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Wilson loops

In any gauge theory:

W (R, C) = trRP
(
e i

∮
C Aµẋµdτ

)
:= trR

∏
τ∈C

(1 + iAµẋ
µdτ)

measures the phase of an external particle

For a given theory a WL depends on 2 things:

The trajectory of the particle, C : xµ(τ)

The type/charge of the particle, R : gauge group rep
(R will be the fundamental in this talk)

Interesting physical interpretations · · ·



Cusp Anomalous dimension

WL along a straight line with a cusp

φ

Its VEV develops logarithmic divergencies [Polyakov 80, Korchemsky 88]

〈Wcusp〉 = e
−Γcusp(φ) log(

ΛIR
ΛUV

)
= ( ΛIR

ΛUV
)−Γcusp

Why to study the anomalous dimension Γcusp(φ) ?

It has nice physical interpretations



Radiation of an accelerated charge

Small deflection in a timelike curve

〈W 〉 = 1 + ϕ2B(λ) log( ΛIR
ΛUV

) +O(ϕ4)

ϕ: boost angle (ϕ = iφ)

B: Bremsstrahlung function

Energy emitted: E = 2πB
∫
dtv̇2

For a fundamental charge in N = 4 SYM B is computed exactly
[D.C.,Henn,Maldacena,Sever]



Γcusp as the qq̄ potential in S3

R

TT � R 〈trP
(
e i

∮
A.dx

)
〉 = e−Vqq̄(R)T

Conformal theory: R4 can be mapped to R× S3

φ

π − φ

Plane to cylinder map (log r = t)

〈W 〉 ' e
− log(

ΛIR
ΛUV

)Γcusp = e−TΓcusp ⇒ Γcusp = Vqq̄

Γcusp(φ) is the quark anti-quark potential in the S3 for a
pair of charges separated by an angle δ = π − φ.



Wilson loops in N = 4 SYM

‘Simplest’ interacting non-abelian 4-dimensional gauge theory

Gauge theory in the prototypical AdS/CFT example

N = 4 SYM in d = 4
U(N) gauge group

←→ IIB string theory
on AdS5 × S5

λ = g2
YMN , 1

N
R2

α′ , gs

The parameters are related as: λ =
(
R2

α′

)2
λ
N = gs

Perturbative regimes: λ� 1 λ� 1

Exact gauge computations → Precision tests of AdS/CFT
These results will be exact in λ and in N
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1/2 BPS Wilson loops in N = 4 SYM

In N = 4 SYM the external charge can also couple to other fields
in addition to the gauge potential

In particular

W (R, C,~n) = trRP
(
e i

∮
C(Aµẋµ+~n·~Φ|ẋµ|)dτ

)
For C a straight line

For ~n constant

This is a 1/2 BPS Wilson loop (invariant under Poincare
supercharges) and

〈W (R, C,~n)〉 = 1



Gravity dual of Wilson loops

AdS/CFT intuition: Loop C provides a boundary condition

Maldacena 98: 〈W 〉 given by the area of a fundamental string
whose worldsheet describes the loop C at the boundary of AdS

〈W (C)〉 =
∫

[DX ]e−Astr ∼ e−A
clas
str

Last approximation is valid for large N and large λ = g2
YMN
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1/2 BPS Circular Wilson Loop

W = trP
(
e i

∮
A·dx+

∮
|dx |~n·~Φ

) xµ(τ) = (0, 0, cos τ, sin τ)
~n = (0, 0, 0, 0, 0, 1)

Ladders = + + + +...

Non-ladders = + + + ... = 0

Sum of non-ladders diagrams cancel for this 1/2 BPS loop

Ladders diagrams can be resummated!

〈W©〉 =
∞∑
n=0

λn

4n(n + 1)!n!
=

2√
λ
I1(
√
λ)

[Erickson, Semenoff, Zarembo 00]
[Drukker, Gross 00]
[Pestun 07]

This all-loop field theory result has been tested with a strong
coupling computation (w/dual string worldsheet area)
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1/4 BPS Circular Wilson Loop

xµ(τ)
~n(τ)

xµ(τ) = (0, 0, cos τ, sin τ)
~n = (0, 0, 0, sin θ0 cos τ, sin θ0 sin τ, cos θ0)

W = trP
(
e i

∮
A·dx+

∮
|dx |~n·~Φ

)
1-parameter deformation of the 1/2 BPS Circular Wilson Loop

[Drukker 06]: Its VEV is the same as for the 1/2 BPS Circular
Wilson Loop but with λ 7→ λ cos2 θ0

〈W θ0
© 〉 =

2√
λ cos θ0

I1(
√
λ cos θ0)

This result allows the exact computations of more interesting
Wilson loops: Γcusp in the small angle limit
[D.C.,Henn,Maldacena,Sever]
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Exact formula for Bremsstrahlung function B(λ)
[D.C.,Henn,Maldacena,Sever]

Recall, it’s related to Γcusp in the small cusp angle(s) limit

Γcusp(λ, φ, θ) = (θ2 − φ2)B(λ) + · · ·

where θ is an additional (internal) cusp angle

φ~n
~n ′

〈W 〉 = e
−Γcusp(φ) log(

ΛIR
ΛUV

)

We can take ~n and ~n′ for the 2 lines of the cusp. This
introduces an internal cusp angle cos θ = ~n · ~n′.

