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abstract: Patch occupancy theory predicts that a trade-off between
competition and dispersal should lead to regional coexistence of
competing species. Empirical investigations, however, find local co-
existence of superior and inferior competitors, an outcome that can-
not be explained within the patch occupancy framework because of
the decoupling of local and spatial dynamics. We develop two-patch
metapopulation models that explicitly consider the interaction be-
tween competition and dispersal. We show that a dispersal-compe-
tition trade-off can lead to local coexistence provided the inferior
competitor is superior at colonizing empty patches as well as im-
migrating among occupied patches. Immigration from patches that
the superior competitor cannot colonize rescues the inferior com-
petitor from extinction in patches that both species colonize. Too
much immigration, however, can be detrimental to coexistence.
When competitive asymmetry between species is high, local coex-
istence is possible only if the dispersal rate of the inferior competitor
occurs below a critical threshold. If competing species have com-
parable colonization abilities and the environment is otherwise spa-
tially homogeneous, a superior ability to immigrate among occupied
patches cannot prevent exclusion of the inferior competitor. If, how-
ever, biotic or abiotic factors create spatial heterogeneity in com-
petitive rankings across the landscape, local coexistence can occur
even in the absence of a dispersal-competition trade-off. In fact,
coexistence requires that the dispersal rate of the overall inferior
competitor not exceed a critical threshold. Explicit consideration of
how dispersal modifies local competitive interactions shifts the focus
from the patch occupancy approach with its emphasis on extinction-
colonization dynamics to the realm of source-sink dynamics. The
key to coexistence in this framework is spatial variance in fitness.
Unlike in the patch occupancy framework, high rates of dispersal
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can undermine coexistence, and hence diversity, by reducing spatial
variance in fitness.
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The issue of how species coexist in patchy environments
is central to both basic and applied ecology. When com-
petition for resources is asymmetric, a life-history trade-
off between competitive and dispersal abilities can lead to
coexistence in a patchy environment (Skellem 1951). This
idea has been formalized in the patch occupancy meta-
population framework (Levins 1969, 1970). The patch oc-
cupancy approach assumes that local competitive inter-
actions occur on a much faster time scale relative to
extinction-colonization dynamics (Cohen 1970; Levins
and Culver 1971; Slatkin 1974; Hastings 1980; Nee and
May 1992; Tilman et al. 1994). For instance, when patches
are colonized by both superior and inferior competitors,
there is rapid exclusion of the inferior species. This restricts
the inferior competitor to patches that the superior com-
petitor cannot colonize. The predicted outcome is regional
coexistence, with the two species occupying mutually ex-
clusive subsets of patches in the metapopulation.

Empirical studies of dispersal-competition trade-offs,
however, reveal a pattern that is at odds with the theoretical
prediction of regional coexistence. For instance, in Lei and
Hanski’s (1998) study of two parasitoid species that attack
the butterfly Melitaea cinxia, the superior competitor (Co-
tesia melitaearum) was absent from some host populations,
but the superior disperser (Hyposoter horticola) was present
in all populations sampled. Another host-parasitoid system
consisting of the harlequin bug (Murgantia histrionica) and
its two egg parasitoids (Trissolcus murgantiae and Ooen-
cyrtus johnsonii) also shows a similar pattern with local
coexistence in some patches and the superior competitor
absent in other patches (Amarasekare 2000a, 2000b).

The mismatch between patch occupancy theory and
data may arise from the separation of time scales inherent
in the patch occupancy framework. The assumption that
local dynamics occur on a faster time scale relative to
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spatial dynamics restricts the role of dispersal to colonizing
empty, or locally extinct, patches. In the absence of any
immigration among occupied patches, dispersal cannot
influence local competitive interactions. This decoupling
of local and spatial dynamics eliminates any possibility of
local coexistence. Empirical observations of local coexis-
tence, however, suggest that dispersal may be sufficiently
rapid to counteract competitive exclusion. In fact, the two
parasitoid species that attack M. cinxia appear to exhibit
a dispersal-competition trade-off most convincingly at the
scale of larval groups within local populations (Lei and
Hanski 1998). Movement between such larval groups is
likely to occur on a time scale comparable to local com-
petitive interactions. The harlequin bug and its two
parasitoids move among populations on a per-
generation basis (Amarasekare 2000a, 2000b). Harrison et
al.’s (1995) study of the insect herbivores of ragwort (Se-
necio jacobea) also demonstrated rapid dispersal of the
cinnabar moth (Tyria jacobeae) and other herbivores (Bo-
tanophila seneciella and Contarina jacobeae) relative to the
time scale of local competition.

These data present a puzzle for theory. Can a dispersal-
competition trade-off lead to local coexistence when com-
petition and dispersal operate on comparable time scales?
Answering this question necessitates a shift in focus from
extinction-colonization dynamics to source-sink dynam-
ics. For instance, the issue now is not whether a superior
ability to colonize empty patches prevents regional exclu-
sion but whether a superior ability to immigrate among
occupied patches prevents local exclusion.

The Model

We use a two-patch model with Lotka-Volterra competitive
dynamics within patches and emigration and immigration
between patches. The dynamics are given by the following
system of equations:

dX X Yi i ip r X 1 � � f � d (X � X ),x i x, i x j i( )dt K Kx, i x, i

dY Y Xi i ip r Y 1 � � f � d (Y � Y ), (1)y i y, i y j i( )dt K Ky, i y, i

i, j p 1, 2, i ( j,

where Xi and Yi are the abundances of each species in
patch i ; fx, i and fy, i are the competition coefficients, and
Kx, i and Ky, i are the carrying capacities for species 1 and
2 in patch i ; rx and ry are the per capita growth rates, and
dx and dy are the per capita emigration rates of species 1
and 2, respectively.

We nondimensionalize equation (1) in order to describe
the system in terms of a minimal set of parameters (Mur-
ray 1993). The following transformations,

X Yi ix p , y p , t p r t,i i xK Kx, i y, i

K Ky, i x, ia p f , a p f ,x, i x, i y, i y, iK Kx, i y, i

K K rx, j y, j yk p , k p , r p ,x yK K rx, i y, i x

d dx y
b p , b p ,x yr rx y

yield the nondimensional system

dxi ( )p x 1 � x � a y �b (k x � x ),i i x, i i x x j idt

dyi ( )p ry 1 � y � a x �rb (k y � y ), (2)i i y, i i y y j idt

i, j p 1, 2, i ( j.

The quantities xi and yi represent the densities of species
1 and 2 in the i th patch scaled by their respective carrying
capacities, and ax, i and ay, i represent the per capita effect
of species 2 on species 1 (and vice versa) scaled by the
ratio of respective carrying capacities. Quantities kx and ky

represent the ratio of carrying capacities in the two patches
for species 1 and 2, respectively, bx and by are the species-
specific emigration rates scaled by their respective growth
rates, r is the ratio of the per capita growth rates of the
two species, and t is a time metric that is a composite of
t and rx , the growth rate of species 1. The dispersal scheme
is such that individuals leaving one patch end up in the
other patch, with no dispersal mortality in transit. This is
equivalent to the island model of dispersal.

We are interested in a life-history trade-off between
competitive and dispersal abilities. We describe such a
trade-off in terms of competition coefficients (the per cap-
ita effect that a given species has on the other) and per
capita dispersal rates. We assume the species and patches
to be otherwise similar (i.e., , ,r p 1 k p k p 1x y

), which means that and .K p K a p f a p fx, i y, i x, i x, i y, i y, i

This leads to the following simplified two-patch system:

dxi ( )p x 1 � x � f y �b (x � x ),i i x, i i x j idt

dyi ( )p y 1 � y � f x �b (y � y ), (3)i i y, i i y j idt

i, j p 1, 2, i ( j.



574 The American Naturalist

In the absence of dispersal ( ), competitiveb p b p 0x y

interactions within each patch lead to three basic outcomes
(Volterra 1926; Lotka 1932): coexistence via niche parti-
tioning ( , ), exclusion via priority effectsf ! 1 f ! 1x, i y, i

( , ), and exclusion via competitive asym-f 1 1 f 1 1x, i y, i

metry ( , , or vice versa). We focus exclusivelyf ! 1 f 1 1x, i y, i

on competitive asymmetry because this is the situation for
which a life-history trade-off is most relevant.

When patches are linked by dispersal, spatial hetero-
geneity becomes an important consideration (Murdoch et
al. 1992; Nisbet et al. 1993). We define spatial heterogeneity
in terms of factors that affect the patch-specific competitive
abilities of the two species fx, i and fy, i . For instance, when

and (or vice versa), the com-f p f ! 1 f p f 1 1x, i x, j y, i y, j

petitive environment is spatially homogeneous and one
species is consistently superior within all patches of the
landscape. When and (e.g., ,f ( f f ( f f ! 1x, i x, j y, i y, j x, i

, , , or vice versa), competitive rank-f 1 1 f 1 1 f ! 1x, j y, i y, j

ings vary over space such that the species that is the su-
perior competitor in some parts of the landscape is the
inferior competitor in the other parts of the landscape.
This type of spatial heterogeneity can arise due to intrinsic
factors such as genetic variability or phenotypic plasticity
in competitive ability (Huel and Huel 1996; Morrison and
Molofsky 1999). It can also arise via extrinsic factors that
affect the species differently. Examples include spatial var-
iation in microclimatic factors, availability of a second,
critical resource (Tilman and Pacala 1993), disturbances
(Connell 1978), and keystone predation (Paine 1966).

We investigate the conditions under which a trade-off
between competition and dispersal can lead to local co-
existence of superior and inferior competitors. We focus
on three specific situations, each motivated by empirical
studies of dispersal-competition trade-offs.

Local Coexistence When the Inferior
Competitor Has a Refuge

The first situation we analyze is motivated by Lei and
Hanski’s (1998) study of the parasitoids of Melitaea cinxia.
Their data show a spatial pattern of local coexistence versus
patches occupied only by the superior disperser (inferior
competitor). Can local coexistence result from a dispersal-
competition trade-off?

We assume that the superior competitor does not move
among occupied patches and is restricted to patch 1. Patch
2 is colonized solely by the inferior competitor and serves
as a refuge from competition for that species. The inferior
competitor also moves between the two patches at a rate
by. This scenario leads to the following version of the
model:

dx1 ( )p x 1 � x � f y ,1 1 x, 1 1dt

dy1 ( )p y 1 � y � f x �b (y � y ), (4)1 1 y, 1 1 y 2 1dt

dy2 ( )p y 1 � y �b (y � y ),2 2 y 1 2dt

with x denoting the abundance of the superior, immobile
competitor and y denoting that of the inferior, mobile
competitor. Note that and .f ! 1 f 1 1x, 1 y, 1

In the absence of dispersal (i.e., ), patch 1 is ab p 0y

sink for the inferior competitor. This is because the su-
perior competitor increases in abundance at the expense
of the inferior competitor, preventing the latter from main-
taining a positive growth rate.

Equation (4) yields four feasible equilibria: first, both
species extinct ( , , 0, 0, 0); second, superior� � �x y y ) p (1 1 2

competitor at carrying capacity (1, 0, 0); third, inferior
competitor at carrying capacity (0, 1, 1); and finally, the
coexistence equilibrium.

Local coexistence of inferior and superior competitors
requires that the inferior competitor be able to invade a
patch when the superior competitor is at carrying capacity
and that the coexistence equilibrium be stable to small
perturbations in the abundance of both species.

We first investigate whether the inferior competitor can
invade when rare in both patches. In appendix A, we show
that invasion will succeed if

(1 � f ) � b (2 � f ) ! 0. (5)y, 1 y y, 1

The inferior competitor can invade when rare under
two situations: if , invasion can occur as long asf ! 2y, 1

, and if , then invasion is possible only asb 1 0 f 1 2y y, 1

long as (fig. 1). Stability analysesb ! (1 � f )/(2 � f )y y, 1 y, 1

(app. A) show that the coexistence equilibrium is stable
when it exists.

The key result is that stable local coexistence of inferior
and superior competitors can occur, but is not guaranteed,
as long as there are patches in the landscape that are col-
onized only by the inferior competitor. Immigration from
such refuge populations rescues the inferior competitor
from exclusion in patches that are colonized by both spe-
cies. Coexistence in the face of competitive asymmetry
depends on both dispersal rates and degree of asymmetry.
When competitive asymmetry in patch 1 is low (e.g.,

and ), coexistence occurs provided thef ! 1 1 ! f ! 2x, 1 y, 1

inferior competitor has a nonzero dispersal rate. When
competitive asymmetry is high (e.g., andf ! 1 f 1x, 1 y, 1

), coexistence occurs only as long as the dispersal rate is2
below a critical threshold. When the dispersal rate exceeds
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Figure 1: Conditions for invasion by the inferior competitor when it has a refuge (eq. [4]). The eigenvalue (b and c as2 1/2e p [b � (b � 4c) ]/21

defined in app. A) is plotted as a function of the competition coefficient (fy, 1) and dispersal rate (by) of the inferior competitor. The surface depicts
the portion of the parameter space where e1 is positive (i.e., the inferior competitor can invade when rare). When , the invasion can occurf ! 2y, 1

as long as . When , invasion is possible only as long as . Note that by is the ratio of per capita emigrationb 1 0 f 1 2 b ! [(1 � f )/(2 � f )]y y, 1 y y, 1 y, 1

to local growth (i.e., means that rate of emigration from the patch exceeds the local growth rate).b 1 1y

this threshold, net emigration from source to sink pop-
ulations causes the source population growth rate to be
negative, and the inferior competitor is excluded from the
entire metapopulation.

Local Coexistence When the Inferior
Competitor Has No Refuge

In Harrison et al.’s (1995) study of the herbivores of rag-
wort, no patches were found that were empty of the su-
perior competitor. This suggests that the superior com-
petitor has a colonization ability comparable to that of the
inferior competitors. Our full two-patch model (eq. [3])
describes the situation where no refuges exist for the in-
ferior competitor and both the superior and inferior com-
petitors are able to move among occupied patches. Now
the issue becomes more challenging: Can a superior ability
to immigrate among occupied patches allow an inferior
competitor to coexist locally with a superior competitor?

We first investigate whether the inferior competitor can
invade when the superior competitor is at carrying capacity

in both patches (i.e., ). In appendix B, we� �x p x p 11 2

show that successful invasion requires , whereI ! 0

I p (1 � f )(1 � f ) � b [(1 � f ) � (1 � f )].y, 1 y, 2 y y, 1 y, 2

(6)

Note that the quantities and are the1 � f 1 � fy, 1 y, 2

initial growth rates of the inferior competitor in patches
1 and 2 in the absence of dispersal (Pacala and Rough-
garden 1982). Thus, the first term of I represents the prod-
uct of the initial growth rates in the two patches and the
second term their sum. The signs of these two quantities
determine whether or not invasion can occur. For example,
if the sum of the initial growth rates is positive and the
product negative, as long as . If both sum andI ! 0 b 1 0y

product are negative, then whether or not dependsI ! 0
on the actual magnitude of by .

We first consider the situation where the competitive
environment is spatially homogeneous. When f px, i

and , species 1 is the su-f p f ! 1 f p f p f 1 1x, j x y, i y, j y

perior competitor across the metapopulation. Then the
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sum of the initial growth rates of the inferior competitor
in the two patches is negative ( ) and the prod-2 � 2f ! 0y

uct positive ( ), which means that2[1 � f ] 1 0 I p (1 �y

. The equilibrium with the superior2f ) � b (2 � 2f ) 1 0y y y

competitor at carrying capacity cannot be invaded by the
inferior competitor. Invasion fails because the superior
competitor increases at the expense of the inferior com-
petitor in both patches, causing the initial growth rate of
the latter to be negative across the metapopulation.

