# Black holes and phase transitions in higher curvature gravity

José Edelstein

# University of Santiago de Compostela & CECs Valdivia

# Quantum Gravity in the Southern Cone VI

Maresias, September 14, 2013

Based on joint work with: Xián Camanho (PhD @USC  $\rightarrow$  AEI-Max Planck Potsdam) Miguel Paulos (LPTHE, Univ. Pierre et Marie Curie  $\rightarrow$  Brown Univ.) Gastón Giribet (Univ. Buenos Aires) Andrés Gomberoff (Univ. Andrés Bello)

José Edelstein (USC & CECs)

Black holes and phase transitions

## Higher curvature corrections and quantum gravity

Classical gravity seems well-described by the Einstein-Hilbert action.

## Quantum corrections generically involve higher curvature corrections:

- Wilsonian approaches.
- $\alpha'$  corrections in string theory.
- Higher dimensional scenarios.
- Relevant when studying generic strongly coupled CFTs under the light of the gauge/gravity correspondence (*e.g.*, 4d CFTs with  $a \neq c$ ).

They are typically argued to be plagued of ghosts.

Lovelock gravities are the most general second order theories free of ghosts when expanding about flat space.

José Edelstein (USC & CECs)

Black holes and phase transitions

#### Lovelock theory

The action is compactly expressed in terms of differential forms

$$\mathcal{I} = \sum_{k=0}^{K} \frac{c_k}{d-2k} \left( \int_{\mathcal{M}} \mathcal{I}_k - \int_{\partial \mathcal{M}} \mathcal{Q}_k \right)$$

where  $K \leq \left[\frac{d-1}{2}\right]$  and  $c_k$  is a set of couplings with length dimensions  $L^{2(k-1)}$ .

#### Lovelock theory

The action is compactly expressed in terms of differential forms

$$\mathcal{I} = \sum_{k=0}^{K} \frac{c_k}{d-2k} \left( \int_{\mathcal{M}} \mathcal{I}_k - \int_{\partial \mathcal{M}} \mathcal{Q}_k \right)$$

where  $K \leq \left[\frac{d-1}{2}\right]$  and  $c_k$  is a set of couplings with length dimensions  $L^{2(k-1)}$ .

*I<sub>k</sub>* is the extension of the Euler characteristic in 2k dimensions

$$\mathcal{I}_{k} = \epsilon_{a_{1}\cdots a_{d}} R^{a_{1}a_{2}} \wedge \cdots \wedge R^{a_{2k-1}a_{2k}} \wedge e^{a_{2k+1}} \wedge \cdots \wedge e^{a_{d}}$$

with  $R^{ab} = d\omega^{ab} + \omega^a_c \wedge \omega^{cb} = \frac{1}{2} R^{ab}_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$ .

#### Lovelock theory

The action is compactly expressed in terms of differential forms

$$\mathcal{I} = \sum_{k=0}^{K} \frac{c_k}{d-2k} \left( \int_{\mathcal{M}} \mathcal{I}_k - \int_{\partial \mathcal{M}} \mathcal{Q}_k \right)$$

where  $K \leq \left[\frac{d-1}{2}\right]$  and  $c_k$  is a set of couplings with length dimensions  $L^{2(k-1)}$ .

*I<sub>k</sub>* is the extension of the Euler characteristic in 2k dimensions

$$\mathcal{I}_{k} = \epsilon_{a_{1}\cdots a_{d}} R^{a_{1}a_{2}} \wedge \cdots \wedge R^{a_{2k-1}a_{2k}} \wedge e^{a_{2k+1}} \wedge \cdots \wedge e^{a_{d}}$$

with  $R^{ab} = d\omega^{ab} + \omega^a_c \wedge \omega^{cb} = \frac{1}{2} R^{ab}_{\ \mu\nu} \ dx^{\mu} \wedge dx^{\nu}.$ 

•  $Q_k$  comes from the GB theorem in manifolds with boundaries Myers (1987)

$$\mathcal{Q}_{k} = k \int_{0}^{1} d\xi \,\epsilon_{a_{1}\cdots a_{d}} \,\theta^{a_{1}a_{2}} \wedge \mathfrak{F}^{a_{3}a_{4}}(\xi) \wedge \cdots \wedge \mathfrak{F}^{a_{2k-1}a_{2k}}(\xi) \wedge \boldsymbol{e}^{a_{2k+1}} \wedge \cdots \wedge \boldsymbol{e}^{a_{d}}$$

where  $\theta^{ab} = n^a K^b - n^b K^a$  and  $\mathfrak{F}^{ab}(\xi) \equiv R^{ab} + (\xi^2 - 1) \theta^a_{e} \wedge \theta^{eb}$ .

