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Wilson loops & physical interpretations

VEVs of Wilson loops in N' =4 SYM and AdS/CFT

@ Cusp anomalous dimension in N’ = 4 SYM

Exact computations of VEVs of N’ = 4 SYM Wilson loops

Exact formula for the radiation of a quark in N' =4 SYM



Wilson loops

In any gauge theory:

W(R,C) = trg P (effc Au*“df) = teg [] (1 + iAux"dr)
TeC

measures the phase of an external particle

For a given theory a WL depends on 2 things:
@ The trajectory of the particle,  C : x"(7)
@ The type/charge of the particle, R : gauge group rep
(R will be the fundamental in this talk)

Interesting physical interpretations - - -



Cusp Anomalous dimension

@ WL along a straight line with a cusp

o Its VEV develops logarithmic divergencies [polyakov 80, Korchemsky 8]

AR
7rcus I DA o,
<VVCUSp> = é p(#) log( AUV) = (//\\i) I cusp

e Why to study the anomalous dimension [cysp(¢) ?

It has nice physical interpretations



Radiation of an accelerated charge

@ Small deflection in a timelike curve

(W) =1+ ¢?B()) log(£2) + O(p*)

©: boost angle (¢ = i¢)

B: Bremsstrahlung function

Energy emitted: E = 27B [ dtv?

For a fundamental charge in N’ = 4 SYM B is computed exactly
[D.C.,Henn,Maldacena,Sever]



[usp as the gg potential in S3
R

T>RY T (P (ei$A48)) = e Val®T

o Conformal theory: R* can be mapped to R x S3

Plane to cylinder map (logr = t)

A
- Iog(/\ K )cusp _ —TTlcus =
(W) ~e uv =e R s = o

@ Mcusp(®) is the quark anti-quark potential in the S3 for a
pair of charges separated by an angle ) = 7 — ¢.
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@ Gauge theory in the prototypical AdS/CFT example

N=4SYMind=4 N IIB string theory
U(N) gauge group on AdSs x S°
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Wilson loops in N = 4 SYM

@ ‘Simplest’ interacting non-abelian 4-dimensional gauge theory

@ Gauge theory in the prototypical AdS/CFT example
N=4SYMind=4 N IIB string theory
U(N) gauge group on AdSs x S°
A= g\z/[\/]Nﬂ % o 1 8s

a/

The parameters are related as: \ = <R—2
Perturbative regimes: Ak

S~
N

N =8
A>1

@ Exact gauge computations — Precision tests of AdS/CFT
These results will be exact in A and in N



1/2 BPS Wilson loops in N' = 4 SYM

In A/ = 4 SYM the external charge can also couple to other fields
in addition to the gauge potential

In particular

W(R, C, ﬁ) = tI‘RP (e"fC(AHkM"'ﬁ'é‘)‘(M‘)dT)

@ For C a straight line

@ For ni constant

This is a 1/2 BPS Wilson loop (invariant under Poincare

supercharges) and
(W(R,C,n)) =1



Gravity dual of Wilson loops

AdS/CFT intuition: Loop C provides a boundary condition



Gravity dual of Wilson loops
AdS/CFT intuition: Loop C provides a boundary condition

Maldacena 98: (W) given by the area of a fundamental string
whose worldsheet describes the loop C at the boundary of AdS

(W(C)) = [[DXJe=torr ~ e~ ASE

Last approximation is valid for large N and large A\ = g,%MN



1/2 BPS Circular Wilson Loop

W = trP (eff Adx+§ |dx\ﬁ-q“>) x*(7) = (0,0, cos T,sinT)

):
ii = (0,0,0,0,0,1)



1/2 BPS Circular Wilson Loop

= i § A-dx+§ |dx|7-® x*(t) = (0,0, cos T,sinT)
W = trP (e ) i =(0,0,0,0,0,1)

Non-ladders = @ +@ —i—@ e = (0
Ladders —@ +@ +@+®+._

@ Sum of non-ladders diagrams cancel for this 1/2 BPS loop

@ Ladders diagrams can be resummated!

o M 2 i [Erickson, Semenoff, Zarembo 00]
(Wo) = —————— = —h(V\) [Drukker, Gross 00]
2 Z 47(n+1)!n! VA [Pestun 07]

n=0
This all-loop field theory result has been tested with a strong
coupling computation (w/dual string worldsheet area)