The key result is that when the competitive environment
is spatially homogeneous (i.e., one species is consistently
the superior competitor), and when both species have
comparable colonization abilities such that local refuges
for the inferior competitor do not exist, a superior ability
to migrate among occupied patches is not sufficient to
prevent exclusion of the inferior competitor.

The Role of Spatial Heterogeneity

The above analysis shows that invasion fails in a com-
petitively homogeneous environment because the inferior
competitor has a negative initial growth rate in both
patches. This suggests that invasion may succeed if the
inferior competitor can maintain a positive initial growth
rate in at least one patch. Mathematically, this means that
the product of the initial growth rates in the two patches
should be negative (i.e., ). Since[1 � f ][1 � f ] ! 0y, 1 y, 2

competition is assumed to be asymmetric (i.e., andf ! 1x, i

or vice versa; , 2), the only way this canf 1 1 i p 1y, i

happen is if there is spatial heterogeneity in competitive
rankings such that the superior competitor suffers a dis-
advantage in at least some parts of the landscape (e.g.,

, ; ; ).f ! 1 f 1 1 i, j p 1, 2 i ( jx, i x, j

That inferior competitors can flourish in areas disad-
vantageous to superior competitors (e.g., keystone pre-
dation) is well known (Harper 1961; Paine 1966; Connell
1978; Lubchenco 1978). The novel issue we explore is
whether dispersal from such areas allows the inferior com-
petitor to persist in areas where the superior competitor
itself flourishes. Because competitive rankings vary across
space, the average competitive ability of each species be-
comes an important determinant of invasion and
coexistence.

When the competitive environment is spatially heter-
ogeneous, invasion can occur under three biologically dis-
tinct, and significant, circumstances. The first situation
arises when competition is asymmetric at the scale of a
local population but spatial averages of competition co-
efficients are such that niche partitioning occurs at the
scale of the metapopulation. For instance, let ,f ! 1x, 1

in patch 1 and , in patch 2. Letf 1 1 f 1 1 f ! 1y, 1 x, 2 y, 2

the average competitive coefficients be f p [(f �x, 1x

and . Then, species 1f )/2] ! 1 f p [(f � f )/2] ! 1x, 2 y, 1 y, 2y

is the superior competitor in patch 1 and species 2 is the
superior competitor in patch 2, but neither species is su-
perior in the sense that interspecific competition is weaker
than intraspecific competition when averaged across the
metapopulation. At the metapopulation scale, the two spe-
cies meet the criteria for classical niche partitioning (Vol-
terra 1926; Lotka 1932).

Under global niche partitioning, the sum of the initial
growth rates is positive and the product negative, which
means that as long as . The equilibrium withI ! 0 b 1 0y

the locally superior competitor at carrying capacity (i.e.,
, , , p 1, 1, 0, 0 or 0, 0, 1, 1) can be invaded� � � �x x y y1 2 1 2

by the locally inferior competitor (species 2 or 1, respec-
tively) as long as it has a nonzero dispersal rate ( orb 1 0y

, respectively).b 1 0x

The important point is that as long as competition is
asymmetric locally and niche partitioning occurs globally,
coexistence can occur even in the absence of a dispersal-
competition trade-off. The patch in which the species has
local competitive superiority acts as a source of immigrants
for the patch in which it is locally inferior. Thus, source-
sink dynamics allow each species to maintain small sink
populations in areas of the landscape where it suffers a
competitive disadvantage.

The second situation arises when competition is asym-
metric both locally and globally. For example, species 1 is
the superior competitor in patch 1 ( , ) andf ! 1 f 1 1x, 1 y, 1

species 2 is the superior competitor in patch 2 ( ,f 1 1x, 2

), but now species 1 is the superior competitorf ! 1y, 2

when averaged across the metapopulation ( andf ! 1x

).f 1 1y

The species that is the overall superior competitor can
invade when rare as long as it has a nonzero dispersal rate
(i.e., ). The important issue is whether the overallb 1 0x

inferior competitor can invade when rare. Global asym-
metric competition means both the sum and the product
of initial growth rates are negative. Invasibility now de-
pends on the actual magnitude of by . Solving equation (6)
for by shows that the inferior competitor can invade only
if its dispersal rate is below a critical threshold:

(1 � f )(1 � f )y, 1 y, 2
b ! b p .y critical (1 � f ) � (1 � f )y, 1 y, 2

When competition is asymmetric both locally and glob-
ally, local coexistence does not involve a dispersal-com-
petition trade-off. In fact, local coexistence requires that
the dispersal rate of the overall inferior competitor not
exceed a critical threshold. Once the dispersal rate exceeds
this threshold, the overall inferior competitor cannot in-
crease when rare even when it is competitively superior
in some parts of the landscape.

The critical dispersal threshold depends on spatial het-



Spatial Heterogeneity and Competition 577

Figure 2: The relationship between spatial variance in competitive ability and the critical dispersal threshold (bc) when competition involves global
asymmetry. The quantities f1 and f2 are the competition coefficients of the overall inferior competitor in patches 1 and 2, respectively. The overall
inferior competitor enjoys a competitive advantage in patch 1 ( ) and suffers a competitive disadvantage in patch 2 ( ). Global asymmetryf ! 1 f 1 11 2

means that (or ) for the inferior competitor. For any given value of f2, bc reaches a maximum when (f � f 1 2 f 1 1 f r 0 lim b p [(1 �1 2 1 f r0 c1

; ) and a minimum when ( ). The larger f2 is the smaller the maximum value of bc and steeperf )/(2 � f )] b 1 0 ⇒ f 1 2 f r 1 lim b p 02 2 c 2 1 f r1 c1

the decline of bc with f1. In biological terms, this means that for any level of the competitive disadvantage suffered by the species in one patch,
the stronger its local competitive advantage in the other patch, the higher the critical dispersal threshold, and hence, the possibility of coexistence.
However, if the competitive disadvantage suffered by the species in one patch is large relative to its competitive advantage in the other patch, the
dispersal threshold is lowered and conditions for coexistence become restrictive.

erogeneity in competitive ability (fig. 2). The stronger the
local competitive advantage to the overall inferior com-
petitor in areas where the overall superior competitor is
disadvantaged (e.g., , ), the largerf 1 1 f K 1 ⇒ f r 1y, i y, j y

the critical dispersal threshold and greater the possibility
of local coexistence. If spatial heterogeneity in the envi-
ronment is insufficient to create a strong local competitive
advantage to the inferior competitor (e.g., ,f 1 1 f ry, i y, j

), then the threshold becomes correspondingly1 ⇒ f 1 1y

small and conditions for coexistence restrictive.
The key to coexistence, therefore, is spatial heterogeneity

in competitive ability. There should be sufficient spatial
variation in the biotic or abiotic environment that the
overall superior competitor suffers a disadvantage in some
parts of the landscape. Immigration from populations
where the overall inferior competitor has a local advantage

prevents its exclusion in areas where it has a local dis-
advantage. In contrast to global niche partitioning, how-
ever, coexistence is possible only as long as the dispersal
rate of the overall inferior competitor is below a critical
threshold. This is because individuals are moving from
regions of the landscape where they are competitively su-
perior and enjoy a positive growth rate (source popula-
tions) to regions where they are competitively inferior and
suffer a negative growth rate (sink populations). If the net
rate of emigration is sufficiently high relative to local re-
production that the growth rate of the source population
becomes negative, the species loses its local competitive
advantage and is excluded from the entire metapopulation.

So far, we have derived conditions for local coexistence
for two situations: global niche partitioning and global
competitive asymmetry. The third situation arises when
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competition is asymmetric locally but a priority effect oc-
curs globally (i.e., species 1 is the superior competitor in
patch 1 [ , ], and species 2 is the superiorf ! 1 f 1 1x, 1 y, 1

competitor in patch 2 [ , ]), but interspecificf 1 1 f ! 1x, 2 y, 2

competition is stronger than intraspecific competition
when averaged across the metapopulation ( andf 1 1x

). Now each species has a critical dispersal thresholdf 1 1y

above which coexistence cannot occur:

(1 � f )(1 � f )•1 •2
b ! b p .• critical (1 � f ) � (1 � f )•1 •2

As with global asymmetry, the magnitude of the dis-
persal threshold depends on spatial heterogeneity in com-
petitive ability (fig. 3). If the two species differ in the degree
of local asymmetry but have the same competitive ability
on average (e.g., , ; ),f ( f f ( f f p f 1 1x, 1 y, 2 x, 2 y, 1 x y

then local coexistence is determined by the dispersal ability
of the species that experiences lower spatial heterogeneity
and hence the lower dispersal threshold (fig. 3). If the
species are sufficiently different that their average com-
petition coefficients are unequal (e.g., , ;f 1 1 f 1 1x y

), then local coexistence is determined by thef ! fx y

dispersal ability of the species with the higher average com-
petition coefficient (lower competitive ability). For in-
stance, if , then , and the dispersalf ! f b ! by xx y critical critical

threshold for species 2 determines the transition from co-
existence to exclusion.

The key to coexistence, again, is spatial heteroge-
neity in competitive ability. When heterogeneity is low
( ), the region of the parameter space where eachf 1 1•

species can invade when rare is small (fig. 3B); when het-
erogeneity is high ( ), this region is correspondinglyf r 1•

larger (fig. 3C). An important difference between global
asymmetry and a global priority effect is that while co-
existence is determined by the dispersal ability of the over-
all inferior competitor in the former, dispersal abilities of
both competing species determine conditions for coexis-
tence in the latter. If both species have dispersal rates that
exceed their respective thresholds, neither species can in-
vade when rare and coexistence is impossible either locally
or regionally.

These results lead to a set of comparative predictions
(table 1). The three situations under which local coexis-
tence can occur in a competitively heterogeneous envi-
ronment can be distinguished by their response to the
transition from low to high dispersal. In the absence of
dispersal, all three situations exhibit global coexistence
with each species flourishing in areas where it has a local
competitive advantage. Under low dispersal, source-sink
dynamics ensure local coexistence in all three cases. High
dispersal, however, elicits qualitatively different dynamical
responses. For instance, when competition involves global

niche partitioning, local coexistence prevails. When com-
petition involves global asymmetry, global exclusion of the
overall inferior competitor results. When competition in-
volves a global priority effect, the outcome is global ex-
clusion of the species with the lower dispersal threshold.

Another key distinction between the three situations is
the relative sensitivity of competing species to a pertur-
bation that increases dispersal between patches. Neither
species is sensitive to such a perturbation under global
niche partitioning, only the inferior competitor is sensitive
under global asymmetry, and both species are sensitive
under a global priority effect. In other words, there are
no constraints on the dispersal abilities when global niche
partitioning occurs, while constraints exist on one or both
species when global asymmetry or priority effects occur.
This suggests that species that experience local competitive
asymmetry but partition niches globally have the highest
likelihood of coexistence, while those that experience
global priority effects have the least.

Discussion

This study was motivated by empirical investigations of
dispersal-competition trade-offs in insect systems. Obser-
vations of local coexistence in these studies are at odds
with the prediction of regional coexistence from patch
occupancy theory. These observations suggest that dis-
persal may be sufficiently rapid to counteract competitive
exclusion, a possibility that cannot be addressed in the
patch occupancy framework because of the decoupling of
local and spatial dynamics. We developed models that ex-
plicitly consider local dynamics in which spatial processes
of emigration and immigration operate on the same time
scale as local competitive interactions. Our objective was
to determine the conditions under which the interaction
between competition and dispersal could lead to local
coexistence.

Our findings provide potential explanations for the pat-
terns seen in several insect systems. For instance, in Lei
and Hanski’s (1998) study of the parasitoids of Melitaea
cinxia, the inferior competitor is found in patches that are
not colonized by the superior competitor, suggesting that
it has a superior colonization ability. The observed pattern
of local coexistence in some patches versus the inferior
competitor by itself in other patches could arise if im-
migration from the latter prevents competitive exclusion
in the former.

In contrast to the butterfly system, however, the two
parasitoids of the harlequin bug have comparable colo-
nization abilities (Amarasekare 2000a). In such a situation,
immigration could counteract competitive exclusion if
there is spatial variance in competitive rankings. However,
one parasitoid species is consistently the superior com-



Figure 3: The relationship between spatial variance in competitive ability and the critical dispersal threshold when competition involves a global
priority effect. A, The three-dimensional parameter space with the critical dispersal threshold for each species as a function of its competitive
coefficients in the two patches. The black surface depicts this relationship for species 2 and the gray surface for species 1. Note that the X-axis goes
from 1 to 0 for species 1. B, C, Two-dimensional slices of the parameter space for and , respectively. Region 1f p f p 3 f p f p 2x, 1 y, 2 x, 1 y, 2

represents the portion of the parameter space where both species can invade when the other species is at carrying capacity. The long-term outcome
is stable coexistence. Region 2 represents the parameter space where species 2 cannot invade when rare, and region 4, where species 1 cannot invade
when rare. The long-term outcome is exclusion of species 2 and 1, respectively. Region 3 represents the parameter space where neither species can
invade when rare. The long-term outcome is global exclusion of the species that exhibits the lower dispersal threshold. When spatial heterogeneity
is low (i.e., local competitive advantage enjoyed by a species in one patch is small relative to the disadvantage it suffers in the other patch), the
region where both species can invade is small and the region where neither species can invade is large (B). When spatial heterogeneity is high, the
region of mutual invasibility increases relative to the region of mutual noninvasibility (C).
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Table 1: Comparative predictions for invasion and local coexistence under different regimes of spatial heterogeneity

Competitive
environment Isolation Low dispersal High dispersal

Local asymmetry, global niche
partitioning Locally inferior competitor

cannot invade
Global coexistence
bx , by p 0

Both species can invade
Local coexistence
bx , by 1 0

Both species can invade
Local coexistence
bx , by 1 0

Local asymmetry,
global asymmetry Locally inferior competitor

cannot invade
Global coexistence
bx , by p 0

Both species can invade
Local coexistence
0 ! by ! bcritical, bx 1 0

Overall inferior
competitor cannot invadea

Global exclusion of inferior competitor
by 1 bcritical, bx 1 0

Local asymmetry, global priority
effect Locally inferior competitor

cannot invade
Global coexistence
bx , by p 0

Both species can invade
Local coexistence
0 ! bx , by ! bcritical

Neither species can invadeb

Global exclusion of species with lower
dispersal threshold

bx , by 1 bcritical

a Transition from low to high dispersal affects inferior competitor only.
b Transition from low to high dispersal affects both species.

petitor all across the landscape, and experimental manip-
ulations of dispersal rates have no effect on patterns of
local coexistence (Amarasekare 2000a, 2000b). This study
exemplifies a situation where lack of spatial variance in
competitive ability precludes coexistence via source-sink
dynamics.