#### Lovelock theory: lowest order examples

The first two contributions (most general up to d = 4) correspond to:

• The cosmological term: we set 
$$2\Lambda = -\frac{(d-1)(d-2)}{L^2}$$
  $c_0 = \frac{1}{L^2}$ 

• The EH action (with GH term): we set  $16\pi(d-3)!G_N = 1$   $c_1 = 1$ 

#### Lovelock theory: lowest order examples

The first two contributions (most general up to d = 4) correspond to:

- The cosmological term: we set  $2\Lambda = -\frac{(d-1)(d-2)}{L^2}$   $c_0 = \frac{1}{L^2}$
- The EH action (with GH term): we set  $16\pi(d-3)!G_N = 1$   $c_1 = 1$

For  $d \ge 5$ , we have the Lanczos-Gauss-Bonnet (LGB) term ( $c_2 = \lambda L^2$ ),

$$\mathcal{I}_2 \simeq d^d x \sqrt{-g} \left( R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \right) \qquad \mathcal{Q}_2 \sim \sqrt{-h} \left( KR + \ldots \right)$$

#### Lovelock theory: lowest order examples

The first two contributions (most general up to d = 4) correspond to:

- The cosmological term: we set  $2\Lambda = -\frac{(d-1)(d-2)}{L^2}$   $c_0 = \frac{1}{L^2}$
- The EH action (with GH term): we set  $16\pi(d-3)!G_N = 1$   $c_1 = 1$

For  $d \ge 5$ , we have the Lanczos-Gauss-Bonnet (LGB) term ( $c_2 = \lambda L^2$ ),

$$\mathcal{I}_2 \simeq d^d x \sqrt{-g} \left( R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \right) \qquad \mathcal{Q}_2 \sim \sqrt{-h} \left( KR + \ldots \right)$$

while for  $d \ge 7$ , the cubic Lovelock Lagrangian ( $c_3 = \mu L^4$ ),

$$\mathcal{I}_{3} \simeq d^{d}x \sqrt{-g} \bigg( R^{3} + 3RR^{\mu\nu\alpha\beta}R_{\alpha\beta\mu\nu} - 12RR^{\mu\nu}R_{\mu\nu} + 24R^{\mu\nu\alpha\beta}R_{\alpha\mu}R_{\beta\nu} +$$

 $16R^{\mu\nu}R_{\nu\alpha}R^{\ \alpha}_{\mu}+24R^{\mu\nu\alpha\beta}R_{\alpha\beta\nu\rho}R^{\ \rho}_{\mu}+8R^{\mu\nu}_{\ \alpha\rho}R^{\alpha\beta}_{\ \nu\sigma}R^{\rho\sigma}_{\ \mu\beta}+2R_{\alpha\beta\rho\sigma}R^{\mu\nu\alpha\beta}R^{\rho\sigma}_{\ \mu\nu}\right)$ 

#### AdS/dS/flat vacua

Varying the action with respect to the connection,

$$\epsilon_{aba_3\cdots a_d} \sum_{k=1}^{K} \frac{k c_k}{d-2k} \left( R^{a_3 a_4} \wedge \cdots \wedge R^{a_{2k-1} a_{2k}} \wedge e^{a_{2k+1}} \wedge \ldots \wedge e^{a_{d-1}} \right) \wedge T^{a_d} = 0$$

we can safely impose  $T^a = 0$  as in standard Einstein's gravity.

#### AdS/dS/flat vacua

Varying the action with respect to the connection,

$$\epsilon_{aba_3\cdots a_d} \sum_{k=1}^{K} \frac{k c_k}{d-2k} \left( R^{a_3a_4} \wedge \cdots \wedge R^{a_{2k-1}a_{2k}} \wedge e^{a_{2k+1}} \wedge \ldots \wedge e^{a_{d-1}} \right) \wedge T^{a_d} = 0$$

we can safely impose  $T^a = 0$  as in standard Einstein's gravity.

The equations of motion, when varying with respect to the vierbein,

$$\epsilon_{aa_1\cdots a_{d-1}} \ \mathcal{F}_{(1)}^{a_1a_2} \wedge \cdots \wedge \mathcal{F}_{(K)}^{a_{2K-1}a_{2K}} \wedge e^{a_{2K+1}} \wedge \ldots \wedge e^{a_{d-1}} = 0$$

admit K constant curvature vacua,

$$\mathcal{F}^{ab}_{(i)} := R^{ab} - \bigwedge_i e^a \wedge e^b = 0$$

#### AdS/dS/flat vacua

Varying the action with respect to the connection,

$$\epsilon_{aba_3\cdots a_d} \sum_{k=1}^{\mathcal{K}} \frac{k c_k}{d-2k} \left( R^{a_3a_4} \wedge \cdots \wedge R^{a_{2k-1}a_{2k}} \wedge e^{a_{2k+1}} \wedge \ldots \wedge e^{a_{d-1}} \right) \wedge T^{a_d} = 0$$

we can safely impose  $T^a = 0$  as in standard Einstein's gravity.

