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Higher curvature corrections and quantum gravity

Classical gravity seems well-described by the Einstein-Hilbert action.

Quantum corrections generically involve higher curvature corrections:

Wilsonian approaches.

α′ corrections in string theory.

Higher dimensional scenarios.

Relevant when studying generic strongly coupled CFTs under the light of
the gauge/gravity correspondence (e.g., 4d CFTs with a 6= c).

They are typically argued to be plagued of ghosts.

Lovelock gravities are the most general second order theories free of ghosts
when expanding about flat space. Lovelock (1971)
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Lovelock theory

The action is compactly expressed in terms of differential forms

I =
K∑

k=0

ck

d − 2k

(∫
M
Ik −

∫
∂M
Qk

)

where K ≤ [ d−1
2 ] and ck is a set of couplings with length dimensions L2(k−1).

Ik is the extension of the Euler characteristic in 2k dimensions

Ik = εa1···ad Ra1a2 ∧ · · · ∧ Ra2k−1a2k ∧ ea2k+1 ∧ · · · ∧ ead

with Rab = dωab + ωa
c ∧ ωcb = 1

2 Rab
µν dxµ ∧ dxν .

Qk comes from the GB theorem in manifolds with boundaries Myers (1987)

Qk = k
∫ 1

0
dξ εa1···ad θ

a1a2 ∧ Fa3a4 (ξ) ∧ · · · ∧ Fa2k−1a2k (ξ) ∧ ea2k+1 ∧ · · · ∧ ead

where θab = naK b − nbK a and Fab(ξ) ≡ Rab + (ξ2 − 1) θa
e ∧ θeb.
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Lovelock theory: lowest order examples

The first two contributions (most general up to d = 4) correspond to:

The cosmological term: we set 2Λ = − (d − 1)(d − 2)

L2 c0 =
1
L2

The EH action (with GH term): we set 16π(d − 3)!GN = 1 c1 = 1

For d ≥ 5, we have the Lanczos-Gauss-Bonnet (LGB) term (c2 = λL2),

I2 ' dd x
p
−g
“

R2 − 4RµνRµν + RµνρσRµνρσ
”

Q2 ∼
√
−h (KR + . . .)

while for d ≥ 7, the cubic Lovelock Lagrangian (c3 = µL4),

I3 ' dd x
p
−g
„

R3 + 3RRµναβRαβµν − 12RRµνRµν + 24RµναβRαµRβν +

16RµνRναR α
µ + 24RµναβRαβνρR ρ

µ + 8Rµν
αρRαβ

νσRρσ
µβ + 2RαβρσRµναβRρσ

µν

«
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AdS/dS/flat vacua

Varying the action with respect to the connection,

εaba3···ad

KX
k=1

k ck

d − 2k
`
Ra3a4 ∧ · · · ∧ Ra2k−1a2k ∧ ea2k+1 ∧ . . . ∧ ead−1

´
∧ T ad = 0

we can safely impose T a = 0 as in standard Einstein’s gravity.

The equations of motion, when varying with respect to the vierbein,

εaa1···ad−1 F
a1a2
(1) ∧ · · · ∧ F

a2K−1a2K
(K ) ∧ ea2K +1 ∧ . . . ∧ ead−1 = 0

admit K constant curvature vacua,

Fab
(i) := Rab − Λi ea ∧ eb = 0

The cosmological constants being the roots of the polynomial Υ[Λ]:

Υ[Λ] :=
K∑

k=0

ck Λk = cK

K∏
i=1

(Λ− Λi ) = 0

Degeneracies arise when ∆ :=
∏
i<j

(Λi − Λj )
2 = 0
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Lovelock black holes

The black hole solution can be obtained via the ansatz Wheeler (1986)

ds2 = −f (r) dt2 +
dr2

f (r)
+

r2

L2 dΣ2
σ,d−2

where dΣσ,d−2 is the metric of a maximally symmetric space.

The equations of motion can be nicely rewritten as[
d

d log r
+ (d − 1)

] ( K∑
k=0

ck gk

)
= 0

where g(r) = σ−f (r)
r2 , and easily solved as Kastor, Ray, Traschen (2010)

Υ[g] =
K∑

k=0

ck gk = Vd−2
M

rd−1

The black hole solution is implicitly given by this polynomial equation.
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Lovelock black holes

Each branch, gi (r), corresponds to a monotonous part of the polynomial,

Υ[g] =
K∑

k=0

ck gk = Vd−2
M

rd−1

The variation of r translates the curve (y-intercept) rigidly, upwards,

-1.5 -1.0 -0.5 0.5
g

0.5

1.0

1.5

U@gD

¥

r+

r4

r3
r2r1

This leads to K branches, gi (r), associated with each Λi : gi (r →∞) = Λi
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Lovelock black holes (and naked singularities)

The existence of a black hole horizon requires g+ = 0 for planar black holes
(recall g(r) = σ−f (r)

r2 ), and

Υ[g+] = Vd−2
M

rd−1
+

= Vd−2 M |g+|(d−1)/2 since g+ =
σ

r2
+

-10 -8 -6 -4 -2 2
g

U@gD

Κ*

Σ=1
Σ=0

Σ=-1

Κ=2

Κ=10-3

Planar case, only the EH-branch has an event horizon.