Harrison et al.’s (1995) study of the herbivores of rag-
wort (Senecio jacobea) illustrates how rapid dispersal and
spatial variance in competitive ability may counteract local
exclusion. At the authors’ study site in Silwood Park, As-
cot, Berkshire, United Kingdom, the cinnabar moth (Tyria
jacobeae) is the superior competitor and depresses the
abundances of the flower head-feeding fly Botanophila se-
neciella and the flower galler Contarina jacobeae. However,
local competitive exclusion is not observed even in patches
heavily defoliated by the moth. Cinnabar moths are suf-
ficiently mobile so that no ragwort patches exist that are
empty of the moths. There is, however, spatial variation
in cinnabar moth performance; the moth consistently de-
foliates dense patches of ragwort but performs consistently
less well in patches that are heavily mown or in which the
ragwort is sparsely distributed. The authors suggest that
the patches of sparse ragwort may serve as refuges for B.
seneciella and C. jacobeae. Both species have good dispersal
abilities (B. seneciella is in fact a faster disperser than the
cinnabar moth) and are able to invade areas where ragwort
has been extensively defoliated. This suggests that immi-
gration from patches where the moth performs poorly may
be counteracting competitive exclusion of B. seneciella and
C. jacobeae in patches where defoliation by the moth is
extensive.

While there is certainly a potential for spatial dynamics

to counteract competitive exclusion, we frequently observe
instances of region-wide competitive displacement. The
displacement of the native asexual gecko Lepidodactylus
lugubris by the introduced sexual species Hemidactylus
frenatus in the tropical Pacific (Case et al. 1994; Petren
and Case 1996) and that of Aphytis lingnanensis, a par-
asitoid of the red scale (Aonidiella aurantii), by its congener
Aphytis melinus in southern California (Luck and Podoler
1985; Murdoch et al. 1996) provide some of the more well
studied examples. These observations suggest that, in some
cases at least, spatial processes cannot counteract com-
petitive exclusion because of insufficient spatial variance
in competitive ability. If one species is competitively su-
perior and is sufficiently mobile so that no refuges for the
inferior competitor exist, then all local populations are
essentially sinks for the inferior competitor. Dispersal from
one location to another cannot prevent competitive ex-
clusion. Typically, one would expect such large-scale ex-
clusion to occur when competitive ability is determined
by traits that are fixed within and across populations. For
example, A. melinus gains a competitive advantage over
A. lingnanensis because of a life-history difference; A. mel-
inus is able to obtain female offspring from a smaller-sized
scale than A. lingnanensis (Luck and Podoler 1985). Using
a stage-structured host-parasitoid model, Murdoch et al.
(1996) showed that this subtle difference is sufficient to
explain the rapid displacement of A. lingnanensis from
inland areas of southern California. If, however, the life-
history traits influencing competitive ability are plastic, or
if competitive ability is determined by extrinsic factors that
are either biotic (predators, parasites, and pathogens) or
abiotic (temperature, humidity, and disturbances), then
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spatial variation in these factors could provide conditions
under which source-sink dynamics can lead to local co-
existence. One would expect global niche partitioning to
provide the broadest conditions for coexistence because
this situation imposes no constraints on dispersal ability.
Field measurements required to quantify the nature of the
competitive environment include any measure of fitness
or competitive ability such as growth rates or competitive
coefficients and some measure of dispersal either through
direct mark-recapture experiments or indirectly by using
genetic markers (e.g., Dias 1996).

In our models, the interaction between competition and
dispersal leads to a threshold effect. Levin (1974) docu-
mented a similar phenomenon for competition involving
local priority effects. Since local dynamics themselves in-
volve a threshold phenomenon in Levin’s model, perhaps
it is not surprising that this effect should persist when
local populations are linked by dispersal. However, the
models we have analyzed involve asymmetric competition
that leads to deterministic extinction of inferior compet-
itors in the absence of ameliorating forces. A threshold
effect arises in our models when patches are coupled by
dispersal, but only when competition involves global
asymmetry or a global priority effect. A similar effect has
been observed in some population genetic models as well.
For instance, in Slatkin’s (1994) model of epistatic, direc-
tional selection for complex adaptive traits, fixation of the
adaptive genotype occurs in the absence of gene flow. With
small amounts of gene flow, a stable polymorphism results
with the less adaptive genotypes being maintained in the
population. With large amounts of gene flow, the poly-
morphism disappears and the system reverts to mono-
morphism. The same dynamical phenomenon is observed
in the classical migration-selection models with directional
selection for a recessive allele (Wright 1931, 1969; Hartl
and Clark 1997). A polymorphism arises under small
amounts of gene flow and disappears under large amounts
of gene flow. In contrast, competition-dispersal balance
with global niche partitioning (this study) or migration-
selection balance with directional selection for a dominant
allele (Wright 1931, 1969; Hartl and Clark 1997) do not
lead to threshold phenomena. In these cases, the transition
from weak to strong coupling has no impact on coexistence.

A threshold effect resulting from the interaction between
competition and dispersal has also been observed in a

diffusion model (Pacala and Roughgarden 1982), sug-
gesting that the phenomenon may operate in both patchy
and spatially continuous environments. Pacala and Rough-
garden investigated the role of habitat suitability in the
invasion success of competing species. They modeled hab-
itat suitability in terms of spatially varying carrying ca-
pacities and derived critical dispersal thresholds for a dif-
fusion model as well as a discrete compartment analogue.
They found that invasion could sometimes succeed when
both sides of the environment were unsuitable and that it
could sometimes fail when both sides of the environment
were suitable. The authors attribute this result to the cost
incurred when dispersal interacts directly with local pop-
ulation dynamics (i.e., individuals are moving from areas
of higher to lower fitness). In Pacala and Roughgarden’s
(1982) model, as in ours, dispersal is costly because it is
random. If dispersal were directional or density dependent,
then conclusions about competitive coexistence might be
different from what we have obtained above. In fact, den-
sity-dependent dispersal may be sufficiently nonlinear to
counteract competitive exclusion even in a competitively
homogeneous environment. This possibility remains to be
explored.

In summary, explicit consideration of the interaction
between competition and dispersal takes us away from the
patch occupancy framework with its emphasis on extinc-
tion-colonization dynamics to the realm of source-sink
dynamics. The key to coexistence in this framework is
spatial variance in fitness. Unlike in the patch occupancy
framework where local and spatial dynamics are essentially
decoupled, high rates of dispersal can undermine coex-
istence, and hence diversity, by reducing spatial variance
in fitness.
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APPENDIX A

Invasion and Stability Analyses for the Model with a Refuge for the Inferior Competitor

The Jacobian matrix of equation (4) is given by
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� � �1 � 2x � f y �f x 01 x, 1 1 x, 1 1 
� � ��f y 1 � 2y �f x � b b .y, 1 1 1 y, 1 1 y y 

�0 b 1 � 2y � b y 2 y

Note that the Jacobian is a tridiagonal, quasi-symmetric matrix (i.e., all nonzero off-diagonal elements andAi, i�1

have the same sign [Wilkinson 1965]). All eigenvalues of a quasi-symmetric matrix are real (see Wilkinson 1965,Ai�1, i

p. 336). This means that the transition from stability to instability involves a zero real root rather than a complex root
with zero real parts. Hence, the system defined by equation (4) does not exhibit oscillatory instability (Gurney and
Nisbet 1998).

The inferior competitor can invade when the superior competitor is at carrying capacity if the dominant eigenvalue
of the Jacobian is positive when evaluated at ( , , 1, 0, 0).� � �x y y ) p (1 1 2

The eigenvalues are �1 and , where and .2 1/2 2[b � (b � 4c) ]/2 b p (1 � f � b ) c p (1 � f � b )(1 � b ) � by, 1 y y, 1 y y y

The equilibrium ( , , 1, 0, 0) is unstable to invasion by the inferior competitor if the eigenvalue� � �x y y ) p ( [b �1 1 2

. This occurs when and leads to the invasion criterion (eq. [5]) in main text.2 1/2(b � 4c) /2] 1 0 c ! 0
The characteristic equation for the Jacobian of equation (4) is:

3 2l � A l � A l � A p 0,1 2 3

where

� � � � �A p �(1 � 2x � f y ) � (1 � 2y � f x � b ) � (1 � 2y � b ),1 1 x, 1 1 1 y, 1 1 y 2 y

� � � � �A p (1 � 2y � f x � b )[(1 � 2x � f y ) � (1 � 2y � b )]2 1 y, 1 1 y 1 x, 1 1 2 y

� � � � � 2� (1 � 2x � f y )(1 � 2y � b ) � f x f y � b ,1 x, 1 1 2 y x, 1 1 y, 1 1 y

and

� � 2 � � � � � � � �A p (1 � 2x � f y )b � f x f y (1 � 2y � b ) � (1 � 2x � f y )(1 � 2y � f x � b )(1 � 2y � b ).3 1 x, 1 1 y x, 1 1 y, 1 1 2 y 1 x, 1 1 1 y, 1 1 y 2 y

We were unable to derive a rigorous proof of local stability of the coexistence equilibrium. As the roots of the
characteristic equation are real, stability is guaranteed if , , and . It is easy to show that A 1 is positive,A 1 0 A 1 0 A 1 01 2 3

so proving stability involves proving positivity of A 2 and A 3 . We obtained a convincing numerical demonstration that
these coefficients are positive by noting that the model has only three parameters (by , fx, 1, and fy, 1) that are related
to the equilibrium conditions by the equations:

� �y (1 � y )2 2
b p ,y � �y � y2 1

�1 � x1
f p ,x, 1 �y1

� � �1 � y y (1 � y )1 2 2
f p � .y, 1 � � �x x y1 1 1

The scaled equilibrium populations are restricted to the range (0, 1), so we divided the unit cube in three-dimensional
( , , ) space into a fine grid (intervals of 0.005 in each variable) and evaluated A2 and A3 for all points ( , ,� � � � �x y y x y1 1 2 1 1

) that yielded , , and . No unstable equilibria were found.�y f ! 1 f 1 1 b 1 02 x, 1 y, 1 y

APPENDIX B

Invasion and Stability Analyses for the Model with No Refuge for the Inferior Competitor

The Jacobian matrix for equation (3) is:
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� � �1 � 2x � f y � b b �f x 01 x, 1 1 x x x, 1 1 
� � �b 1 � 2x � f y � b 0 �f xx 2 x, 2 2 x x, 2 2 .� � ��f y 0 1 � 2y �f x � b b y, 1 1 1 y, 1 1 y y
� � �0 �f y b 1 � 2y � f x � b y, 2 2 y 2 y, 2 2 y

The Jacobian is a quasi-symmetric matrix. All eigenvalues are therefore real, and hence the system defined by
equation (3) does not exhibit oscillatory instability (Gurney and Nisbet 1998).

The inferior competitor can invade when rare in both patches if the dominant eigenvalue of the Jacobian is positive
when evaluated at ( , , , 1, 1, 0, 0). The eigenvalues are , , and , where� � � � 2 1/2x x y y ) p ( �1 �1 � 2b [b � (b � 4c) ]/21 2 1 2 y

and . The equilibrium ( , , ,2 � � � �b p (1 � f � b ) � (1 � f � b ) c p (1 � f � b )(1 � f � b ) � b x x y y ) py, 1 y y, 2 y y, 1 y y, 2 y y 1 2 1 2

1, 1, 0, 0) is unstable to invasion by the inferior competitor if the eigenvalue . This leads to2 1/2( [b � (b � 4c) ]/2 1 0
the invasion criterion (eq. [6]) in the main text.

Local stability criteria for the coexistence equilibrium cannot be derived analytically. Numerical explorations over
the parameter range 0, 1), 1, 5), 1, 5), 0, 1), 0, 5), 0, 5) show all fourf p ( f p ( f p ( f p ( b p ( b p (x, 1 y, 1 x, 2 y, 2 x y

eigenvalues to be negative for all positive values of the coexistence equilibrium.
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Spatial variation and density-dependent dispersal
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It is well known that dispersal from localities favourable to a species’ growth and reproduction (sources)
can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that
too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here,
I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first
involves increasing the spatial variation in the strength of competition such that sources can withstand high
rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal.
I compare how different forms of spatial variation and modes of dispersal influence source viability, and
hence source–sink coexistence, under dominance and pre-emptive competition. A key finding is that, while
spatial variation substantially reduces dispersal costs under both types of competition, density-dependent
dispersal does so only under dominance competition. For instance, when spatial variation in the strength
of competition is high, coexistence is possible (regardless of the type of competition) even when sources
experience high emigration rates; when spatial variation is low, coexistence is restricted even under low
emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexist-
ence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-
dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration
rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restric-
ted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal
has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist
under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated
under dominance competition if density-dependent dispersal is Type III rather than Type II. These results
lead to testable predictions about source–sink coexistence under different regimes of competition, spatial
variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable
approximation to species’ dispersal patterns, and those under which consideration of density-dependent
dispersal is crucial to predicting long-term coexistence.

Keywords: competition; density-dependent dispersal; dominance; pre-emption; spatial variation;
source–sink dynamics

1. INTRODUCTION

It is well known that dispersal can allow species coexist-
ence if spatial variation in the relative strengths of intra-
specific and interspecific interactions creates a source–sink
population structure (e.g. Levin 1974; Pacala & Rough-
garden 1982; Shmida & Ellner 1984; Kishimoto 1990;
Amarasekare & Nisbet 2001; Codeco & Grover 2001;
Mouquet & Loreau 2002). For instance, immigration
from localities where a given species experiences weaker
interspecific than intraspecific competition (i.e. sources
where the species can increase when rare) can prevent
competitive exclusion in localities where it suffers stronger
interspecific than intraspecific competition (i.e. sinks
where the species cannot increase when rare). What is per-
haps less well known is that this rescue effect imposes a
cost of dispersal on sources. While emigration from source
localities is necessary for maintaining species in sink
localities, too much emigration can depress the per capita
growth rates of sources and homogenize spatial variance
in the strength of competition (Levin 1974; Pacala &
Roughgarden 1982; Amarasekare & Nisbet 2001;
Mouquet & Loreau 2002). Such homogenization can
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cause region-wide exclusion of species that are inferior
competitors or have lower initial abundances, thus reduc-
ing diversity below that observed in isolated communities.

The prediction that high dispersal rates should under-
mine diversity begs the question of whether there are bio-
logical mechanisms that can reduce the cost of dispersal
to source communities. There are two basic mechanisms.
The first involves strong spatial variation in the strength
of competition; for example, if the competitive advantage
in the source is strong relative to the competitive disadvan-
tage in the sink, then the source may be able to withstand
quite high rates of emigration. The second involves reduc-
ing the amount of emigration from source communities.
One such mechanism is localized dispersal (e.g. Murrell &
Law 2003; Snyder & Chesson 2003). If individuals do not
move very far from their natal localities, they are less likely
to leave areas favourable to their growth and reproduction.
However, they are also less likely to rescue sink popu-
lations from extinction. Thus localized dispersal may
increase source viability, but species diversity is likely to
be lower than that observed under low levels of global dis-
persal. (Global here means a dispersal range that is
sufficiently large to encompass both favourable and
unfavourable localities of the landscape.)
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A second, and much less well-studied, mechanism for
reducing emigration from sources is density-dependent
dispersal. All models that predict diversity-reducing effects
of high dispersal assume dispersal to be density inde-
pendent and global in extent (e.g. Levin 1974; Pacala &
Roughgarden 1982; Shmida & Ellner 1984; Amarasek-
are & Nisbet 2001; Mouquet & Loreau 2002). Models of
localized dispersal also assume density independence (e.g.
Murrell & Law 2003; Snyder & Chesson 2003). Most real
organisms, however, exhibit some form of density-depen-
dent dispersal (Sutherland et al. 2002). Investigation of
global density-dependent dispersal is important because
this type of dispersal has the potential to rescue sink popu-
lations from extinction without unduly affecting source
viability. Thus, density-dependent dispersal could increase
species diversity above that observed under density-
independent dispersal, whether local or global.