The equations of motion, when varying with respect to the vierbein,

$$\epsilon_{aa_1\cdots a_{d-1}} \ \mathcal{F}_{(1)}^{a_1a_2} \wedge \cdots \wedge \mathcal{F}_{(K)}^{a_{2K-1}a_{2K}} \wedge \boldsymbol{e}^{a_{2K+1}} \wedge \ldots \wedge \boldsymbol{e}^{a_{d-1}} = 0$$

admit K constant curvature vacua,

$$\mathcal{F}^{ab}_{(i)} := R^{ab} - \Lambda_i e^a \wedge e^b = 0$$

The cosmological constants being the roots of the polynomial  $\Upsilon[\Lambda]$ :

$$\Upsilon[\Lambda] := \sum_{k=0}^{K} c_k \Lambda^k = c_K \prod_{i=1}^{K} (\Lambda - \Lambda_i) = 0$$
  
rise when  $\Lambda := \prod (\Lambda - \Lambda_i)^2 = 0$ 

Degeneracies arise when  $\Delta := \prod_{i < j} (\Lambda_i - \Lambda_j)^2 = 0$ 

José Edelstein (USC & CECs)

#### Lovelock black holes

The black hole solution can be obtained via the ansatz

$$ds^2 = -f(r) dt^2 + rac{dr^2}{f(r)} + rac{r^2}{L^2} d\Sigma^2_{\sigma,d-2}$$

where  $d\Sigma_{\sigma,d-2}$  is the metric of a maximally symmetric space.

The equations of motion can be nicely rewritten as

$$\left[\frac{d}{d\log r}+(d-1)\right]\left(\sum_{k=0}^{K}c_{k}g^{k}\right)=0$$

where  $g(r) = \frac{\sigma - f(r)}{r^2}$ , and easily solved as

Kastor, Ray, Traschen (2010)

$$\Upsilon[g] = \sum_{k=0}^{K} c_k g^k = V_{d-2} \frac{M}{r^{d-1}}$$

The black hole solution is implicitly given by this polynomial equation.

José Edelstein (USC & CECs)

Wheeler (1986)

#### Lovelock black holes

Each branch,  $g_i(r)$ , corresponds to a monotonous part of the polynomial,

$$\Upsilon[g] = \sum_{k=0}^{K} \boldsymbol{c}_{k} \, g^{k} = \mathrm{V}_{d-2} \; \frac{M}{r^{d-1}}$$

The variation of *r* translates the curve (y-intercept) rigidly, upwards,



This leads to *K* branches,  $g_i(r)$ , associated with each  $\Lambda_i$ :  $g_i(r \to \infty) = \Lambda_i$ 

José Edelstein (USC & CECs)

#### Lovelock black holes (and naked singularities)

The existence of a black hole horizon requires  $g_+ = 0$  for planar black holes (recall  $g(r) = \frac{\sigma - f(r)}{r^2}$ ), and

$$\Upsilon[g_+] = V_{d-2} \frac{M}{r_+^{d-1}} = V_{d-2} M |g_+|^{(d-1)/2} \quad \text{since} \quad g_+ = \frac{\sigma}{r_+^2}$$



- Planar case, only the EH-branch has an event horizon.
- Non-planar case,  $\sigma = \pm 1$ , several branches can have the same mass or temperature.

José Edelstein (USC & CECs)

Black holes and phase transitions

Some of the new features seemingly unnatural or pathological

Additional couplings

new scales



Branches

multivaluedness

## Features of Lovelock theory

Some of the new features seemingly unnatural or pathological



## Holography — the AdS/CFT correspondence

#### **Bold statement:**

Maldacena (1997)

Quantum gravity in  $AdS_d$  space is equal to a  $CFT_{d-1}$  living at the boundary

The generating function reads

Gubser, Klebanov, Polyakov (1998) Witten (1998)

$$\left\langle \exp\left(\int d\mathbf{x} \ \eta^{ab}(\mathbf{x}) \mathcal{T}_{ab}(\mathbf{x})\right) \right\rangle_{\text{SYM}} = \mathcal{Z}_{\text{QG}}\left[g_{\mu\nu}\right] \approx \exp\left(-\mathcal{I}_{G}[g_{\mu\nu}]\right)$$

where  $g_{\mu\nu} = g_{\mu\nu}(z, \mathbf{x})$  such that  $g_{ab}(0, \mathbf{x}) = \eta_{ab}(\mathbf{x})$  .

## Holography — the AdS/CFT correspondence

#### **Bold statement:**

Maldacena (1997)

Quantum gravity in  $AdS_d$  space is equal to a  $CFT_{d-1}$  living at the boundary

The generating function reads

Gubser, Klebanov, Polyakov (1998) Witten (1998)

$$\left\langle \exp\left(\int d\mathbf{x} \ \eta^{ab}(\mathbf{x}) \mathcal{T}_{ab}(\mathbf{x})\right) \right\rangle_{\text{SYM}} = \mathcal{Z}_{\text{QG}}\left[g_{\mu\nu}\right] \approx \exp\left(-\mathcal{I}_{G}[g_{\mu\nu}]\right)$$

where  $g_{\mu\nu} = g_{\mu\nu}(z, \mathbf{x})$  such that  $g_{ab}(0, \mathbf{x}) = \eta_{ab}(\mathbf{x})$  .