1/4 BPS Circular Wilson Loop

QT) #(7) = (0,0, cos T,sinT)
i = (0,0,0,sin 6 cos T, sin by sin T, cos Oy )
W — trP (eifA~dx+f|dx\ﬁ~d_5>

@ l-parameter deformation of the 1/2 BPS Circular Wilson Loop



1/4 BPS Circular Wilson Loop

Q;(T) #(1) = (0,0,cosT,sinT)
= (0,0, 0, sin g cos T, sin fg sin T, cos By )
W — trP (eifA~dx+f|dx\ﬁ~d_5>

@ l-parameter deformation of the 1/2 BPS Circular Wilson Loop

@ [Drukker 06]: Its VEV is the same as for the 1/2 BPS Circular
Wilson Loop but with A — X cos? 6

2

Why— —— =
<O> VX cos b

(VX cosbp)

@ This result allows the exact computations of more interesting
Wilson loops: Tcusp in the small angle limit
[D.C.,Henn,Maldacena,Sever]



Exact formula for Bremsstrahlung function B(\)
[D.C.,Henn,Maldacena,Sever]

@ Recall, it's related to lcysp in the small cusp angle(s) limit
rcusp()\a ¢7 9) = (92 i ¢2)B()‘) P

where 6 is an additional (internal) cusp angle

AIR
= : —Tcusp(¢) log( )
n H W) = e 12 Auv

\/7/\¢ (W)

We can take i and i’ for the 2 lines of the cusp. This
introduces an internal cusp angle cosf = ri - .




Exact formula for Bremsstrahlung function B(\)
[D.C.,Henn,Maldacena,Sever]

@ Recall, it's related to lcysp in the small cusp angle(s) limit
rcusp()\a ¢7 9) = (92 y= ¢2)B()‘) P

where 6 is an additional (internal) cusp angle

AIR
= : —Tcusp(¢) log( )
n H W) = e 12 Auv
\/7/\¢ (W)

We can take i and i’ for the 2 lines of the cusp. This
introduces an internal cusp angle cosf = ri - .

@ For 0 =~ ¢ it's a near BPS Wilson loop

@ We can compute it, by relating it the (Wg’), VEV of the
circular Wilson loops.



Case ¢ = 0 with internal cusp angle ¢

i = (0,0,0,0,sin 6, cos ) r.
¢

i = (0,0,0,0,0,1)

(W) =(trPlel oAt i-B)dt o [ (At G)at])

_1+9/_°Od t(D°(t)) — 192/_°Od t(®°(t)))

o

w302 [ o [ (e mene)) + o

(( )) mean correlators of insertions along the loop

B IOl A o)

<tr7)[el $ A-dx+¢ \dx|r‘i~°5]>



Correlators (( )) are constrained by conformal symmetry

i T : , i &Y
(@' () =0  (@'(t1)¥(t2)) = T2X(0) - X(B)

X(t): curve's parametrization in embedding space.
XeRY X?=0 X~MX



Correlators (( )) are constrained by conformal symmetry

i T : , i &Y
(@' () =0  (@'(t1)¥(t2)) = T2X(0) - X(B)

X(t): curve's parametrization in embedding space.
XeRY X?=0 X~MX

For example, the t line in R X S3:
X(t) = (et7_e_t71707070) = X(t)X(t/) = ].—COSh(t— tl)

ks 27y
(W) = e TamT — +9//Cosh =0 dtdt’

6"y s dt 62
u | T ey e B(A
Feusp = 2 25%/ (cosht — 1)1~ g A

l\)\\Q



Correlators (( )) are constrained by conformal symmetry
i i j § 87
(¢'(t)) =0 (¢'(0)¥(2)) = —5

2 X(tl) : X(tz)
X(t): curve's parametrization in embedding space.

PR 2 X2 =08 X

For example, the t line in R X S3:

X(t) = (e*,—€7%,1,0,0,0) = X(t)-X(t')=1—cosh(t—t)

ks 27y
(W) = e TamT — +9//Cosh =0 dtdt’