While several studies have investigated the role of den-
sity-dependent dispersal in the source–sink dynamics of
single species (e.g. Pulliam 1988; Howe et al. 1991; Pul-
liam & Danielson 1991; Amarasekare 2004), I am aware
of only one study that has investigated density-dependent
dispersal in the source–sink dynamics of competing spe-
cies (Nishimura & Kishida 2001). This study considered
only one mode of dispersal (dispersal rate increasing in
proportion to the species’ density) for species engaged in
dominance competition. Data, however, show that disper-
sal rate can both increase and decrease with increasing
density (e.g. Denno & Peterson 1995; Herzig 1995; Fon-
seca & Hart 1996; Veit & Lewis 1996; Doncaster et al.
1997; Wolff 1997; Diffendorfer 1998; Aars & Ims 2000).
Data also show that species engage in both dominance and
pre-emptive competition, as well as combinations thereof.
Therefore, a comprehensive investigation of how density-
dependent dispersal influences source viability requires a
comparative approach that considers different types of
competition as well as different modes of dispersal.

Here, I present a model that investigates how spatial
variation and density-dependent dispersal influence dis-
persal costs to sources under dominance and pre-emptive
competition. I derive comparative predictions about how
different types of competition, spatial variation and modes
of dispersal influence source viability and hence source–
sink coexistence. I discuss the implications of these results
for species coexistence in patchy environments.

2. THE MODEL

Consider a patchy environment consisting of multiple
localities, each inhabited by a local community of compet-
ing species. Within a given locality, competition occurs
according to Lotka–Volterra dynamics. The communities
are linked by emigration and immigration of competing
species. A collection of such communities that occupies a
particular region of the landscape constitutes a metacom-
munity. Dispersal is global in that all species can get to
all habitable localities within the metacommunity.

The dynamics of a source–sink system of two competing
species inhabiting two localities ( j and l ) are given by

dX1 j

dt
= r1X1 j�1 �

X1 j

K1 j
� �1 j

X2 j

K1 j
�

� D1X1 j�X1 j � �1 jX2 j

K1 j
�s � D1X1l�X1l � �1lX2l

K1l
�s,
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dX2 j

dt
= r2X2 j�1 �

X2 j

K2 j
� �2 j

X1 j

K2 j
�

� D2X2 j�X2 j � �2 jX1 j

K2 j
�s � D2X2l�X2l � �2lX1l

K2l
�s,

(2.1)

where Xij is the abundance, �ij the competition coefficient
and Kij the carrying capacity of species i in locality j (i, j,
l = 1, 2; j � l). The parameter ri is the intrinsic growth
rate of species i, and Di is its per capita emigration rate.
The quantity s denotes the strength of density dependence
in dispersal.

I non-dimensionalize equation (2.1) using scaled quan-
tities. Non-dimensional analysis allows the dynamic sys-
tem to be described by a minimal set of parameters and
also illuminates the scaling relations between the various
dynamic processes (Murray 1993).

I use the following substitutions:

xi j =
Xij

Kij
, aij = �i j

Kkj

Kij
, ki =

Kil

Kij
,

�i =
Di

ri
, � =

r2
r1

, � = r1t (i , j , k, l = 1, 2; i � k, j � l),

to transform equation (2.1) to its non-dimensional form.
The non-dimensional quantity xij represents the density

of species i in locality j scaled by its carrying capacity, and
aij represents the per capita competitive effect of species m
on species i scaled by the ratio of their respective carrying
capacities. The quantity ki is the ratio of the carrying
capacities in the two localities for species i, and �i is its
per capita emigration rate scaled by the intrinsic growth
rate. The quantity � is the ratio of the intrinsic growth
rates of the two species. The non-dimensional time metric
� expresses time in terms of species 1’s intrinsic growth
rate.

I substitute the non-dimensional quantities into equ-
ation (2.1) to obtain the following system of equations.

dx1 j

d�
= x1 j(1 � x1 j � a1 j x2 j) � �1x1 j(x1 j � a1 j x2 j)s

� k1�1x1l(x1l � a1lx2l)s,
dx2 j

d�
= �x2 j(1 � x2 j � a2 j x1 j) � ��2x2 j(x2 j � a2 j x1 j )s

� k2��2x2l(x2l � a2lx1l)s. (2.2)

Unless otherwise noted, all variables and parameters from
this point on are expressed as scaled quantities.

The nature of density dependence in dispersal is
mediated by the parameter s (figure 1). When s = 0, emi-
gration is density independent and occurs at the per capita
rate �i. When s � 0, emigration is dependent on the effec-
tive density of the species (cf. Nishimura & Kishida 2001),
which is a function of both intraspecific and interspecific
competition (e.g. xi j � ai jxmj , i , m = 1, 2; i � m). There
are two basic modes of density-dependent dispersal,
depending on the sign of s. When s � 0, emigration
increases with density at a decelerating rate, akin to a Type
II functional response at low resource abundances
(Holling 1959). (The analogy is not perfect because the
emigration rate does not necessarily saturate at high abun-
dances; figure 1.) This mode of dispersal is likely to occur
when individuals tend to emigrate from low-density popu-
lations, owing to difficulties in finding a mate or reduced
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Figure 1. Modes of density-dependent dispersal. The x-axis
is the abundance of species i in locality j (xij), and the y-axis
is the emigration rate (�ixi j(xi j � �i j xk j)s). In the baseline
case of density-independent dispersal (s = 0), emigration rate
increases in proportion to density. (a) Type II density-
dependent dispersal (s � 0) occurs when the emigration rate
increases with abundance at a decelerating rate. (b) Type III
density-dependent dispersal (s 	 0) occurs when the
emigration rate increases with abundance at an accelerating
rate. Note that the dispersal function can be non-monotonic
for s � 0, but this occurs for values of s that are not
biologically feasible.

predator vigilance. Examples include insects (Herzig
1995; Kuussaari et al. 1998), birds (Birkhead 1977) and
mammals (Wolff 1997; Diffendorfer 1998). When s 	 0,
emigration increases with density at an accelerating rate,
akin to a Type III functional response at low resource
abundances (Murdoch & Oaten 1975). This mode of dis-
persal is likely to occur when individuals tend to leave
high-density populations owing to strong intraspecific and
interspecific competition. Examples include insects
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(Denno & Peterson 1995; Fonseca & Hart 1996; Rhainds
et al. 1998) and territorial birds and mammals (Veit &
Lewis 1996; Wolff 1997; Aars & Ims 2000).

Although the dynamic analogy with functional
responses is not perfect, it is convenient to refer to the
three dispersal modes as Type I (s = 0), Type II (s � 0)
and Type III (s 	 0). Note that Type III density-
dependent dispersal is a generalization of the mode of
density-dependent dispersal considered in Pulliam’s
(1988) model of single-species source–sink dynamics. In
Pulliam’s model, intraspecific competition occurs for
resources that are spatially well defined and easily
defendable (e.g. nesting sites or breeding territories). Indi-
viduals obey a habitat-selection rule such that emigration
from the source to the sink occurs only after all breeding
sites in the source locality are filled. Thus, dispersal
involves only ‘surplus’ individuals whose departure does
not affect the source population’s per capita growth rate.
The functional form of Type III density-dependent dis-
persal that I employ here generalizes such surplus disper-
sal to resources that are not as well-defined or defendable
(e.g. essential nutrients and mobile prey).

Because I am interested in spatial variation in the
strength of competition and density-dependent dispersal,
I assume that species differ in their per capita competitive
effects (�ij) and dispersal rates (�i) but are otherwise simi-
lar, i.e. � = 1, k1 = k2, K 1 j = K 2 j ( j = 1, 2). This yields the
following simplified system:

dxi j
d�

= xij(1 � xij � aijxm j) � �ixi j(xi j � aijxmj)s

� �ixi l(xi l � ailxml)s i , j , m, l = 1, 2; i � m, j � l.
(2.3)

There are two basic types of competition to consider:
dominance and pre-emption. This distinction is important
because spatial variation arises in fundamentally different
ways in the two types of competition, which in turn can
cause significant differences in the dispersal costs incurred
by source communities. Dominance competition implies
that �1 j � 1 and �2 j 	 1 ( j = 1, 2), i.e. species 1 experi-
ences greater intraspecific competition than interspecific
competition, and species 2 experiences the opposite.
Species 1 is hence the superior competitor and excludes
species 2 in the absence of dispersal. Pre-emptive compe-
tition, on the other hand, implies that �1 j 	 1 and �2 j

	 1, i.e. both species experience stronger interspecific
competition than intraspecific competition. Neither spec-
ies is hence the superior competitor, and the species with
the higher initial abundance excludes the other in the
absence of dispersal.

The key issue is whether spatial variation and density-
dependent dispersal reduce dispersal costs to sources
below those expected under density-independent disper-
sal. I investigate this issue using a comparative analysis of
dominance and pre-emptive competition.

(a) Dominance competition
As noted above, under dominance competition species

1 is the superior competitor and excludes species 2 in the
absence of dispersal. In a spatially heterogeneous environ-
ment, however, there may be biotic or abiotic factors that
cause spatial variation in the strength of competition. For
instance, the superior competitor may be more susceptible
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to a shared natural enemy whose abundance varies
spatially, or to spatial variation in temperature, humidity
or nutrient availability. Such variation allows the inferior
competitor to increase when rare in localities where it suf-
fers weaker interspecific than intraspecific competition
(e.g. because high natural-enemy abundance causes high
mortality in the superior competitor, or intolerance of a
particular temperature–humidity regime reduces its
resource-exploitation abilities) and to be driven extinct
when rare in localities where it suffers stronger interspe-
cific than intraspecific competition (e.g. because low
natural-enemy abundances cause negligible mortality in
the superior competitor, or temperature–humidity regimes
enhance its resource-exploitation abilities). Spatial vari-
ation in the strength of competition thus creates a source–
sink structure, with favourable localities where species
experience weak interspecific competition and unfavour-
able localities where they experience strong interspecific
competition. Given such variation, dispersal from favour-
able to unfavourable localities can allow local coexistence
by preventing competitive exclusion in the unfavourable
localities. This leads to a spatial pattern with both species
being present in all localities of the landscape (barring any
dispersal constraints) as opposed to being restricted to the
source localities in the absence of dispersal.

A prerequisite for local coexistence is mutual invas-
ibility. Each species should be able to increase when rare
when the other species is at its carrying capacity. Invasion
is possible if the dominant eigenvalue of the Jacobian of
equation (2.3) is positive when evaluated at the appropri-
ate boundary equilibrium (x∗

11, x∗
12, x∗

21, x∗
22) = (1, 1, 0, 0)

or (x∗
11, x∗

12, x∗
21, x∗

22) = (0, 0, 1, 1). A little algebra shows
that invasion can occur if

(1 � �i j )(1 � �i l) � �i(�s
i l(1 � �i j)

� �s
i j(1 � �il)) � 0, (2.4)

where 1��ij is the initial per capita growth rate of species
i in locality j in the absence of dispersal
(i , j , l = 1, 2; j � l).

The invasion criterion has two terms. The first term is
the product of the initial growth rates of species i in the
two localities. The second term is the product of the per
capita emigration rate and the weighted sum of the initial
growth rates. Note that, when there is spatial variation in
the strength of competition, one locality is a source and
the other locality is a sink. Hence, the product of the initial
growth rates is always negative. Invasibility therefore
depends on the weighted sum of the initial growth rates.
(In this model the coexistence equilibrium is stable when
it is feasible, and hence invasibility also guarantees long-
term coexistence.)

There are two situations under which invasion can
occur. First, if the weighted sum of the initial growth rates
is positive, invasion is possible as long as the emigration
rate �i is non-zero. Because only one of the initial growth
rates is positive, positivity of the weighted sum requires
the competitive advantage that a given species experiences
in the source to be very strong relative to the competitive
disadvantage it suffers in the sink. The key point to
appreciate is that when spatial variation in the strength of
competition is very strong, there is no dispersal cost to the
source. Local coexistence is possible regardless of how
high the emigration rate is. By contrast, if the weighted
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sum of the initial growth rates is negative, invasion is poss-
ible only if the emigration rate is below a critical threshold:

�i �
(1 � �i j )(1 � �i l)

(�s
i l(1 � �i j) � �s

i j(1 � �i l))
. (2.5)

Invasibility now depends on the interaction between spa-
tial variation and dispersal, which in turn depends on the
different forms of spatial variation and modes of dispersal.

As noted above, there are three basic modes of disper-
sal: Type I, Type II and Type III. Categorizing the differ-
ent forms of spatial variation requires a consideration of
the average competitive effect experienced by a given spe-
cies across the landscape. When spatial variation is high,
the competitive advantage in the source is stronger than
the competitive disadvantage in the sink. As a result, intra-
specific competition will be stronger than interspecific
competition when averaged across source and sink
localities. By contrast, when spatial variation is low, the
competitive advantage in the source is weak compared
with the competitive disadvantage in the sink. As a result,
interspecific competition will be stronger than intraspecific
competition when averaged across source and sink
localities. Because each species can experience either of
these two situations, the two-species system will exhibit
three basic forms of spatial variation (Amarasekare &
Nisbet 2001).

The first case occurs when species 1 is the superior
competitor in locality 1 (�11 � 1 and �21 	 1) and species
2 is the superior competitor in locality 2 (�12

	 1 and �22 � 1) but the competitive advantage in the
source is greater than the competitive disadvantage in the
sink for both species. Hence the average competitive effect
across the landscape is such that intraspecific competition
is stronger than interspecific competition for both species
(�̄1 � 1, �̄2 � 1). I call this regional niche partitioning.

The second case occurs when species 1 is the superior
competitor in locality 1 and species 2 is the superior com-
petitor in locality 2. Species 1 has a strong competitive
advantage in the source, which overrides the disadvantage
it suffers in the sink, but species 2 has only a weak advan-
tage in the source, which is insufficient to overcome its
disadvantage in the sink. Hence the average competitive
effect across the landscape is such that species 1 is the
superior competitor (�̄1 � 1, �̄2 	 1). I call this regional
dominance.