#### 5d EH gravity describes 4d CFTs with a = c.

Higher curvature corrections are relevant when studying "more general" strongly coupled CFTs

## Warming up: the LGB case

When 
$$K = 2$$
:  

$$\Upsilon[\Lambda] = \frac{1}{L^2} + \Lambda + \lambda L^2 \Lambda^2 = 0$$

$$\Lambda_{\pm} = -\frac{1 \pm \sqrt{1 - 4\lambda}}{2\lambda L^2}$$



#### Warming up: the LGB case



Each black hole solution *climbs up* a monotonous part of the polynomial.

In the planar case ( $\sigma = 0$ ), just the EH branch ( $\Lambda_{-}$ ) has a horizon (g = 0).

The EH-branch has  $\Upsilon'[\Lambda_{-}] > 0$ , a positive effective Newton constant.

Every branch *ends up* at a singularity: either r = 0 or  $\Upsilon'[g] = 0$ .

José Edelstein (USC & CECs)

Black holes and phase transitions

#### Warming up: the LGB case



Each black hole solution *climbs up* a monotonous part of the polynomial.

In the planar case ( $\sigma = 0$ ), just the EH branch ( $\Lambda_{-}$ ) has a horizon (g = 0).

The EH-branch has  $\Upsilon'[\Lambda_{-}] > 0$ , a positive effective Newton constant.

Every branch ends up at a singularity: either r = 0 or  $\Upsilon'[g] = 0$ .

José Edelstein (USC & CECs)

Black holes and phase transitions

## Graviton potentials: unitarity & causality

EOM for perturbations are two derivative.

VACUUM: Coefficient of the kinetic term:

Unitarity

Boulware, Deser (1985)

 $\Upsilon'[\Lambda]>0$ 

## Graviton potentials: unitarity & causality

EOM for perturbations are two derivative.

VACUUM: Coefficient of the kinetic term:

Unitarity

Boulware, Deser (1985)

 $\Upsilon'[\Lambda] > 0$ 

BLACK HOLE: at high momentum, EOM in Schrödinger form:

Takahashi, Soda (2010)

$$-\hbar^2 \partial_y \Psi_i + c_i^2(y) \Psi_i = rac{\omega^2}{q^2} \Psi_i \quad , \qquad \hbar \equiv rac{1}{q} o 0$$

for *c<sub>i</sub>* speed of gravitons on radial slices.

de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)

## Graviton potentials: unitarity & causality

EOM for perturbations are two derivative.

VACUUM: Coefficient of the kinetic term:

Unitarity

Boulware, Deser (1985)

 $\Upsilon'[\Lambda] > 0$ 

BLACK HOLE: at high momentum, EOM in Schrödinger form:

Takahashi, Soda (2010)

$$-\hbar^2 \partial_y \Psi_i + c_i^2(y) \Psi_i = rac{\omega^2}{q^2} \Psi_i \quad , \qquad \hbar \equiv rac{1}{q} o 0$$

for *c<sub>i</sub>* speed of gravitons on radial slices.

de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)





## Causality violation,



#### The potentials close to the boundary of AdS

de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)

$$\begin{aligned} c_{2}^{2} &\approx 1 + \frac{1}{L^{2}\Lambda} \left(\frac{r_{+}}{r}\right)^{d-1} \left[1 + \frac{2(d-1)}{(d-3)(d-4)} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\right] \\ c_{1}^{2} &\approx 1 + \frac{1}{L^{2}\Lambda} \left(\frac{r_{+}}{r}\right)^{d-1} \left[1 - \frac{d-1}{d-3} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\right] \\ c_{0}^{2} &\approx 1 + \frac{1}{L^{2}\Lambda} \left(\frac{r_{+}}{r}\right)^{d-1} \left[1 - \frac{2(d-1)}{(d-3)} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\right] \end{aligned}$$

## Causality violation,



#### The potentials close to the boundary of AdS

de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)

$$\begin{aligned} c_2^2 &\approx 1 + \frac{1}{L^2 \Lambda} \left(\frac{r_+}{r}\right)^{d-1} \left[1 + \frac{2(d-1)}{(d-3)(d-4)} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\right] \\ c_1^2 &\approx 1 + \frac{1}{L^2 \Lambda} \left(\frac{r_+}{r}\right)^{d-1} \left[1 - \frac{d-1}{d-3} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\right] \\ c_0^2 &\approx 1 + \frac{1}{L^2 \Lambda} \left(\frac{r_+}{r}\right)^{d-1} \left[1 - \frac{2(d-1)}{(d-3)} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\right] \end{aligned}$$

#### **Causality imposes**

$$-rac{d-2}{d-4}\leq -rac{2(d-1)(d-2)}{(d-3)(d-4)}rac{\Lambda\Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}\leq d-2$$

Causality violations may also occur in the interior of geometry.