Non-planar case, σ = ±1, several branches can have the same mass or
temperature.
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Features of Lovelock theory

Some of the new features seemingly unnatural or pathological

Additional couplings
new scales

Naked singularities
mass gap

Branches
multivaluedness

AdS/CFT−−−−−−−→
instabilities

instabilities−−−−−−−→

−−−−−−−→

constraints
compact domain

cosmic censor
new phases?

phase transitions
EH unambiguous
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Holography — the AdS/CFT correspondence

Bold statement: Maldacena (1997)

Quantum gravity in AdSd space is equal to a CFTd−1 living at the boundary

The generating function reads Gubser, Klebanov, Polyakov (1998)
Witten (1998)〈

exp
(∫

dx ηab(x)Tab(x)

)〉
SYM

= ZQG [gµν ] ≈ exp (−IG[gµν ])

where gµν = gµν(z,x) such that gab(0,x) = ηab(x) .

5d EH gravity describes 4d CFTs with a = c.

Higher curvature corrections are relevant when studying “more general”
strongly coupled CFTs
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Warming up: the LGB case

When K = 2:

Υ[Λ] =
1
L2 + Λ + λL2Λ2 = 0

Λ± = −1±
√

1− 4λ
2λL2

-2 -1 1 2 3 4
g

0.5

1.0

1.5

2.0

2.5

3.0

3.5

U@gD

r*

¥

r+

Κ=2
Κ=0.2

Κ*

HbL

Each black hole solution climbs up a monotonous part of the polynomial.

In the planar case (σ = 0), just the EH branch (Λ−) has a horizon (g = 0).

The EH-branch has Υ′[Λ−] > 0, a positive effective Newton constant.

Every branch ends up at a singularity: either r = 0 or Υ′[g] = 0.
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Graviton potentials: unitarity & causality

EOM for perturbations are two derivative.

VACUUM: Coefficient of the kinetic term:

Unitarity Boulware, Deser (1985)

Υ′[Λ] > 0

BLACK HOLE: at high momentum, EOM in Schrödinger form: Takahashi, Soda (2010)

−~2∂y Ψi + c2
i (y)Ψi =

ω2

q2 Ψi , ~ ≡ 1
q
→ 0

for ci speed of gravitons on radial slices. de Boer, Kulaxizi, Parnachev (2009) Camanho, Edelstein (2009)

Causality Brigante, Liu, Myers, Shenker, Yaida (2008)

c2
i < 1
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Causality violation, c2
i > 1

The potentials close to the boundary of AdS de Boer, Kulaxizi, Parnachev (2009)
Camanho, Edelstein (2009)

c2
2 ≈ 1 +

1
L2Λ

( r+

r

)d−1
[
1 +

2(d − 1)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]

]
c2

1 ≈ 1 +
1

L2Λ

( r+

r

)d−1
[
1− d − 1

d − 3
ΛΥ′′[Λ]

Υ′[Λ]

]
c2

0 ≈ 1 +
1

L2Λ

( r+

r

)d−1
[
1− 2(d − 1)

(d − 3)

ΛΥ′′[Λ]

Υ′[Λ]

]

Causality imposes

−d − 2
d − 4

≤ −2(d − 1)(d − 2)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]
≤ d − 2

Causality violations may also occur in the interior of geometry.
Camanho, Edelstein, Paulos (2010)
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Holography II — 2-/3-point functions

Consider a CFTd−1. The leading singularity of the 2-point function is fully
characterized by the central charge CT Osborn, Petkou (1994)

〈Tab(x) Tcd (0)〉 ∼ CT

2 x2(d−1)
(. . .) CT =

d
d − 2

Γ[d ]

π
d−1

2 Γ
[ d−1

2

] Υ′[Λ]

(−Λ)d/2

Camanho, Edelstein, Paulos (2010)

The dual theory of a given AdS-branch is unitary,

CT > 0 ⇐⇒ Υ′[Λ] > 0

A good parametrization of 3-point functions Hofman, Maldacena (2008)

〈E(n)〉O =
〈0|O†E(n)O|0〉
〈0|O†O|0〉

, E(n) = lim
r→∞

rd−2
∫ ∞
−∞

dt ni T 0
i (t , r n)

This is the expectation value for the total energy flux per unit angle measured
in a state created by a local gauge invariant operator O
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For O = εij Tij determined by 2 parameters (t2 and t4) in any CFT.

〈E(n)〉εij Tij =
E

ωd−3

"
1 + t2
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∗
il εlj nj

ε∗ij εij
− 1

d − 2

!
+ t4

 
|εij ni nj|2

ε∗ij εij
− 2

d(d − 2)

!#

since εij is a symmetric and traceless polarization tensor.