The third case occurs when species 1 is the superior
competitor in locality 1 and species 2 is the superior com-
petitor in locality 2, but the competitive advantage in the
source is weaker than the competitive disadvantage in the
sink for both species. Hence the average competitive effect
is such that interspecific competition is stronger than
intraspecific competition for both species (�̄1 	 1, �̄2

	 1). I call this a regional priority effect.
Given that we have three forms of spatial variation and

three modes of dispersal, the interplay between spatial
variation and dispersal can lead to nine different out-
comes. These are summarized in table 1 and figure 2.
There are two key points to note. First, invasibility
depends strongly on the form of spatial variation. Invasion
success is greatest under regional niche partitioning and
least under a regional priority effect. This is because under
regional niche partitioning the competitive advantage in
the source is greater than the competitive disadvantage in
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Table 1. The interplay between spatial variation and the dispersal mode in determining local coexistence under dominance compe-
tition.

spatial variation

dispersal mode regional niche partitioninga regional dominanceb regional priority effectc

Type I � i 	 0 � i � �c � i � �c

(s = 0)
Type II � i 	 0 (s → 0) � i � �c � i � �c

(s � 0) � i � �c (s � 0)
Type III � i 	 0 � i 	 0 (s 	 1) � i � �c

(s 	 0) � i � �c (0 � s � 1)

a When dispersal is density independent (s = 0), the sum of the initial growth rates is always positive. Noting that � i j � 1, �il 	
1 ⇒ 1 � � i j	 0, 1 � �il � 0, it can be seen that when dispersal is density dependent (s � 0), the weighted sum of the initial growth
rates will be positive only if |�s

il(1 � � i j)| 	 |�s
i j(1 � �il)|, j, l = 1, 2; j � 1. This condition is always satisfied under Type III

density-dependent dispersal (s 	 0). It can be satisfied under Type II density-dependent dispersal (s � 0) if s → 0. When s � 0,
the species that experiences the higher per capita competitive effect can invade only if its dispersal rate is below the threshold �c

given by equation (2.5).
b When dispersal is density independent, the sum of the initial growth rates of the overall inferior competitor is always negative.
Hence, invasibility requires that �i does not exceed the threshold �c. With Type II density-dependent dispersal, the weighted sum
is more negative than under density-independent dispersal, i.e. �i needs to be smaller than it does under density-independent
dispersal. With Type III density-dependent dispersal, the weighted sum can be positive if s � 1. Thus, invasion is possible regard-
less of the magnitude of �i if Type III density-dependent dispersal is sufficiently strong.
c Because neither species is the superior competitor overall, the weighted sum of the initial growth rates cannot be positive for
either species. Mutual invasibility requires the dispersal rates of both species to be below the threshold �c.
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Figure 2. Effect of density-dependent dispersal on local coexistence under the three forms of spatial variation in the strength
of dominance competition: (a) regional niche partitioning, (b) regional dominance and (c) regional priority effect. The x-axis
denotes the strength of density dependence in dispersal (s) and the y-axis denotes the per capita emigration rate of species 2
(�2), the overall inferior competitor. The solid curve depicts the dispersal threshold (equation (2.5)) that separates the region
of the s�� parameter space allowing local coexistence everywhere in the landscape from that which causes regional exclusion
of species 2. In general, Type III density-dependent dispersal (s 	 0) facilitates coexistence, and Type II dispersal (s � 0)
constrains it, compared with density-independent dispersal (s = 0). This effect, however, depends strongly on spatial variation
in the strength of competition. Opportunities for coexistence are greatest under regional niche partitioning, and least under a
regional priority effect. Parameter values are: �21 = 1.5, �22 = 0.4 for (a), �21 = 1.9, �22 = 0.7 for (b) and �21 = 1.9, �22 = 0.9 for
(c).

the sink for both species. It therefore requires quite a high
rate of emigration to depress the per capita growth rate of
the source community. Under a regional priority effect the
competitive advantage in the source is weaker than the
competitive disadvantage in the sink for both species.
Hence even small amounts of emigration can depress the
per capita growth rate of the source.

The second key point is that invasibility depends cru-
cially on the mode of dispersal. Invasion success is greatest
under Type III density-dependent dispersal and least
under Type II density-dependent dispersal (table 1 and
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figure 2). This is because under Type III density-
dependent dispersal the emigration rate is less than linear
at low densities, so most individuals leave at high densities
as a result of strong competition. Because these are sur-
plus individuals that would not have contributed to local
reproduction, this mode of dispersal incurs the least cost
to source communities. Under Type II density-dependent
dispersal, the emigration rate is disproportionately higher
at lower abundances. This means that most individuals
leave at low abundances, when competition is weak.
Because these are individuals that could have contributed
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to local reproduction, this mode of dispersal can make the
source’s per capita growth rate negative at abundances well
below the source carrying capacity. It thus incurs the gre-
atest cost to source communities.

This interplay between spatial variance and density-
dependent dispersal leads to two important insights. First,
when spatial variation in the strength of competition is
strong, source communities can withstand quite high rates
of emigration. For instance, when spatial variation is such
that regional niche partitioning results, local coexistence
is possible with no dispersal cost to the source except
under very strong Type II density-dependent dispersal
(table 1; figure 2a). Second, even when spatial variation
is not strong, density-dependent dispersal can reduce dis-
persal costs by preventing emigration from source com-
munities. For instance, when Type III density-dependent
dispersal is sufficiently strong, coexistence can occur with
no dispersal costs to sources except when spatial variance
is very low (table 1; figure 2).

The above results were obtained for dominance compe-
tition, where the outcome of competition depends on the
species’ competitive abilities. An important question is
how dispersal costs to sources are affected when compe-
tition changes from dominance to pre-emption. I address
this issue next.

(b) Pre-emptive competition
Under pre-emptive competition �1j 	 1, �2j

	 1 ( j = 1, 2), i.e. interspecific competition is stronger
than intraspecific competition for both species. Hence, the
species with the higher initial abundance excludes the
other in the absence of dispersal. Levin (1974) has pre-
viously shown that local coexistence can occur with global
density-independent dispersal, provided that different
localities have different initial abundances of competing
species. Dispersal incurs a cost to sources such that
coexistence is possible only if the emigration rate is below
a critical threshold. Too much emigration from the source
to the sink homogenizes spatial variation in abundances,
and the species with the higher overall abundance
excludes the other (Levin 1974). The issue to investigate
is what effects spatial variation and density-dependent dis-
persal have on coexistence.

Pure pre-emptive competition occurs when species have
comparable competitive effects on each other (e.g.
�1 j = �2 j, j = 1, 2) and differ only in their initial abun-
dances. In this case invasibility is significantly more con-
strained than under dominance competition (figure 3a,c).
This difference is a direct result of the way in which spatial
variation arises under the two types of competition. Domi-
nance competition involves spatial variation in species’
competitive abilities, whereas pre-emptive competition
involves spatial variation in species abundances. Thus
even small amounts of emigration can disrupt the source–
sink structure by equalizing abundances across localities.
Because spatial variation in the strength of pre-emptive
competition is so easily destroyed, density-dependent dis-
persal, even when it is Type III, has only a marginal effect
in reducing the costs of dispersal to sources.

Pure pre-emptive competition assumes that species are
equivalent in their competitive effects. This is somewhat
unrealistic given that most species in nature tend to show
differences in competitive ability even when the outcome
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of competition is contingent on the initial conditions.
Incorporation of such species differences leads to the
notion of asymmetric pre-emptive competition, where
species differ in the per capita competitive effects they
experience (e.g. �1 j � �2 j, j = 1, 2). In the absence of dis-
persal, therefore, the species that suffers a lower per capita
effect of interspecific competition has a larger domain of
attraction for the boundary equilibrium with itself at carry-
ing capacity and the other species extinct. This allows for
spatial variation in the relative magnitudes of the compe-
tition coefficients (e.g. �1 j, �2 j 	 1 but �̄1 � �̄2).

The key result is that, under asymmetric pre-emptive
competition, invasion success becomes comparable to that
under dominance competition (figure 3a,b). This is
because spatial variation is much stronger when species
differ in their per capita effects on each other. Thus it takes
greater amounts of emigration to undermine the viability
of source communities. This similarity in invasion success,
however, belies the key differences between dominance
and pre-emptive competition. Although spatial variation
is key to reducing dispersal costs to sources and promoting
local coexistence under both dominance and pre-emption,
pre-emptive competition is much less sensitive to the dis-
persal mode than is dominance competition (figure 4).
Under dominance competition the transition from Type I
(density-independent) to Type II or Type III dispersal is
associated with a large change in the parameter space that
allows coexistence. Under pre-emptive competition, an
equivalent transition induces only a marginal change in
the parameter space that allows coexistence, particularly
for Type II dispersal (figure 4). Thus, the diversity-
reducing effects of high dispersal persist under pre-
emptive competition even when dispersal is density depen-
dent, while they can be significantly mitigated under
dominance competition if the density-dependent dispersal
is Type III rather than Type II.

3. DISCUSSION

Competing species inhabiting patchy or fragmented
environments can coexist if dispersal from favourable
areas prevents competitive exclusion in unfavourable areas
(e.g. Levin 1974; Pacala & Roughgarden 1982; Shmida &
Ellner 1984; Amarasekare & Nisbet 2001; Mouquet &
Loreau 2002). However, too much emigration from
favourable (source) localities can undermine their viability
and reduce diversity below that observed in isolated com-
munities. Long-term coexistence, therefore, requires
mechanisms that reduce the cost of dispersal to source
communities.

Here, I investigate two biological mechanisms that
reduce the cost of dispersal to source communities. The
first involves increasing spatial variation in the strength of
competition such that source communities can withstand
high rates of emigration. The second involves reducing the
amount of emigration from sources via density-dependent
dispersal. A key finding is that, while both mechanisms
are important in reducing dispersal costs under domi-
nance competition, spatial variation is much more
important than density-dependent dispersal under pre-
emptive competition. For species engaged in dominance
competition, spatial variation in the strength of compe-
tition is greatest under regional niche partitioning. In this
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Figure 3. Effect of density-dependent dispersal on local coexistence under (a) regional dominance, (b) asymmetric pre-
emption and (c) pure pre-emption. Under both regional dominance and asymmetric pre-emption, high rates of Type II (and
to a lesser extent Type I) dispersal lead to the exclusion of species 2, the overall inferior competitor. Under pure pre-emption
either species 1 or species 2 could be excluded depending on the relative magnitudes of �1 and �2. In general, coexistence is
most restricted under pure pre-emptive competition, an effect that is not ameliorated even under strong Type III density-
dependent dispersal. Parameter values are: �11 = 0.2, �12 = 1.2, �21 = 1.9, �22 = 0.7 for (a), �11 = 1.4, �12 = 1.7, �21 = 2.4,
�22 = 1.3 for (b), �11 = �12 = �21 = �22 = 1.7 for (c), and �1 = 0.01 for all three forms of competition.
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Figure 4. Local coexistence in the face of spatial variation in the strength of competition for regional dominance (a�c) and
asymmetric pre-emptive competition (d–f ). Spatial variation is introduced by allowing �21 to vary (the x-axis) while holding all
other competition coefficients constant. An increase in the magnitude of �21 implies a reduction in competitive ability and a
reduction in spatial variation in the strength of competition for species 2, the overall inferior competitor. The solid curve
denotes the dispersal threshold that separates the parameter space allowing local coexistence from that which leads to
competitive exclusion of species 2. The threshold was calculated using equation (2.5) for dominance competition, and via
numerical simulation for pre-emptive competition. Parameter values are: �22 = 0.7 for (a–c), �11 = 1.1, �12 = 1.4, �22 = 1.1,
�1 = 0.01 for (d–f ), and s = –0.2 and s = 1, respectively, for Type II and Type III density-dependent dispersal.

case, coexistence is possible even under very high rates of
emigration. By contrast, spatial variation is least under a
regional priority effect. Now coexistence is possible only
for very low emigration rates. For any given form of spatial
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variation under dominance competition, Type III density-
dependent dispersal incurs the least cost to source com-
munities. It thus increases local and regional diversity
above that observed under density-independent dispersal.
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Table 2. Patterns of local and regional coexistence under different modes of density-independent and density-dependent dispersal.
(Results apply to both dominance and pre-emptive competition, but the effects of dispersal mode are much weaker under pre-
emptive competition.)

dispersal rate

dispersal mode zero low high

global, density independent local coexistence, regional regional exclusion of inferior
regional coexistence coexistence competitora

local, density independent ↓ local coexistenceb, ↑ regional
regional coexistence coexistenceb regional coexistence

global, density dependent ↓ local coexistenceb, ↓ regional regional exclusion at lower dispersal
Type II regional coexistence coexistenceb rateb

global, density dependent ↑ local coexistenceb, ↑ regional regional exclusion at higher dispersal
Type III regional coexistence coexistenceb rateb

a The species with inferior competitive ability in dominance competition and lower initial abundance in pre-emptive competition.
b Compared with global density-independent dispersal.

This is because most individuals leave at high densities
owing to strong resource limitation. Because such surplus
individuals play no role in local reproduction, emigration
has no detrimental effect on the per capita growth rates
of source communities. With Type III density-dependent
dispersal, therefore, coexistence is possible even when spa-
tial variation in the strength of competition is quite low.
By contrast, Type II density-dependent dispersal incurs
the greatest cost to source communities. It thus reduces
local and regional diversity compared with density-
independent dispersal. This is because a dispro-
portionately higher fraction of individuals leave at lower
densities as a result of mate-finding difficulties or other
social phenomena such as reduced predator vigilance.
Thus emigration has a strong detrimental effect on the per
capita growth rates of source communities. With this
mode of dispersal coexistence is restricted even when spa-
tial variation in the strength of competition is very high.
In general, dispersal costs to sources are much greater,
and hence local coexistence much more restrictive, under
pre-emptive competition than under dominance compe-
tition. This is because spatial variation arises due to differ-
ences in initial abundances rather than due to differences
in species’ competitive abilities. Hence the balance
between competition and dispersal is much more easily
disrupted under pre-emptive competition. Introducing
spatial variation in species’ competitive abilities reduces
dispersal costs by allowing sources to withstand higher
rates of emigration, but density-dependent dispersal has
only a marginal effect on dispersal costs.

These results provide for a comparative framework for
the roles of competition and dispersal in local and regional
coexistence (table 2). Previous studies have suggested that
localized density-independent dispersal could prevent
excessive emigration and allow initially rare species to
build up densities in favourable localities (e.g. Murrell &
Law 2003; Snyder & Chesson 2003). While localized den-
sity-independent dispersal does reduce dispersal costs to
source communities, it also reduces the probability that
sinks are rescued from extinction. Thus, localized density-
independent dispersal reduces local diversity compared
with global density-independent dispersal. Global Type
III density-dependent dispersal, however, can rescue sinks
from extinction without undermining the viability of
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sources. One would therefore expect the greatest enhance-
ment of local and regional diversity under this mode of
dispersal. Type II density-dependent dispersal, because it
has a stronger detrimental effect on source viability and a
weaker rescue effect than density-independent dispersal,
imposes the greatest constraints on local and regional
diversity. In fact, the four modes of dispersal lead to four
distinct patterns of local and regional coexistence (table
2). These predictions about diversity patterns, because
they are comparative, have the advantage of allowing for
simultaneous tests of multiple hypotheses about the inter-
play between competition and dispersal. This type of com-
parative analysis has not previously been conducted for
competitive coexistence in the face of density-dependent
dispersal. It is particularly informative because the com-
petitive regimes considered include not only pure domi-
nance and pure pre-emption but also intermediate
situations, where spatial variation introduces an element
of dominance into pre-emptive competition.

The predictions arising from the comparative analysis
also identify taxa and communities that are likely to exhi-
bit a particular pattern of diversity. For instance, species
that emigrate at higher densities in response to strong
competition (e.g. territorial invertebrates, birds and mam-
mals; Birkhead 1977; Wolff 1997; Diffendorfer 1998;
Sutherland et al. 2002) should experience an enhancement
of local diversity in communities that are linked by disper-
sal compared with ones that are relatively isolated. By con-
trast, species that emigrate at lower densities in response
to social phenomena such as mate-finding difficulties or
reduced predator vigilance (e.g. plants, insects and mam-
mals; Lamont et al. 1993; Herzig 1995; Wolff 1997;
Diffendorfer 1998; Kuussaari et al. 1998) should experi-
ence a decrease in diversity in communities that are linked
by dispersal compared with isolated ones. Similarly, spec-
ies engaged in pure pre-emptive competition should be
more susceptible to reductions in diversity as a result of
perturbations that reduce spatial variation or increase emi-
gration compared with species engaged in dominance
competition or asymmetric pre-emption.