Camanho, Edelstein, Paulos (2010)

José Edelstein (USC & CECs)

Black holes and phase transitions

September 14, 2013 13 / 26

Consider a  $CFT_{d-1}$ . The leading singularity of the 2-point function is fully characterized by the central charge  $C_T$  Osborn, Petkou (1994)

$$\langle T_{ab}(\mathbf{x}) | T_{cd}(\mathbf{0}) 
angle \sim rac{\mathcal{C}_T}{2 | \mathbf{x}^{2(d-1)}} (\ldots)$$

$$C_{T} = \frac{d}{d-2} \frac{\Gamma[d]}{\pi^{\frac{d-1}{2}} \Gamma\left[\frac{d-1}{2}\right]} \frac{\Upsilon'[\Lambda]}{(-\Lambda)^{d/2}}$$

Camanho, Edelstein, Paulos (2010)

Consider a  $CFT_{d-1}$ . The leading singularity of the 2-point function is fully characterized by the central charge  $C_T$  Osborn, Petkou (1994)

$$\langle T_{ab}(\mathbf{x}) T_{cd}(\mathbf{0}) \rangle \sim \frac{C_T}{2 \, \mathbf{x}^{2(d-1)}}(\dots) \qquad C_T = \frac{d}{d-2} \frac{\Gamma[d]}{\pi^{\frac{d-1}{2}} \Gamma\left[\frac{d-1}{2}\right]} \frac{\Upsilon'[\Lambda]}{(-\Lambda)^{d/2}}$$

Camanho, Edelstein, Paulos (2010)

The dual theory of a given AdS-branch is unitary,

$$C_T > 0 \qquad \iff \qquad \Upsilon'[\Lambda] > 0$$

Consider a  $CFT_{d-1}$ . The leading singularity of the 2-point function is fully characterized by the central charge  $C_T$  Osborn, Petkou (1994)

$$\langle T_{ab}(\mathbf{x}) T_{cd}(\mathbf{0}) \rangle \sim \frac{C_T}{2 \mathbf{x}^{2(d-1)}} (\dots) \qquad C_T = \frac{d}{d-2} \frac{\Gamma[d]}{\pi^{\frac{d-1}{2}} \Gamma\left[\frac{d-1}{2}\right]} \frac{\Upsilon'[\Lambda]}{(-\Lambda)^{d/2}}$$

Camanho, Edelstein, Paulos (2010)

The dual theory of a given AdS-branch is unitary,

 $C_T > 0 \qquad \iff \qquad \Upsilon'[\Lambda] > 0$ 

A good parametrization of 3-point functions

Hofman, Maldacena (2008)

$$\langle \mathcal{E}(\mathbf{n}) \rangle_{\mathcal{O}} = \frac{\langle \mathbf{0} | \mathcal{O}^{\dagger} \mathcal{E}(\mathbf{n}) \mathcal{O} | \mathbf{0} \rangle}{\langle \mathbf{0} | \mathcal{O}^{\dagger} \mathcal{O} | \mathbf{0} \rangle} , \qquad \qquad \mathcal{E}(\mathbf{n}) = \lim_{r \to \infty} r^{d-2} \int_{-\infty}^{\infty} dt \, \mathbf{n}^{i} \, \mathcal{T}_{i}^{0}(t, r \, \mathbf{n})$$

Consider a  $CFT_{d-1}$ . The leading singularity of the 2-point function is fully characterized by the central charge  $C_T$  Osborn, Petkou (1994)

$$\langle T_{ab}(\mathbf{x}) T_{cd}(\mathbf{0}) \rangle \sim \frac{C_T}{2 \, \mathbf{x}^{2(d-1)}}(\dots) \qquad C_T = \frac{d}{d-2} \frac{\Gamma[d]}{\pi^{\frac{d-1}{2}} \Gamma\left[\frac{d-1}{2}\right]} \frac{\Upsilon'[\Lambda]}{(-\Lambda)^{d/2}}$$

Camanho, Edelstein, Paulos (2010)

The dual theory of a given AdS-branch is unitary,

 $C_T > 0 \qquad \iff \qquad \Upsilon'[\Lambda] > 0$ 

A good parametrization of 3-point functions

Hofman, Maldacena (2008)

$$\mathcal{E}(\mathbf{n})\rangle_{\mathcal{O}} = \frac{\langle \mathbf{0}|\mathcal{O}^{\dagger}\mathcal{E}(\mathbf{n})\mathcal{O}|\mathbf{0}\rangle}{\langle \mathbf{0}|\mathcal{O}^{\dagger}\mathcal{O}|\mathbf{0}\rangle} , \qquad \qquad \mathcal{E}(\mathbf{n}) = \lim_{r \to \infty} r^{d-2} \int_{-\infty}^{\infty} dt \, \mathbf{n}^{i} \, \mathcal{T}_{i}^{0}(t, r \, \mathbf{n})$$

This is the expectation value for the total energy flux per unit angle measured in a state created by a local gauge invariant operator O

José Edelstein (USC & CECs)

Black holes and phase transitions

$$\langle \mathcal{E}(\mathbf{n}) \rangle_{\epsilon_{ij}T_{ij}} = \frac{E}{\omega_{d-3}} \left[ 1 + t_2 \left( \frac{\mathbf{n}_i \, \epsilon_{il}^* \, \epsilon_{ij} \, \mathbf{n}_j}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{1}{d-2} \right) + t_4 \left( \frac{|\epsilon_{ij} \, \mathbf{n}_i \, \mathbf{n}_j|^2}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{2}{d(d-2)} \right) \right]$$

since  $\epsilon_{ij}$  is a symmetric and traceless polarization tensor.

$$\langle \mathcal{E}(\mathbf{n}) \rangle_{\epsilon_{ij}T_{ij}} = \frac{E}{\omega_{d-3}} \left[ 1 + t_2 \left( \frac{\mathbf{n}_i \, \epsilon_{ii}^* \, \epsilon_{ij} \, \mathbf{n}_j}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{1}{d-2} \right) + t_4 \left( \frac{|\epsilon_{ij} \, \mathbf{n}_i \, \mathbf{n}_j|^2}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{2}{d(d-2)} \right) \right]$$

since  $\epsilon_{ij}$  is a symmetric and traceless polarization tensor.