Demanding positivity of the different components gives Hofman (2009)
Camanho, Edelstein (2009)
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t2 and t4 may be calculated holographically, de Boer, Kulaxizi, Parnachev (2009)
Camanho, Edelstein (2009)

t2 = −2(d − 1)(d − 2)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]
; t4 = 0
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Restrictions in the Lovelock couplings
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Holography III — Shear viscosity of strongly-coupled fluids

Lovelock terms lead to a violation of the KSS bound Kovtun, Son, Starinets (2004)
Shu (2009)
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)

~
kB

the ratio being reduced for λmax > 0

• They do contribute to the lower bound of η/s! Camanho, Edelstein, Paulos (2010)
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Lovelock black holes: the cosmic censor

The existence of a black hole horizon requires

Υ[g+] =
κ

rd−1
+

= κ

(√
g+

σ

)d−1

since g+ =
σ
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The singularity becomes naked (mass gap)

λ > 0, for κ ≤ λ in 5D.

λ < 0, for κ ≤ κ? in arbitrary dimension.
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Instabilities and the cosmic censor Camanho, Edelstein (2013)

The singular solutions are in all cases unstable. Stability imposes a more
constraining mass gap.

Naked singularities cannot be reached as the final state of the evolution of
generic initial conditions, e.g. collapse

Figure: Collapse of a shell of radiation (thick line) to a black hole (left) and a naked
singularity (right). In the latter case, radiation has no obstacle to escape across (or
bouncing on) the singularity.
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A new type of (branch) phase transitions

For this talk, we consider λ > 0 in LGB theory Camanho, Edelstein, Giribet, Gomberoff (2012)
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In the canonical ensemble, we study processes where the system undergoes
a phase transition between thermal AdS+ (Λ+, β+) and a given BH− (Λ−, β−).

How to deal with solutions that differ in the asymptotics?

Likely mechanism: thermalon mediated transition. Gomberoff, Henneaux, Teitelboim, Wilczek (2004)
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The two phases and the thermalon

Figure: Euclidean sections for (a) empty AdS and (b) bubble hosting a black hole.

The thermalon
Inner region: black hole with mass M−, corresponding to the EH branch (Λ−).

Outer region: asymptotes AdS space with Λ+ (and total mass M+).

Inner periodicity: demanding regularity at the black hole horizon.

Outer periodicity: fully determined by continuity.

there is a unique free parameter.
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The thermalon: periodicity, temperature and bubble dynamics

For bubble configurations, it is convenient to break the action into bulk and
surface pieces,M =M− ∪ Σ ∪M+ Davis (2003) Gravanis, Willison (2003)

I =

∫
M−

L− −
∫

Σ

Q− +

∫
M+

L+ +

∫
Σ

Q+ −
∫
∂M
Q+

Varying with respect to the induced vierbein at the bubble, a(τ), gives the
junction conditions (Israel conditions of GR).

Q̃ab =
δ(Q+ −Q−)

δhab

∣∣∣∣
Σ

= 0 ⇐⇒ ȧ = ȧ(a; M±)

We may fix M± so that an equilibrium position exists at a = a? > rH . Each of
the two (Euclidean) bulk regions is characterized by f±.

The periodicity of the inner solution is fixed by regularity of the black hole
horizon, that of the outer solution gets fully determined by gluing conditions,√

f−(a) β− =
√

f+(a) β+

There is a unique free parameter, say, β+.
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The phase transition

The canonical ensemble at temperature 1/β is defined by the Euclidean path
integral over all metrics which asymptote AdS identified with period β,

Z =

∫
Dg e−Î[g] Î = Îbubble + Îblack hole

Dominant contributions come from the saddle points, Îcl ' − log Z = βF

The Euclidean action diverges ⇒ background subtraction; we obtain

Îblack hole = β−M− − S

Remarkably enough, once the junction conditions are imposed,

Îbubble = β+M+ − β−M− ⇒ Î = β+M+ − S

which is exactly needed to preserve the thermodynamic interpretation; also

β+dM+ = β−dM− = dS

the first law of thermodynamics holds for both configurations.
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Global thermodynamic stability: sign of the free energy

There is a critical temperature, Tc(λ), above which F becomes negative
triggering the phase transition.
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Figure: [LEFT] Free energy versus temperature in d = 5 for λ = 0.04, 0.06, . . . , 1/4
(from right to left). [RIGHT] Bubble potential for λ = 0.1 and d = 5, 6, 7, 10.

The bubble may expand reaching the boundary at finite proper time changing
asymptotics and charges: Λ+ → Λ− and (M+,T+) → (M−,T−)
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On the consistency of higher curvature gravities

Additional couplings
new scales

Naked singularities
mass gap

Branches
multivaluedness

AdS/CFT−−−−−−−→
instabilities

instabilities−−−−−−−→

−−−−−−−→

constraints
compact domain

cosmic censor
new phases?

phase transitions
EH unambiguous

Lovelock theory is a useful playground for AdS/CFT.

A novel mechanism for phase transitions in higher curvature gravity.

Are these different phases of the dual field theory?

It deserves further exploration. Thank you for your attention!
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