The above findings have important implications when
applying source–sink theory to conservation problems.
The scarcity of data, particularly for multi-species systems,
necessitates making assumptions about density dependence
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in both population growth and dispersal. Knowing when
density-independent dispersal provides a reasonable
approximation to density-dependent dispersal is therefore
crucial in implementing management strategies. In gen-
eral, density-independent dispersal is not a reasonable
approximation for species engaging in dominance compe-
tition that have a propensity to leave small populations
owing to Allee effects, or large populations owing to strong
resource limitation. In the former case, competing species
are likely to exhibit Type II density-dependent dispersal,
in which case density-independent dispersal overestimates
the range of dispersal rates that allows local coexistence.
In the latter case, competing species, particularly those
that compete for spatially well-defined and defendable
resources (e.g. nest sites or breeding territories), are likely
to exhibit Type III density-dependent dispersal. In this
case density-independent dispersal severely underesti-
mates the range of dispersal rates that allows local coexist-
ence. The same is true for species engaged in asymmetric
pre-emptive competition. Thus, density-independent dis-
persal would yield an overly optimistic view of long-term
coexistence when the actual dispersal mode is Type II,
and an overly pessimistic view when the actual dispersal
mode is Type III. It does, however, provide a reasonable
approximation of both Type II and Type III density-
dependent dispersal when species engaging in dominance
competition exhibit a regional priority effect (figure 2) or
when competition involves pure pre-emption (figure 3).
Thus, density-independent dispersal can be used to pre-
dict long-term coexistence in communities where initial
conditions or historical contingencies play a key role in
competitive interactions (e.g. plants and sessile marine
invertebrates), but not in communities structured by
strong dominance hierarchies (e.g. insect parasitoid
guilds, territorial invertebrates, birds and mammals).

The model presented here considers a two-species
two-locality system, which was done in the interests of
analytical tractability. The model can easily be extended
to multiple interacting species inhabiting multiple
localities. An important future direction would be to use
a multi-species model to investigate community properties
such as species richness and biomass under different
regimes of competition and dispersal. Such an analysis can
yield expectations about community patterns that can be
contrasted with predictions from the neutral theory of
biodiversity (Hubbell 2001) and niche-based but variation-
independent mechanisms such as competition–colonization
trade-offs. A second future direction involves investigating
the role of dispersal strategies in competitive coexistence.
Most real organisms exhibit age- or sex-biased dispersal
strategies, but such variability is typically ignored in
dynamic models of species coexistence. Investigations of
how such strategies influence spatial coexistence allow for
the development of a conceptual framework that inte-
grates individual-level behavioural phenomena with the
community-level dynamic processes that determine diver-
sity patterns.
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Summary

1.

 

I present a model of mutualistic interactions in a patchy landscape. The interaction
is between two species that differ in their mobility. The landscape is spatially structured,
with several localities interconnected by dispersal of the mobile mutualist.

 

2.

 

Within a given locality, an Allee effect can occur such that the per capita growth rate
of the non-mobile mutualist declines with its own abundance. The Allee effect arises in
response to low abundances of the mobile mutualist, and causes extinction of both spe-
cies once their numbers fall below a critical threshold.

 

3.

 

Dispersal of the mobile mutualist can rescue such sink communities from extinction,
provided there is at least one source community in which both species have abundances
above the extinction threshold. Dispersal itself  is density-independent, but induces neg-
ative density-dependence that counteracts the positive density-dependence due to the
Allee effect. This negative feedback effect of dispersal has not previously been demon-
strated in mutualism models.

 

4.

 

Rescue of sink communities, however, depends on how dispersal influences the local
dynamics of source communities. If  dispersal involves surplus individuals the loss of
whom does not affect the reproductive output of the source community, persistence of
sink communities is guaranteed as long as the survivorship of long-distance dispersers
exceeds a lower threshold. In contrast, if  dispersal involves emigrants that constitute a
fraction of the source community’s reproductive output, persistence of sink commun-
ities additionally requires that emigration does not exceed an upper threshold. Too much
emigration can cause a net loss of the mobile mutualist from the source community,
resulting in landscape-wide extinction of the mutualistic interaction.

 

5.

 

The effect of dispersal mode on the dynamics of mutualistic interactions has not
been appreciated previously. If  the benefit of  the rescue effect to sinks is outweighed
by the cost of dispersal to sources, mutualistic communities linked by dispersal may
experience a greater loss of diversity than communities that are isolated.

 

Key-words

 

: Allee effect, coexistence, emigration, immigration, metacommunity, mutual-
ism, spatial heterogeneity, source–sink dynamics.
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Introduction

 

Mutualisms represent an important class of species inter-
actions. They occur in a wide variety of taxa from
viruses to mammals, and range from highly specialized
obligate mutualisms to generalized facultative interactions.

Empirical studies of mutualistic interactions suggest
that habitat fragmentation can lead to an Allee effect, a
reduction in the per capita growth rate with declining
abundances (Allee 1931). For example, plant species
relying on animal vectors for pollination and seed
dispersal suffer a reduction in reproductive success

at low abundances because small patch sizes and in-
creased isolation limit pollen transfer and prevent
seed dispersal (Jennersten 1988; Lamont, Klinkhamer
& Witkowski 1993; Aizen & Feinsinger 1994; Agren
1996; Kunin & Iwasa 1996; Groom 1998). Concern has
also been mounting over region-wide declines of
insect pollinators (Cane 2001; Packer & Owen 2001).
Such declines are likely to intensify the Allee effects
experienced by plant species in fragmented habitats.

Empirical evidence of Allee effects in fragmented
landscapes underscores the importance of dispersal for
the long-term persistence of mutualistic interactions.
Although spatial theory for Allee effects in single spe-
cies is relatively well developed (Dennis 1989; Lewis &
Kareiva 1993; Amarasekare 1998; Gyllenberg, Hemminki
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& Tammaru 1999; Keitt, Lewis & Holt 2001), spatial
theory for Allee effects that arise due to species inter-
actions is not. In fact, there is very little theory on the
spatial dynamics of mutualistic interactions (Hutson,
Law & Lewis 1985; Armstrong 1987). The lack of  a
predictive theoretical framework has in turn hampered
empirical progress on dispersal effects on mutualisms.

Here I present a metacommunity model of mutual-
istic interactions that incorporates hierarchical spatial
structure. The model yields comparative predictions
about how population structure and modes of disper-
sal influence the persistence of obligate vs. facultative
mutualisms. It also lends itself  to investigations of how
habitat destruction affects mutualistic interactions in a
patchy environment.

 

The model

 

Consider a mutualistic interaction between two species
that differ in their mobility. The obvious examples are
plants and pollinators or plants and seed dispersers.
Less obvious examples include coviruses of plants,
RNA viruses in which the genome is split into two
particles that code for replication and transmission;
although the particle carrying the gene for replication
can multiply within a plant, it cannot be transmitted
from plant to plant without the presence of the particle
that codes for encapsulation (Peden & Symons 1976;
Frankel-Conrat & Wagner 1977).

The mutualists inhabit a spatially structured land-
scape consisting of a set of localities. Each locality con-
sists of a large number of identical patches. A given
patch is either empty or occupied by one or both spe-
cies. A locality thus constitutes a local community of
mutualists. A collection of localities linked by dispersal
of the mobile mutualist constitutes a metacommunity.

 

   
  

 

The point of departure is a patch occupancy model
developed by Armstrong (1987). For convenience, I will
refer to the interacting species as plant and pollinator.

The dynamics of the mutualistic interaction within a
single locality are given by:
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eqn 1

where 

 

p

 

1

 

 is the fraction of patches occupied by the plant
and 

 

p

 

2

 

, the fraction of patches occupied by both plant
and pollinator. The parameter 

 

h

 

 is the total amount of
suitable habitat within the locality (0 

 

< h

 

 

 

≤

 

 1). The
interaction is obligate in that the pollinator cannot sur-
vive in the absence of the plant, while the latter is able
to survive in the absence of the former but cannot
reproduce without it. Because the pollinator does not
occur by itself, the fraction of empty patches is 

 

h – p
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. The parameters 

 

c

 

1

 

 and 

 

c

 

2

 

 are, respectively, the per
capita rates at which plant propagules colonize empty
patches and pollinator propagules colonize plant
patches. They encapsulate both local reproduction and
subsequent establishment of  offspring via random
dispersal. Thus, seeds set by adult plants in plant–
pollinator patches colonize and establish in empty patches
at a rate 
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), while pollinator propagules
produced in plant–pollinator patches colonize and esta-
blish in plant patches at a rate 

 

c

 

2

 

p

 

1

 

p

 

2

 

. Plant patches become
extinct at a per capita rate 

 

e

 

1

 

, and plant–pollinator patches
at a rate 

 

e

 

2

 

. These extinction rates encapsulate all forms
of density-independent mortality experienced by adult
plants and pollinators. It is assumed that extinction of
plants from plant–pollinator patches causes immediate
extinction of the pollinator (Armstrong 1987). Inde-
pendent extinctions of plant and pollinator from patches
occupied by both species do not alter the qualitative
outcome of this model or those that follow.

Equation 1 yields three feasible equilibria: the trivial
equilibrium  and two interior equilibria

The trivial equilibrium and the larger of the interior
equilibria are simultaneously stable. The smaller of the
interior equilibria is a saddle.

The key results of this model are as follows: stable
coexistence is possible as long as the pollinator colon-
ization rate 

 

c

 

2

 

 is not too low, and abundances of both
plant and pollinator exceed a critical threshold (Fig. 1a,b).
If  abundances fall below this threshold, an Allee effect
occurs and both plant and pollinator go extinct.

The positive density-dependence underlying the
Allee effect arises in response to the abundance of the
mutualistic partner. When the abundance of  plant–
pollinator patches is high, propagule production by
plants is also high. Because a large number of propagules
are competing for a small number of empty patches, the
per capita growth rate of plant patches declines as its
own abundance increases. This creates negative density-
dependence of  the per capita growth rate. However,
as the abundance of  plant–pollinator patches falls,
propagule production by plants also declines. As only a
small number of propagules are available to colonize
the increasingly large number of empty patches, the per
capita growth rate of the plant patches starts to decline
as its own abundance decreases. This leads to positive
density-dependence in the per capita growth rate. It is
the differential response of the plant per capita growth
rate to pollinator abundance that leads to the hyper-
bolic shape of the isocline for plant patches (Fig. 1).

The general implication is that in an obligate mutu-
alism involving two species that differ in their mobility,
the mobile species may be unable to invade when rare
even when it has a high rate of local reproduction and
establishment. The ability to invade when rare is crucial,
both in maintaining mutualistic interactions in already
established areas and in spreading to new habitats. The
key issue therefore is to determine whether there are
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conditions that allow the mobile species to invade when
rare. Spatial dynamics provide a potential avenue for
ameliorating Allee effects and allowing invasibility
(Hutson 

 

et al

 

. 1985; Amarasekare 1998; Gyllenberg

 

et al

 

. 1999). I investigate this problem by extending
Armstrong’s model to incorporate hierarchical spatial
structure and dispersal between localities.

Although obligate mutualisms are less common in
nature than facultative ones (Hoeksema & Bruna 2000),
they represent the worst case scenario in terms of sus-
ceptibility to Allee effects (May 1978; Vandermeer &
Boucher 1978; Dean 1983; Wells 1983; Wolin 1985;
Anstett, Hossaert-McKey & McKey 1997) and habitat
destruction (Bond 1994; Anstett 

 

et al

 

. 1997). Hence,
obligate mutualisms provide a logical starting point for
investigating the role of spatial dynamics. I later extend
the model to consider facultative mutualisms.

 

   
 

 

Consider a region of  the landscape that contains
several localities. Dynamics within each locality occur
as above (equation 1). The localities are now linked by
dispersal of the mobile mutualist (e.g. pollinator).

The dynamics are given by the following general model:

eqn 2

where the function 
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 describes the rate of production of
plant patches, and the function 
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, the rate of produc-

tion of plant–pollinator patches in locality 
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). The latter now depends on two additional
quantities: the abundance of pollinators in locality 
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, which describes pollinator
dispersal between localities. The functions 
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represent loss rates of plant and plant–pollinator patches,
and 

 

h

 

j

 

 is the fraction of suitable habitat in locality 

 

j

 

.
Within an isolated locality, an Allee effect can cause

the extinction of the mutualistic interaction. Can hier-
archical spatial structure and dispersal between local-
ities mitigate or eliminate the Allee effect?

 

Single locality connected to a mainland source

 

The simplest instance of hierarchical spatial structure
is a single locality that receives colonists from a mainland
source. The dynamics of such a locality are given by:

eqn 3

where 
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 and 
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 denote the fraction of plant and
plant–pollinator patches within the focal locality, and
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 is the abundance of plant–pollinator patches in the
mainland. The mainland is assumed to be unaffected
by its interaction with the locality, so 
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 is a constant.
The total amount of suitable habitat is also assumed to
be constant, i.e. 

 

h
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 + 
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 = 1 (
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 < 
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). The dispersal
parameter 

 

I

 

 is the fraction of  emigrants from the
mainland that colonize plant patches in the focal locality;
it can also be interpreted as the ratio of colonization
rates of mainland vs. local colonists. (The distinction

Fig. 1. Phase plots for mutualistic dynamics within an isolated locality (equation 1). The hyperbola is the zero isocline for the plant
patches and the horizontal line, the zero isocline for the plant–pollinator patches. The black dots represent attractors and the open
circle, a saddle point. When pollinator colonization rate is too low (c2 = 1), neither species can persist (left panel). For sufficiently
high pollinator colonization rates (c2 = 3), coexistence of plant and pollinator is possible provided the abundance of both exceed
the threshold defined by the saddle point. Note that an increase in the pollinator colonization rate reduces the height of the hump
of the plant isocline (compare left and right panels). This occurs because higher pollinator colonization rates reduce the strength
of the Allee effect, i.e. they reduce the abundance of the plant patches required to shift the nature of density-dependence from
positive to negative. Other parameter values are: c1 = 5, e1 = e2 = 0·5, h = 1.
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between the two will become clearer when we consider
the full model below.) The key result of this model is as
follows: when the focal locality is connected to a mainland
source, the Allee effect disappears (Fig. 2). There is a single,
globally stable equilibrium corresponding to coexis-
tence of plant and pollinator. Coexistence is guaranteed
as long as there is an input of colonists from the mainland.

What causes the disappearance of the Allee effect? The
per capita growth rate of the plant

 

−

 

pollinator patches is:

eqn 4

When 

 

I

 

 = 0, per capita growth rate is independent of
p2L, the fraction of plant–pollinator patches in the focal
locality. When I  > 0, per capita growth rate is a monotonic
decreasing function of p2L (Fig. 3). Because pollinator
dispersal rate is independent of pollinator abundance
in the focal locality, the per capita growth rate is high

when local pollinator abundance is low and vice versa.
Negative density-dependence induced by pollinator
dispersal counteracts the positive density-dependence
at low plant and pollinator abundances. This eliminates
the Allee effect and allows species to increase when
rare.