By [ dt 6
el T o Lee R B
Fewsp = =55 1M} / (coshe—D)e = J 2o s

l\)\\é

Relation between I'¢,sp and coefficient in 2-point (( )) is general



Correlators (( )) are constrained by conformal symmetry

i 1 i j o 5”
(@'(a)) =0  (&'(t2)®(22))) = T2 X(n)- X(6)
X(t): curve's parametrization in embedding space

PERSL . X2 =00 X~
For example, the t line in R X S3:
X(t)

(ef,—e7%,1,0,0,0) = X(t)-X(t')=1-cosh(t —t')

ks 2y
(W) = e TamT — +9//Cosh =0 dtdt’

By [ dt 6
el T o Lee R B
Fewsp = =55 1M} / (coshe—D)e = J 2o s

M\\E

Relation between I'¢,sp and coefficient in 2-point (( )) is general

In V=4 SYM we can get 7 from the exact knowledge of (Wg’)



v = 2B(\) from 1/4 BPS Wilson loop VEV

For o < 1, Acos?fp ~ A(1—62) and then

(WE) — (W)

<Wo> Y —(98 /\a,\ |Og<Wo>

Expanding 7i = (0,0, 0, sin 6y cos T, sin §g sin 7, cos fy) this VEV is
reduced to insertions along the %—BPS circular Wilson loop

27 27

Wy —(w, 2 L . _
<O<>vvo<>O> i %0 / g / dr' 7' (r) A (') (@' (T) /(7))o
0 0

Al 4+ if% = e and now ({ )), respect to the -BPS circular loop



Circular loop in embedding formalism:
(Xt,X—, X1, X2, X3, X% = (1,-1,cos7,sinT,0,0)

Yo §i e §i

(NS =~ 3 Xay - X(m) ~ 2 1= costr =)

@ In general, the coefficient v would change for (( )) respect to
different loops

@ However, since the straight line and the circle are related by a
conformal transformation, their (( )) have the same 7

Then,

27

T cos T
BNl )= =2 lim g —S22T
O log(Wo) 72!—%/ 7-(1—cos7')1*€ 2
0

Finally,
B(\) = 2%2@ log(Wp) = 476 ;ﬁg;




Concluding remarks
@ The relation between the 2-point correlator (( )) coefficient 7
and the Bremsstrahlung function B
7 = 2B(), )

is valid in general for any conformal theory. In general « refers
to the coefficient in the 2-point correlator of displacement

operators
v G
wwmmmWZ—gﬁgrY@j
for

5W~/mwmmmw



Concluding remarks

@ The relation between the 2-point correlator (( )) coefficient 7
and the Bremsstrahlung function B

v = 2B(, )

is valid in general for any conformal theory. In general « refers
to the coefficient in the 2-point correlator of displacement
operators

(D)) =~

X(t1) - X(t2)
for

SW ~ /dt ox'(£)D;(t)W

@ Special about N' = 4 SYM: coefficient 7 can also be related
to the VEV of a circular WL that is exactly known

1
gh=ss A0, log(Wp)



Concluding remarks

@ The presented exact VEVs of circular Wilson Loops are the
leading large N expressions. These VEVs are also known to all
orders in the 1/N expansion:

1 A
(Wo) :NL}Vfl (—y) e3V

- 167N Ly—1 (—7m)




Concluding remarks

@ The presented exact VEVs of circular Wilson Loops are the
leading large N expressions. These VEVs are also known to all
orders in the 1/N expansion:

1 A
(Wo) :NL}Vfl (—y) e3V

- 167N Ly—1 (—7m)

@ In the leading large N limit other means to exactly compute
anomalous dimensions: integrability

@ One can derive a Thermodymanic Bethe ansatz equation to
compute [cysp(, ) exactly for any value of the cusps
[D.C.,Maldacena,Sever 12],[Drukker 12]
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@ For generic angles, not known the solution to the TBA system

@ In the small angle limit, the TBA system is exactly solved
[Gromov,Sever]. This completely independent computation
repoduces the planar limit of the localization result
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Concluding remarks

@ For generic angles, not known the solution to the TBA system

@ In the small angle limit, the TBA system is exactly solved
[Gromov,Sever]. This completely independent computation
repoduces the planar limit of the localization result

_ VARV
A2 (V)

B()\)

@ Exact results by supersymmetric localization can be obtained
in other CFT's. One might try to extend the computation of
B presented here to those other theories.