Demanding positivity of the different components gives

$$\begin{aligned} 1 &- \frac{1}{d-2} t_2 - \frac{2}{d(d-2)} t_4 \ge 0 , \\ 1 &- \frac{1}{d-2} t_2 - \frac{2}{d(d-2)} t_4 + \frac{1}{2} t_2 \ge 0 , \\ 1 &- \frac{1}{d-2} t_2 - \frac{2}{d(d-2)} t_4 + \frac{d-3}{d-2} (t_2 + t_4) \ge 0 \end{aligned}$$



$$\langle \mathcal{E}(\mathbf{n}) \rangle_{\epsilon_{ij} \mathsf{T}_{ij}} = \frac{E}{\omega_{d-3}} \left[ 1 + t_2 \left( \frac{\mathbf{n}_i \, \epsilon_{ij}^* \, \epsilon_{ij} \, \mathbf{n}_j}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{1}{d-2} \right) + t_4 \left( \frac{|\epsilon_{ij} \, \mathbf{n}_i \, \mathbf{n}_j|^2}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{2}{d(d-2)} \right) \right]$$

since  $\epsilon_{ij}$  is a symmetric and traceless polarization tensor.

Demanding positivity of the different components gives

$$\begin{aligned} 1 &- \frac{1}{d-2} t_2 - \frac{2}{d(d-2)} t_4 \ge 0 , \\ 1 &- \frac{1}{d-2} t_2 - \frac{2}{d(d-2)} t_4 + \frac{1}{2} t_2 \ge 0 , \\ 1 &- \frac{1}{d-2} t_2 - \frac{2}{d(d-2)} t_4 + \frac{d-3}{d-2} (t_2 + t_4) \ge 0 . \end{aligned}$$

t2 and t4 may be calculated holographically,

$$t_2 = -\frac{2(d-1)(d-2)}{(d-3)(d-4)} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}$$



 $t_{I} = 0$ 

;

de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)

José Edelstein (USC & CECs)

Black holes and phase transitions

$$\langle \boldsymbol{\mathcal{E}}(\mathbf{n}) \rangle_{\epsilon_{ij}} T_{ij} = \frac{E}{\omega_{d-3}} \left[ 1 + t_2 \left( \frac{\mathbf{n}_i \, \epsilon_{ii}^* \, \epsilon_{ij} \, \mathbf{n}_j}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{1}{d-2} \right) + t_4 \left( \frac{|\epsilon_{ij} \, \mathbf{n}_i \, \mathbf{n}_j|^2}{\epsilon_{ij}^* \, \epsilon_{ij}} - \frac{2}{d(d-2)} \right) \right]$$

since  $\epsilon_{ij}$  is a symmetric and traceless polarization tensor.

Demanding positivity of the different components gives

$$-\frac{d-2}{d-4} \leq \frac{t_2}{2} \leq d-2$$

Camanho, Edelstein (2009)

-5

 $t_{I} = 0$ 

t<sub>2</sub> and t<sub>4</sub> may be calculated holographically,

de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)

$$t_2 = -\frac{2(d-1)(d-2)}{(d-3)(d-4)} \frac{\Lambda \Upsilon''[\Lambda]}{\Upsilon'[\Lambda]}$$

José Edelstein (USC & CECs)

Black holes and phase transitions









## Holography III — Shear viscosity of strongly-coupled fluids

Lovelock terms lead to a violation of the KSS bound

Kovtun, Son, Starinets (2004) Shu (2009)

$$\frac{\eta}{s} = \frac{1}{4\pi} \left( 1 - 2 \frac{d-1}{d-3} \lambda \right) \frac{\hbar}{k_B}$$

## Holography III — Shear viscosity of strongly-coupled fluids

Lovelock terms lead to a violation of the KSS bound

Kovtun, Son, Starinets (2004) Shu (2009)

$$\frac{\eta}{s} = \frac{1}{4\pi} \left( 1 - 2\frac{d-1}{d-3}\lambda \right) \frac{\hbar}{k_B} \ge \frac{1}{4\pi} \left( 1 - 2\frac{d-1}{d-3}\lambda^{\max} \right) \frac{\hbar}{k_B}$$

the ratio being reduced for  $\lambda^{max} > 0$ 

## Holography III — Shear viscosity of strongly-coupled fluids

Lovelock terms lead to a violation of the KSS bound

Kovtun, Son, Starinets (2004) Shu (2009)

$$\frac{\eta}{s} = \frac{1}{4\pi} \left( 1 - 2\frac{d-1}{d-3}\lambda \right) \frac{\hbar}{k_B} \ge \frac{1}{4\pi} \left( 1 - 2\frac{d-1}{d-3}\lambda^{\max} \right) \frac{\hbar}{k_B}$$

the ratio being reduced for  $\lambda^{max} > 0$ 

• They **do** contribute to the lower bound of  $\eta/s!$ 

Camanho, Edelstein, Paulos (2010)