The idea of a mainland source that is unaffected by
its interaction with a locality, while plausible, is perhaps
not the most representative spatial structure. A meta-
community of  several localities linked by dispersal
represents a more realistic situation where the dynamics
of each locality, source or sink, are affected by its interaction
with other localities. I next investigate this situation.

Several localities interconnected by dispersal

Consider a collection of localities linked by dispersal of
the mobile mutualist. There are two basic modes of
dispersal. The first involves ‘surplus’ individuals from

Fig. 2. Phase plots when a single locality is connected to a mainland source (equation 3). The plot on the left is for an isolated
locality (I = 0), and the plot on the right for a locality that receives colonists from the mainland (I > 0). An input of colonists from
the mainland removes the Allee effect and allows for stable coexistence of plant and pollinator. Parameter values are: c1L = 4,
c2L = 6, e1L = e2L = 0·5, hL = 0·5.

Fig. 3. Per capita growth rate of the plant–pollinator patches as a function of their abundance when a single locality is connected
to a mainland source (equation 4). The left panel is for low pollinator dispersal (I = 0·1), and the right panel, for high dispersal
(I = 0·5). In each panel, the horizontal line is the per capita growth rate in an isolated locality. The curves depict the per capita
growth rate when the locality is linked to a mainland source, with decreasing concavity corresponding to increasing abundance
of plant–pollinator patches in the mainland ( p2M = 0·1, 0·5, 0·9). An input of colonists results in an augmentation of the per capita
growth rate, the effect of which is greater for higher levels of dispersal and higher abundances of plant–pollinator patches in the
mainland. Parameter values are: c2L = 6, e2L = 0·5, hL = 0·5.
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one locality that colonize plant patches in other local-
ities. These are individuals that moved too far out of
their ‘natal’ locality, and would have died had they not
found another locality. They could also be individuals
that are forced out due to strong competition for colon-
izable patches within the natal locality. The point to
note is that the loss of these surplus individuals does
not affect local dynamics of the source locality.

The second dispersal mode involves emigration of
‘reproductive’ individuals. A fraction of propagules
leave rather than attempt to colonize plants within
their natal locality. Because emigrants are individuals
that would otherwise have reproduced in situ, this
mode of dispersal has a direct negative effect on local
dynamics of the source locality. Holt (1985, 1993) and
Pulliam (1988) have previously investigated the conse-
quences of surplus vs. reproductive dispersal on single
species populations. Here I consider the impact of these
two modes of dispersal on mutualistic dynamics.

The distinction between the two modes of dispersal
is easiest to illustrate with the appropriate equations. In
the interests of analytical tractability, only two locali-
ties are considered.

The dynamics when pollinator dispersal involves
surplus individuals are given by:

eqn 5

where j and k denote the two localities ( j, k = 1, 2,  j ≠ k),
and other parameters are as defined above. The total
amount of suitable habitat within the region (i.e. the
spatial extent of the landscape that contains all localities)
is assumed to be constant, and hence hj + hk = 1. Note

that the model is structurally similar to the mainland

island case discussed above (equation 3) with ,

the difference being that the abundance of  plant–
pollinator patches in the source locality ( p2k) is now
variable rather than constant.

The dynamics when pollinator dispersal involves
reproductive individuals are given by:

eqn 6

where d is the fraction of pollinator individuals that
emigrate from their natal locality.

The two modes of  pollinator dispersal have very
different effects on within-locality dynamics. When
between-locality dispersal involves surplus individuals,
the per capita growth rate of  plant–pollinator patches
is always augmented above that in isolation. For
instance, the per capita growth rate when locality j is
isolated is c2 j p1 j – e2 j; when connected by dispersal it is

(Fig. 4). Hence, between-

locality dispersal of surplus individuals always has a
positive effect on within-locality dynamics.

When between-locality dispersal involves repro-
ductive individuals, the per capita growth rate of
plant–pollinator patches may increase or decrease
depending on their relative abundance in the two
localities. For instance, if  losses due to emigration from
locality j outweigh gains due to immigration from local-
ity k, growth rate within locality j can fall below that
which it experiences in isolation

Fig. 4. Per capita growth rate of the plant–pollinator patches as a function of their abundance for the two modes of pollinator
dispersal. The left panel represents dispersal of surplus individuals between localities, and the right panel shows dispersal of
reproductive individuals between localities. In each panel, the horizontal line is the per capita growth rate in an isolated locality.
The curves depict the per capita growth rate when the focal locality is linked to a source, with decreasing concavity corresponding
to increasing abundance of plant–pollinator patches in the source locality ( p2k = 0·1, 0·5, 0·9). When dispersal involves surplus
individuals, per capita growth rate is always augmented above that in isolation. When dispersal involves reproductive individuals,
per capita growth rate can be increased or decreased relative to that in isolation, depending on the relative abundance of plant–
pollinator patches in source and sink localities. Parameter values are: e2 j = 0·3, hj = 0·5 with c2 j = 2 for dispersal of surplus
individuals and c2 j = 3 for dispersal of reproductive individuals.
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Hence, dispersal of reproductive individuals can have a
positive or negative effect on within-locality dynamics
depending on whether the locality is a source or a sink.

As I show below, this difference between the two
modes of dispersal is crucial in mitigating the Allee
effect and allowing regional persistence of the mutual-
istic interaction.

Dispersal of surplus individuals between localities

Dynamics within each isolated locality follow equation
1, with two stable equilibria (extinction and coexist-
ence) separated by the Allee threshold. Dispersal of
surplus individuals does not change the basic dynam-
ical structure of the model in that the threshold effect
still persists (Appendix I). This is because, unlike in the

mainland–island case (equation 3), the abundance of
plant–pollinator patches in the source locality ( p2k) is
not constant. Rather, it is a dynamic variable which
itself  is affected by both within-locality dynamics and
between-locality dispersal.

While between-locality dispersal of surplus individ-
uals does not eliminate the Allee effect within localities,
it can mitigate it. As long as the abundance of  plant
and plant–pollinator patches are above the Allee thre-
shold in one locality (source community, with positive
per capita growth rate), pollinators can invade and
establish in another locality in which both plant and
plant–pollinator patches are below the Allee threshold
(sink community, with negative per capita growth
rate). Negative density-dependence due to the input of
colonists from the source locality overwhelms the
positive density-dependence within the sink locality
(Fig. 5), allowing pollinators to invade when rare.
Because between-locality dispersal involves surplus

c p d p d
p
p

e c p ej j j
k

j
j j j j2 1 2

2

2
2 2 1 21 4(   )  . ; . .− +







− −









vs Fig

Fig. 5. Phase plots for two localities interconnected by dispersal. The 3D hyperbola is the zero isocline for plant patches, and the
3D surface, the zero isocline for plant–pollinator patches. When the abundance of plant–pollinator patches in the source locality
is low ( p2k = (0, 0·5); top left and bottom left panels), the Allee effect persists for both modes of dispersal, i.e. the isocline for plant–
pollinator patches crosses that of the plant patches twice, leading to multiple attractors (extinction and coexistence) separated by
a saddle (compare with Fig. 1). When the abundance of plant–pollinator patches in the source locality is high ( p2k = (0·9, 1·0); top right
and bottom right panels), negative density-dependence in dispersal overwhelms the Allee effect for both modes of dispersal, leading to
stable coexistence of plant and pollinator in the sink locality. Parameter values are: c1j = 4, c1k = 3, c2 j = 6, c2k = 8, eij = 0·5, h j = 0·5, d = 0·2.
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individuals that do not affect local dynamics within
the source, the per capita growth rate of the sink local-
ity is augmented without an undue effect on that of the
source locality.

The model of dispersal of surplus individuals (equa-
tion 5) assumes that a given pollinator individual has
the same probability of  colonizing plant patches in
a new locality as it does within its natal locality. In
nature, however, long-distance dispersers may suffer
a mortality cost. Hence, not all surplus individuals
that leave one locality may reach another one. If  one
assumes such mortality to be density-independent,
then the per capita growth rate of plant–pollinator
patches that receives colonists is:

eqn 7

where s is the fraction of long-distance dispersers from
locality k that survive to reach locality j.

It can be shown (Appendix I) that pollinator inva-
sion when rare requires

eqn 8

where ,
and j, k = 1, 2, j ≠ k.

In biological terms this means the fraction of surplus
individuals that survive long-distance dispersal has to
be above a certain minimum in order for a sink com-
munity to be maintained via input from a source locality.
This threshold is sensitive to both plant and pollinator
colonization rate (c1 j and c2 j), and the amount of suit-
able habitat in the source locality (hk) (Fig. 6).

The key results are as follows: dispersal of surplus
individuals between localities can mitigate the Allee
effect and allow pollinators to invade and establish in
localities that are empty or have a negative per capita
growth rate. Thus, source–sink dynamics can allow
both local and regional persistence of the mutualistic
interaction. Source–sink dynamics have two important
requirements. First, there has to be spatial heterogene-
ity in the environment such that at least one locality has
plant and pollinator abundances above the Allee
threshold. Secondly, the fraction of long-distance dis-
persers that survive to reach another locality has to
exceed a critical threshold.

Dispersal of reproductive individuals between localities

Between-locality dispersal of reproductive individuals
does not alter the basic dynamical structure of the
model in that the within-locality Allee effect still per-
sists (Appendix II). However, the Allee effect can be
mitigated locally (Fig. 5).

In Appendix II I show that the pollinator can invade
when rare if:

eqn 9

where .
In biological terms this means the fraction of dis-

persers has to exceed a certain minimum in order for a
sink community to be maintained via pollinator dis-
persal. Note that when plant and pollinator coloniza-
tion rates are the same across localities (i.e. c1 j = c1k = c1

and c2 j = c2k = c2), the lower dispersal threshold (dmin) is
the same as that for pollinator colonization between
localities (smin). The magnitude of the threshold
depends on both plant and pollinator colonization
rates, and the amount of suitable habitat in the source
locality (Fig. 6). Once d exceeds this threshold, negative
density-dependence due to dispersal counteracts the
Allee effect and allows pollinators to increase when
rare (Fig. 5).

These results parallel those obtained above when
pollinator dispersal involves surplus individuals. There
is, however, one critical difference between the two
modes of dispersal.

When between-locality dispersal involves reproduc-
tive individuals, there is an upper dispersal threshold
(dmax). The upper threshold arises because unlike with
surplus individuals, dispersal of reproductive individ-
uals can depress the per capita growth rate of the source
locality. A fraction of pollinator individuals that would
otherwise have reproduced within their natal locality
leaves for another locality. If  emigration is so high that
the rate of production of plant–pollinator patches falls
below the local extinction rate, the source community
itself  will have a negative per capita growth rate. This
will cause region-wide extinction of  both plant and
pollinator.

The upper dispersal threshold cannot be calculated
analytically, but numerical analyses show it to be sen-
sitive to plant and pollinator colonization rates, and
the amount of suitable habitat in the source locality
(Fig. 6).

Incorporation of dispersal mortality does not alter
the qualitative nature of source–sink dynamics when
dispersal involves reproductive individuals. It does
have the quantitative effect of increasing the lower dis-
persal threshold and lowering the upper dispersal
threshold, thus making conditions for coexistence
more restrictive.

The key results are as follows: dispersal of reproduc-
tive individuals can mitigate the Allee effect and allow
region-wide persistence of the plant–pollinator inter-
action, provided the fraction emigrating is between a
critical minimum and maximum. Unlike with dispersal
of surplus individuals, too much emigration can cause
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the per capita growth rate of the source locality to
become negative, resulting in region-wide extinction of
the mutualistic interaction.

The role of habitat destruction

Habitat destruction can be incorporated to the model
by considering the total amount of available habitat
within the region to be variable such that ht = hj + hk

(0 < ht ≤ 1) where hj and hk are, respectively, the amount
of habitat available in localities j and k.

The role of habitat destruction within an isolated
locality was analysed previously by Nee et al. (1997).
Habitat destruction can have a large qualitative effect
in that when hj falls below a critical threshold the two
coexistence equilibria disappear, making extinction the
only stable outcome.

Habitat destruction has no qualitative effect on met-
acommunity dynamics. For instance, as long as plant
and pollinator abundance and suitable habitat area in
one locality are above the extinction threshold, reduc-
ing the total habitat area ht does not cause global
extinction of the mutualistic interaction. It does, how-
ever, make invasibility more difficult by increasing the

magnitude of the lower dispersal threshold. This effect
is the same for both modes of dispersal (Fig. 7). When
dispersal involves reproductive individuals, habitat
destruction has the additional effect of lowering the
upper dispersal threshold and making conditions for
persistence more restrictive.

Distinguishing between the two modes of pollinator 
dispersal

As the above results show, the two modes of pollinator
dispersal can have quite different effects on the regional
persistence of mutualistic interactions. An important
issue concerns the biological significance of the two
dispersal modes, particularly whether it is possible to
distinguish between them in practice.

One way to distinguish between the two modes
of  dispersal is based on life history characteristics.
Between-locality dispersal of surplus individuals may
be more likely in species that engage in territoriality or
other forms of interference competition (Pulliam 1988;
Holt 1993) and those in which dispersal occurs in the
adult stage and usually prior to reproduction (e.g. adult
females of insect pollinators). Between-locality dispersal

Fig. 6. Sensitivity of the lower and upper dispersal thresholds to the amount of suitable habitat in the source locality (hk ) and
colonization rates of plant and pollinator (c1 j and c2 j, respectively). The top three panels represent dispersal of surplus individuals,
and the bottom three represent dispersal of reproductive individuals. The thin solid line represents the lower dispersal threshold,
while the thick dotted line represents the upper threshold. The letter P represents the region of the parameter space within which
the mutualistic interaction can persist both locally and regionally. For both modes of dispersal, the lower dispersal threshold
decreases (i.e. invasion by the mobile mutualist becomes easier) with increases in source habitat size and colonization rates of plant
and pollinator. The lower threshold is more sensitive to the size of the source habitat than it is to the colonization rates. In the case
of dispersal of reproductive individuals, the upper dispersal threshold increases with increasing colonization rates, thus increasing
the region of the parameter space within which the interaction can persist. The upper threshold declines with increasing source
habitat size, because the larger the source the greater the number of reproductive individuals emigrating and hence greater the
likelihood that the per capita growth rate of the source becomes negative. Parameter values are: c1 j = c1k = 4, c2 j = c2k = 6, eij = 0·5,
with c1k = 4, hj = 0·5 for the middle panels, and c2k = 6, hj = 0·5 for the right panels.
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of reproductive individuals may be more prevalent in
species in which the juvenile stages tend to disperse.
Examples include rodents, many of whom serve as seed
dispersers, and birds.

Regardless of the life history strategy, the crucial dis-
tinguishing factor is the difference in the per capita
growth rates of plant–pollinator patches. This difference
can be quantifed by comparing growth rates of isolated
localities with those linked by dispersal (interlocality
distance could in many cases serve as a surrogate for the
degree of connectivity between localities).

If  dispersal involves surplus individuals that cannot
reproduce within their natal locality, per capita growth
rates of connected localities should always exceed those
of isolated localities. In contrast, if  dispersal involves
exchanging a fraction of the local reproductive output
from each locality, per capita growth rates of connected
localities may be higher or lower than those of isolated
localities, depending on the relative abundance of
plant–pollinator patches in the localities being com-
pared. If  data are available for more than one time
period, repeating the analysis over time can determine
whether the growth rate changes sign or remains
positive.

Table 1 lists a set of comparative predictions about
how population structure and modes of dispersal influ-
ence the persistence of the mutualistic interaction.

