problemas.

A motivação fundamental para pesquisar na área de física de partículas, segundo Bertuzzo, é obter uma explicação para a realidade e o funcionamento do Universo. “Essa é uma das físicas mais fundamentais, junto à cosmologia. Não é muito diferente de olhar para o céu, só que, ao invés de fazer astronomia com a luz, fazemos com partículas, os constituintes fundamentais do Universo. Abusamos da curiosidade para explorar aquilo que vemos”,  revela.