For θ ≈ φ it’s a near BPS Wilson loop

We can compute it, by relating it the 〈W θ0
© 〉, VEV of the

circular Wilson loops.
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Case φ = 0 with internal cusp angle θ

~n = (0, 0, 0, 0, 0, 1)

~n′ = (0, 0, 0, 0, sin θ, cos θ)

~n

~n′⇔

〈W 〉 =〈trP[e
∫∞
−∞(At+~n·~Φ)dte

∫−∞
∞ (At+~n′·~Φ)dt ]〉

=1 + θ

∫ −∞
∞

dt〈〈Φ5(t)〉〉 − 1
2θ

2

∫ −∞
∞

dt〈〈Φ6(t)〉〉

+ 1
2θ

2

∫ −∞
∞

dt

∫ −∞
∞

dt ′〈〈Φ5(t)Φ5(t ′)〉〉+ · · ·

〈〈 〉〉 mean correlators of insertions along the loop

〈〈O(t1)O(t2)〉〉 =
〈trP[O(t1)e

∫ t1
t2

iA·dx+|dx |~n·~ΦO(t2)e
∫ t2
t1

iA·dx+|dx |~n·~Φ
]〉

〈trP[e i
∮
A·dx+

∮
|dx |~n·~Φ]〉



Correlators 〈〈 〉〉 are constrained by conformal symmetry

〈〈Φi (t1)〉〉 = 0 〈〈Φi (t1)Φj(t2)〉〉 = −γ
2

δij

X (t1) · X (t2)

X (t): curve’s parametrization in embedding space.

X ∈ R1,5 X 2 = 0 X ∼ λX

For example, the t line in R × S3:

X (t) = (et ,−e−t , 1, 0, 0, 0) ⇒ X (t) · X (t ′) = 1− cosh(t − t ′)

〈W 〉 = e−ΓcuspT = 1 + θ2

2

γ

2

∫ ∫
1

cosh(t − t ′)− 1
dtdt ′

Γcusp = −θ
2

2

γ

2
lim
ε→0

∫ ∞
−∞

dt

(cosh t − 1)1−ε = γ
θ2

2
⇒ B(λ) =

γ

2

Relation between Γcusp and coefficient in 2-point 〈〈 〉〉 is general

In N = 4 SYM we can get γ from the exact knowledge of 〈W θ0
© 〉
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γ = 2B(λ) from 1/4 BPS Wilson loop VEV

For θ0 � 1, λ cos2 θ0 ∼ λ(1− θ2
0) and then

〈W θ0
© 〉 − 〈W©〉
〈W©〉

∼ −θ2
0 λ∂λ log〈W©〉

Expanding ~n = (0, 0, 0, sin θ0 cos τ, sin θ0 sin τ, cos θ0) this VEV is
reduced to insertions along the 1

2 -BPS circular Wilson loop

〈W θ0
© 〉 − 〈W©〉
〈W©〉

∼ θ2
0

2

2π∫
0

dτ

2π∫
0

dτ ′ n̂i (τ)n̂j(τ ′) 〈〈Φi (τ)Φj(τ ′)〉〉◦

n̂1 + i n̂2 = e iτ and now 〈〈 〉〉◦ respect to the 1
2 -BPS circular loop



Circular loop in embedding formalism:
(X+,X−,X 1,X 2,X 3,X 4) = (1,−1, cos τ, sin τ, 0, 0)

〈〈Φi (τ)Φj(τ ′)〉〉◦ = −γ◦
2

δij

X (t1) · X (t2)
=
γ◦
2

δij

[1− cos(τ − τ ′)]

In general, the coefficient γ would change for 〈〈 〉〉 respect to
different loops

However, since the straight line and the circle are related by a
conformal transformation, their 〈〈 〉〉 have the same γ

Then,

λ∂λ log〈W©〉 = −γ π
2

lim
ε→0

2π∫
0

dτ
cos τ

(1− cos τ)1−ε ∼ π
2γ

Finally,

B(λ) =
λ

2π2
∂λ log〈W©〉 =

√
λ

4π2

I2(
√
λ)

I1(
√
λ)



Concluding remarks

The relation between the 2-point correlator 〈〈 〉〉 coefficient γ
and the Bremsstrahlung function B

γ = 2B(λ,N)

is valid in general for any conformal theory. In general γ refers
to the coefficient in the 2-point correlator of displacement
operators

〈〈Di (t1)Dj(t2)〉〉 = −γ
2

δij
X (t1) · X (t2)

for

δW ∼
∫

dt δx i (t)Di (t)W

Special about N = 4 SYM: coefficient γ can also be related
to the VEV of a circular WL that is exactly known

γ =
1

π2
λ∂λ log〈W©〉
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Concluding remarks

The presented exact VEVs of circular Wilson Loops are the
leading large N expressions. These VEVs are also known to all
orders in the 1/N expansion:

〈W©〉 =
1

N
L1
N−1

(
− λ

4N

)
e
λ

8N

⇒ B(λ,N) =
λ

16π2N

L1
N−1

(
− λ

4N

)
+ 2L2

N−2

(
− λ

4N

)
L1
N−1

(
− λ

4N

)
In the leading large N limit other means to exactly compute
anomalous dimensions: integrability

One can derive a Thermodymanic Bethe ansatz equation to
compute Γcusp(φ, θ) exactly for any value of the cusps
[D.C.,Maldacena,Sever 12],[Drukker 12]
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Concluding remarks

For generic angles, not known the solution to the TBA system

In the small angle limit, the TBA system is exactly solved
[Gromov,Sever]. This completely independent computation
repoduces the planar limit of the localization result

B(λ) =

√
λ

4π2

I2(
√
λ)

I1(
√
λ)

Exact results by supersymmetric localization can be obtained
in other CFT’s. One might try to extend the computation of
B presented here to those other theories.
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