     
  

The above results were obtained when both interacting
species were obligate mutualists. An interesting ques-
tion is how these results may be altered if  one species is
a facultative mutualist.

Mobile species is a generalist

Plant species dependent on generalist pollinators or
seed dispersers are common in nature. Examples
include plants pollinated by honeybees or bumble bees,
and whose seeds are dispersed by rodents (Howe &
Smallwood 1982; Feinsinger 1983; Herrera 1984, 1988;
Bond 1994).

The above model (equation 2) can be interpreted as
that of a generalist pollinator or seed disperser that
services two plant species. Each locality then represents
a distinct plant species that is patchily distributed. As
long as the pollinator or seed disperser can maintain a
positive per capita growth rate on one species of plant,
it can rescue from extinction another plant species that
experiences an Allee effect. If  the plant species are con-
geners or otherwise closely related, pollinator move-
ment between localities may have the adverse effect of
cross-pollination and hybridization (see Discussion).

Fig. 7. The effect of habitat destruction on the lower dispersal threshold. In the absence of destruction (left panel) the threshold
declines sharply as the amount of colonizable habitat in the source locality increases. Under habitat destruction, the threshold is
shifted to the right, making invasion difficult even when survivorship of long-distance dispersers approaches 100% unless the total
habitat available is quite large. Parameter values: c1 j = c1k = 5, c2 j = c2 k = 8, eij = 0·5, hj = 0·5.

Table 1. Comparative predictions for the persistence of mutualistic interactions under different types of population structure and
levels of dispersal

No dispersal Low dispersal High dispersal

Dispersal from Allee effect No Allee effect No Allee effect
mainland source if  I > 0 if  I > 0

Local extinction Regional persistence Regional persistence
Dispersal of Allee effect Allee effect mitigated Allee effect mitigated
surplus individuals if  smin < s if  smin < s
between localities Local extinction Regional persistence Regional persistence
Dispersal of Allee effect Allee effect mitigated Allee effect
reproductive individuals if  dmin < d < dmax if  d > dmax

between localities Local extinction Regional persistence Regional extinction
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Non-mobile species is a generalist

Consider the case when the plant species is a generalist
and the pollinator is an obligate mutualist. Now plants
can reproduce even in the absence of the specialist pol-
linator, although seed set may be depressed in such
patches. This scenario leads to the following model for
an isolated locality:

eqn 10

with m representing the reduction in seed set and pro-
pagule establishment in the absence of the specialist
pollinator (0 < m ≤ 1).

Equation 10 admits four equilibria: the trivial equi-
librium with both species extinct , a
boundary equilibrium with the pollinator extinct

 and two interior equilibria =

When  the Allee effect persists and

the trivial equilibrium and the larger of the interior
equilibria are simultaneously stable. (The boundary
equilibrium with pollinator extinct is not feasible in the
presence of an Allee effect.) When plant and pollinator
abundances fall below the threshold defined by the
smaller of  the coexistence equilibria, both species go

extinct. However, if   the Allee effect

disappears and the only feasible equilibria are the
boundary equilibrium and the larger of the interior
equilibria. The former is unstable and the latter stable,
thus allowing the two species to coexist (Fig. 8).

In biological terms, if  the plant is able to reproduce
sufficiently well in the absence of the specialist pollinator,
then the positive density-dependence in its per capita
growth rate disappears, and both plant and pollinator
can coexist stably within an isolated locality. Pollinator
dispersal between localities is not necessary for persist-
ence of the mutualistic interaction. However, if  plant
reproduction in the absence of the specialist pollinator
is depressed below the threshold defined above, then
the Allee effect persists and extinction of both plant
and pollinator can occur within an isolated locality.
In this case, pollinator dispersal between localities
becomes important. Dispersal of pollinators from
source localities can rescue such sink communities
from extinction. As before, the rescue effect depends on
the mode of dispersal, with high dispersal of reproduc-
tive individuals being detrimental to persistence.

Discussion

Empirical studies suggest that mutualistic interactions
in fragmented landscapes are likely to suffer from Allee
effects (e.g. Jennersten 1988; Lamont et al. 1993; Aizen
& Feinsinger 1994; Agren 1996; Kunin & Iwasa 1996;
Groom 1998). Despite the obvious importance of how
mutualisms may persist in fragmented landscapes, little
or no theory exists on their spatial dynamics. Here I
have presented a metacommunity model of a mutual-
istic interaction between two species that differ in their
mobility. I show that spatial structure and dispersal can
have important, and sometimes counterintuitive, con-
sequences on the persistence of mutualistic interac-
tions. Although I have described the model in terms of
plant–pollinator interactions, these results apply to any
mutualistic interaction in which the reproduction and
establishment of a species that is relatively immobile
depends on a species that is relatively mobile.

The key results of this study involve the roles of dispersal
mode and dispersal-induced density-dependence on
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Fig. 8. Phase plots when the plant is a facultative mutualist and the pollinator is an obligate mutualist. If  plant reproduction is
depressed sufficiently in the absence of the specialist pollinator, the Allee effect persists (m = 0·1; left panel). If  the plant can
reproduce sufficiently well in the absence of the specialist pollinator (m = 0·5; right panel), stable coexistence is possible even
within an isolated locality. Parameter values: c1 = 2, c2 = 6, e1 = e2 = 0·5, h = 1.



138
P. Amarasekare

© 2004 British 
Ecological Society, 
Journal of Animal 
Ecology, 73,
128–142

the regional persistence of mutualistic interactions.
Although previous work has demonstrated the import-
ance of  these factors in single species populations
(Holt 1985, 1993; Pulliam 1988), their impact on species
interactions has not been explored. Here I show that in
mutualistic interactions subject to Allee effects, dispersal
induces negative density dependence in the per capita
growth rate of the community that receives dispersers.
This negative density-dependence overwhelms the pos-
itive density-dependence at low abundances.

Dispersal itself is density-independent, but it creates a
negative feedback effect that increases the strength of in-
traspecific interactions (e.g. self-limitation) relative to
that of interspecific interactions (e.g. Allee effect induced
by mutualistic partner). This negative feedback allows
both mutualists to increase when rare, thus preventing
extinction of the mutualistic interaction in sink habitats.

The second key result concerns the effect of dispersal
mode on the regional persistence of the mutualistic
interaction. When dispersal involves surplus individu-
als the loss of whom does not affect the reproductive
output of the source community, local and regional
persistence are guaranteed as long as the fraction of
long distance dispersers that survive to reach sink com-
munities exceeds a lower threshold. In contrast, when
dispersal involves individuals that constitute a fraction
of the source community’s reproductive output, main-
tenance of sink communities requires the fraction emi-
grating to be above a lower threshold, but not exceed an
upper threshold. Too much dispersal causes a net loss
of the mobile mutualist from source communities, leading
to regional extinction of the entire mutualistic interaction.

While these results on the effect of dispersal mode
parallel those obtained for single species source–sink
dynamics (Holt 1985, 1993; Pulliam 1988), there is an
important difference. Because mutualisms can generate
Allee effects, dispersal losses are more likely to increase
the extinction risk of source communities, and hence the
risk of region-wide extinction, compared to single spe-
cies or other species interactions such as competition
or predation. The dispersal-induced extinction risk to
source communities also distinguishes this study from
previous work on Allee effects and dispersal in single
species. (e.g. Lewis & Kareiva 1993; Amarasekare 1998;
Gyllenberg et al. 1999; Keitt et al. 2001). In these studies
the Allee effect is considered only phenomenologically,
i.e. the extinction threshold is a constant that is not
affected by local population dynamics or dispersal. Hence,
an increase in the dispersal rate does not affect the
extinction probability of source populations. Rather, it
allows both source and sink to persist at their respective
carrying capacities (Amarasekare 1998; Gyllenberg et al.
1999). In the model presented here, the Allee extinction
threshold arises as a direct consequence of the mutual-
istic interaction. It is therefore a dynamic threshold that
depends both on local species interactions and dis-
persal. Hence, an increase in the dispersal rate can drive
an otherwise viable source community to extinction
by reducing its abundance below the Allee threshold.

The crucial implication of these results is that
source–sink dynamics cannot guarantee the long-term
persistence of mutualistic interactions. Persistence
depends on the balance between the benefit of the res-
cue effect to sink communities, and the cost to source
communities in terms of loss of reproductive output.
The negative effect of dispersal on source communities
should be an important consideration both in empiri-
cal studies of mutualistic interactions, and in develop-
ing management measures for preserving or restoring
mutualisms in fragmented landscapes. In this respect, it
is important to quantify not only the rate of dispersal
but also the effect dispersal has on local population
growth. This information can be obtained by measur-
ing both the local reproductive rate and the per capita
growth rate, as the latter encompasses local reproduc-
tion as well as losses due to dispersal. The magnitude of
the local reproductive rate relative to the per capita
growth rate can not only indicate the source–sink sta-
tus of a given community, but also the effect dispersal
has on local dynamics. For instance, a sink community
that is being rescued is likely to have a low or negative
local recruitment rate but a per capita growth rate that
is positive, whereas a source community that suffers a
cost due to dispersal is likely to have a positive local
recruitment rate but a per capita growth rate that is low
or negative. In cases where these vital rates cannot be
measured, time-series of abundance data can be
informative. A steady decline in the abundance of a
putative source community could signify a negative per
capita growth rate.

In terms of management measures, the cost of dis-
persal to source communities is the most crucial con-
sideration. In species whose local reproduction is
unaffected by dispersal, linking habitat fragments via
dispersal corridors may be beneficial because source–
sink dynamics ensure both local and regional persist-
ence. In species whose local reproduction is reduced by
dispersal (e.g. birds and small mammals in which juve-
nile dispersal is the norm; Andreassen, Stenseth & Ims
2002), dispersal rate should be sufficiently low that the
growth rate of source communities are not depressed.
Such species may also experience higher risk of large-
scale extinction because habitat destruction can induce
mass emigration of individuals, leading to rapid extinc-
tion of source communities. In such cases preserving
large habitat fragments, regardless of their connectiv-
ity, may be more conducive to preserving mutualisms
than connecting fragments by dispersal.

The result that extinction risk due to Allee effects is
greatest in obligate mutualisms raises the question of
how Allee effects and habitat fragmentation impact
facultative mutualisms. This is an important considera-
tion given that a large number of mutualisms in nature
tend to be facultative (Bond 1994; Hoeksema & Bruna
2000). The model with dispersal between localities can in
fact be interpreted as that of a generalist pollinator or
seed disperser that services two plant species. In this
case, provided the pollinator or seed disperser can
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maintain a positive growth rate on one plant species, it
can prevent the other plant species from going extinct
when rare. This type of rescue effect due to a generalist
pollinator, however, can have adverse consequences for
rare species that are surrounded by other flowering
plants. Transfer of the wrong species’ pollen can lead to
reproductive failure of  the rare species (Feinsinger,
Tiebout & Young 1991; Kunin 1993; Aizen & Feinsinger
1994). Worse still, such transfers can lead to interspecific
hybridization and the consequent genetic loss of  rare
or endangered species (Schemske et al. 1994; Levin,
Francisco-Ortega & Jansen 1996).

The extension of the model to a mutualism between
an obligate mobile species and a facultative non-
mobile species shows that Allee effects can be less
extreme in such situations. Persistence via source–
sink dynamics is facilitated in this situation because
localities in which the non-mobile species can repro-
duce sufficiently well in the absence of the mobile
mutualist do not experience an Allee effect. Dispersal
from such source communities can rescue those in
which Allee effects prevail. Because there are commu-
nities that do not experience Allee effects at all, the
cost of dispersal to sources is likely to be lower in this
situation.

In conclusion, spatial dynamics can enhance or
hinder the persistence of mutualistic interactions in
fragmented landscapes, depending on the effect disper-
sal has on local reproduction of source communities.
While low dispersal rates promote diversity by increas-
ing the benefit of rescue effects to sinks relative to the
reproductive cost to sources, high dispersal rates can con-
strain diversity by increasing costs relative to benefits.
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Appendix I

           
  

In the absence of within-locality dispersal, the mutualistic interaction within each locality yields three equilibria:

1.

2.

3.

Only (1) and (3) are stable. Two isolated localities each admitting these three equilibria therefore have a total of nine
possible equilibrium states (Table A1).

When the localities are linked by dispersal of surplus individuals, two of the nine equilibria disappear (Table A1).
Higher colonization rates or lower dispersal mortality does not affect the remaining seven equilibria.

The Jacobain matrix of equation 5 is given by:

where 
The mobile mutualist can invade an initially empty locality if  the dominant eigenvalue of the Jacobian is positive

when evaluated at the equilibrium:

Solving the dominant eigenvalue for s leads to the invasion criterion (equation 8) in the main text.
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Table A1. Equilibria when pollinator dispersal involves surplus individuals

Isolated Low dispersal High dispersal

1. 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

2. 0, 0 0, 0 0, 0

3. 0, 0 0, 0 0, 0

4. , 0, 0 , 0, 0 , 0, 0

5. , 0, 0 , 0, 0 , 0, 0

6. ,

7. ,

8. , , ,

9. , , , 

IT = isolated, threshold; IC = isolated, coexistence; CT = connected, threshold; CC = connected, coexistence.

( , * )*p pk k IT1 2 ( , * )*p pk k CT1 2 ( , * )*p pk k CT1 2

( *, * )p pk k IC1 2 ( * , * )p pk k CC1 2 ( * , * )p pk k CC1 2

( *, * )p pj j IT1 2 ( * , * )p pj j CT1 2 ( * , * )p pj j CT1 2

( *, * )p pj j IC1 2 ( * , * )p pj j CC1 2 ( * , * )p pj j CC1 2

( *, * )p pj j IT1 2 ( *, * )p pj j IC1 2

( *, * )p pj j IC1 2 ( *, * )p pj j IT1 2

( *, * )p pj j IT1 2 ( , * )*p pk k IT1 2 ( * , * )p pj j CT1 2 ( , * )*p pk k CT1 2 ( * , * )p pj j CT1 2 ( , * )*p pk k CT1 2

( *, * )p pj j IC1 2 ( *, * )p pk k IC1 2 ( * , * )p pj j CC1 2 ( * , * )p pk k CC1 2 ( * , * )p pj j CC1 2 ( * , * )p pk k CC1 2
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Appendix II

          
 

Table (A2) characterizes the equilibria for isolated localities vs. those linked by dispersal. When localities are linked
by dispersal of reproductive individuals, all nine equilibria persist. When emigration exceeds the upper threshold,
six of the nine equilibria disappear. The remaining three equilibria correspond to extinction, Allee threshold and
coexistence in both localities.

The Jacobain matrix of equation 6 is given by:

where
The mobile mutualist can invade an initially empty locality if  the dominant eigenvalue of the Jacobian is positive

when evaluated at the equilibrium

Solving the dominant eigenvalue for d leads to the invasion criterion (equation 9) in the main text.
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Table A2. Equilibria when pollinator dispersal involves reproductive individuals

Isolated Low dispersal High dispersal

1. 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

2. 0, 0 0, 0

3. 0, 0 0, 0

4. , 0, 0 , 0, 0

5. , 0, 0 , 0, 0

6. 

7. 

8. 

9. 

IT = isolated, threshold; IC = isolated, coexistence; CT = connected, threshold; CC = connected, coexistence.

( , * )*p pk k IT1 2 ( , * )*p pk k CT1 2
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