## Lovelock black holes: the cosmic censor

The existence of a black hole horizon requires



## Lovelock black holes: the cosmic censor

The existence of a black hole horizon requires



The singularity becomes naked (mass gap)

- $\bullet \ \lambda > \mathsf{0}, \quad \text{for} \quad \kappa \leq \lambda \quad \text{in 5D}.$
- $\lambda < 0$ , for  $\kappa \le \kappa_{\star}$  in arbitrary dimension.

Black holes and phase transitions

#### Instabilities and the cosmic censor

Camanho, Edelstein (2013)

The singular solutions are in all cases unstable. Stability imposes a more constraining mass gap.

Naked singularities cannot be reached as the final state of the evolution of generic initial conditions, *e.g.* collapse

#### Instabilities and the cosmic censor

Camanho, Edelstein (2013)

The singular solutions are in all cases unstable. Stability imposes a more constraining mass gap.

Naked singularities cannot be reached as the final state of the evolution of generic initial conditions, *e.g.* collapse



**Figure:** Collapse of a shell of radiation (thick line) to a black hole (left) and a naked singularity (right). In the latter case, radiation has no obstacle to escape *across* (or bouncing on) the singularity.

José Edelstein (USC & CECs)

## A new type of (branch) phase transitions



In the canonical ensemble, we study processes where the system undergoes a phase transition between thermal AdS<sub>+</sub> ( $\Lambda_+$ ,  $\beta_+$ ) and a given BH<sub>-</sub> ( $\Lambda_-$ ,  $\beta_-$ ).

How to deal with solutions that differ in the asymptotics?

## A new type of (branch) phase transitions



In the canonical ensemble, we study processes where the system undergoes a phase transition between thermal AdS<sub>+</sub> ( $\Lambda_+$ ,  $\beta_+$ ) and a given BH<sub>-</sub> ( $\Lambda_-$ ,  $\beta_-$ ).

How to deal with solutions that differ in the asymptotics?

Likely mechanism: thermalon mediated transition. Gomberoff, Henneaux, Teitelboim, Wilczek (2004)

José Edelstein (USC & CECs)

Black holes and phase transitions

#### The two phases and the thermalon



Figure: Euclidean sections for (a) empty AdS and (b) bubble hosting a black hole.

#### The thermalon

Inner region: black hole with mass  $M_{-}$ , corresponding to the EH branch ( $\Lambda_{-}$ ).

Outer region: asymptotes AdS space with  $\Lambda_+$  (and total mass  $M_+$ ).

## The two phases and the thermalon



Figure: Euclidean sections for (a) empty AdS and (b) bubble hosting a black hole.

#### The thermalon

Inner region: black hole with mass  $M_{-}$ , corresponding to the EH branch ( $\Lambda_{-}$ ).

Outer region: asymptotes AdS space with  $\Lambda_+$  (and total mass  $M_+$ ).

• Inner periodicity: demanding regularity at the black hole horizon.

• Outer periodicity: fully determined by continuity.

## there is a unique free parameter.

José Edelstein (USC & CECs)

#### The thermalon: periodicity, temperature and bubble dynamics

For *bubble* configurations, it is convenient to break the action into bulk and surface pieces,  $\mathcal{M} = \mathcal{M}_- \cup \Sigma \cup \mathcal{M}_+$ 

$$\mathcal{I} = \int_{\mathcal{M}_{-}} \mathcal{L}^{-} - \int_{\Sigma} \mathcal{Q}^{-} + \int_{\mathcal{M}_{+}} \mathcal{L}^{+} + \int_{\Sigma} \mathcal{Q}^{+} - \int_{\partial \mathcal{M}} \mathcal{Q}^{+}$$

#### The thermalon: periodicity, temperature and bubble dynamics

For *bubble* configurations, it is convenient to break the action into bulk and surface pieces,  $\mathcal{M} = \mathcal{M}_- \cup \Sigma \cup \mathcal{M}_+$ 

$$\mathcal{I} = \int_{\mathcal{M}_{-}} \mathcal{L}^{-} - \int_{\Sigma} \mathcal{Q}^{-} + \int_{\mathcal{M}_{+}} \mathcal{L}^{+} + \int_{\Sigma} \mathcal{Q}^{+} - \int_{\partial \mathcal{M}} \mathcal{Q}^{+}$$

Varying with respect to the induced vierbein at the bubble,  $a(\tau)$ , gives the junction conditions (Israel conditions of GR).

$$\widetilde{\mathcal{Q}}_{ab} = \left. \frac{\delta(\mathcal{Q}^+ - \mathcal{Q}^-)}{\delta h^{ab}} \right|_{\Sigma} = \mathbf{0} \qquad \Longleftrightarrow \qquad \dot{a} = \dot{a}(a; M_{\pm})$$

#### The thermalon: periodicity, temperature and bubble dynamics

For *bubble* configurations, it is convenient to break the action into bulk and surface pieces,  $\mathcal{M} = \mathcal{M}_- \cup \Sigma \cup \mathcal{M}_+$ 

$$\mathcal{I} = \int_{\mathcal{M}_{-}} \mathcal{L}^{-} - \int_{\Sigma} \mathcal{Q}^{-} + \int_{\mathcal{M}_{+}} \mathcal{L}^{+} + \int_{\Sigma} \mathcal{Q}^{+} - \int_{\partial \mathcal{M}} \mathcal{Q}^{+}$$

Varying with respect to the induced vierbein at the bubble,  $a(\tau)$ , gives the junction conditions (Israel conditions of GR).

$$\widetilde{\mathcal{Q}}_{ab} = \left. \frac{\delta(\mathcal{Q}^+ - \mathcal{Q}^-)}{\delta h^{ab}} \right|_{\Sigma} = \mathbf{0} \qquad \Longleftrightarrow \qquad \dot{a} = \dot{a}(a; M_{\pm})$$

We may fix  $M_{\pm}$  so that an equilibrium position exists at  $a = a_{\star} > r_{H}$ . Each of the two (Euclidean) bulk regions is characterized by  $f_{\pm}$ .

The periodicity of the inner solution is fixed by regularity of the black hole horizon, that of the outer solution gets fully determined by gluing conditions,

$$\sqrt{f_-(a)} \beta_- = \sqrt{f_+(a)} \beta_+$$

There is a unique free parameter, say,  $\beta_+$ .

#### The phase transition

The canonical ensemble at temperature  $1/\beta$  is defined by the Euclidean path integral over all metrics which asymptote AdS identified with period  $\beta$ ,

$$\mathcal{Z} = \int \mathcal{D} g \; e^{-\hat{\mathcal{I}}[g]} \qquad \hat{\mathcal{I}} = \hat{\mathcal{I}}_{ ext{bubble}} + \hat{\mathcal{I}}_{ ext{black hole}}$$

Dominant contributions come from the saddle points,  $\hat{\mathcal{I}}_{cl} \simeq -\log Z = \beta F$ 

The Euclidean action diverges  $\Rightarrow$  background subtraction; we obtain

$$\hat{\mathcal{I}}_{\textit{black hole}} = eta_{-} \textit{M}_{-} - \textit{S}$$

#### The phase transition

The canonical ensemble at temperature  $1/\beta$  is defined by the Euclidean path integral over all metrics which asymptote AdS identified with period  $\beta$ ,

$$\mathcal{Z} = \int \mathcal{D} g \; e^{-\hat{\mathcal{I}}[g]} \qquad \hat{\mathcal{I}} = \hat{\mathcal{I}}_{ ext{bubble}} + \hat{\mathcal{I}}_{ ext{black hole}}$$

Dominant contributions come from the saddle points,  $\hat{\mathcal{I}}_{cl} \simeq -\log Z = \beta F$ 

The Euclidean action diverges  $\Rightarrow$  background subtraction; we obtain

$$\hat{\mathcal{I}}_{\textit{black hole}} = eta_{-} \textit{M}_{-} - \textit{S}$$

Remarkably enough, once the junction conditions are imposed,

$$\hat{\mathcal{I}}_{bubble} = \beta_+ M_+ - \beta_- M_- \qquad \Rightarrow \qquad \hat{\mathcal{I}} = \beta_+ M_+ - S$$

which is exactly needed to preserve the thermodynamic interpretation; also

$$\beta_+ dM_+ = \beta_- dM_- = dS$$

the first law of thermodynamics holds for both configurations.

José Edelstein (USC & CECs)

## Global thermodynamic stability: sign of the free energy

There is a critical temperature,  $T_c(\lambda)$ , above which *F* becomes negative triggering the phase transition.



## Global thermodynamic stability: sign of the free energy

There is a critical temperature,  $T_c(\lambda)$ , above which *F* becomes negative triggering the phase transition.



**Figure:** [LEFT] Free energy versus temperature in d = 5 for  $\lambda = 0.04, 0.06, ..., 1/4$  (from right to left). [RIGHT] Bubble potential for  $\lambda = 0.1$  and d = 5, 6, 7, 10.

The bubble may expand reaching the boundary at finite proper time changing asymptotics and charges:  $\Lambda_+ \rightarrow \Lambda_-$  and  $(M_+, T_+) \rightarrow (M_-, T_-)$ 

José Edelstein (USC & CECs)

Black holes and phase transitions

## On the consistency of higher curvature gravities



## On the consistency of higher curvature gravities



- Lovelock theory is a useful playground for AdS/CFT.
- A novel mechanism for phase transitions in higher curvature gravity.
- Are these different phases of the dual field theory?
- It deserves further exploration.

Thank you for your attention!