### Mechanisms that maintain diversity

### Diversity: Species coexistence

### Coexistence: Non-linear \* Environmental dynamics heterogeneity

(density-dependence) (temporal, spatial)

### Coexistence via interplay between non-linearity and temporal heterogeneity

### Spatial heterogeneity: population/community level responses

Temporal heterogeneity: trait responses → population/ community dynamics

## Temporal heterogeneity: biotic or abiotic

## Abiotic environmental variation: temperature



## 1. Temperature affects all life stages of ectotherms

2. Life history and interaction traits temperature dependent

## Temperature affects all life stages of ectotherms



Stage-structured models

### **Traits are temperature dependent**



Jensen's inequality:  $f(\overline{T}) 
eq f(T)$ 

### **Temperature effects on population dynamics**



 $\begin{array}{ll} \mbox{Recruitment} & \mbox{Maturation} & \mbox{Death} \\ \\ \hline \frac{dE}{dt} = {\bf b}({\bf T},{\bf A})A - m_E(T)E - d_E(T)E & \mbox{Egg} \\ \\ \hline \frac{dN}{dt} = m_E(T)E - m_N(T)N - d_N(T)N - {\bf q_N}({\bf T},{\bf N})N & \mbox{Juvenile} \\ \\ \hline \frac{dA}{dt} = m_N(T)N - d_A(T)A - {\bf q_A}({\bf T},{\bf A})A & \mbox{Adult} \end{array}$ 

**Density-dependence**: Fecundity Juvenile mortality Adult mortality



Boltzmann-Arrhenius function



Development

Sharpe-Schoolfield equation

### Mechanistic basis of the temperature response of development



Rate of catalytic reaction

Probability being in active state

Overall Temperature response

Unimodal



 $\begin{array}{ll} \mbox{Recruitment} & \mbox{Maturation} & \mbox{Death} \\ \\ \hline \frac{dE}{dt} = {\bf b}({\bf T},{\bf A})A - m_E(T)E - d_E(T)E & \mbox{Egg} \\ \\ \hline \frac{dN}{dt} = m_E(T)E - m_N(T)N - d_N(T)N - {\bf q_N}({\bf T},{\bf N})N & \mbox{Juvenile} \\ \\ \hline \frac{dA}{dt} = m_N(T)N - d_A(T)A - {\bf q_A}({\bf T},{\bf A})A & \mbox{Adult} \end{array}$ 

**Density-dependence**: Fecundity Juvenile mortality Adult mortality

### Temperature response of intra-specific competition

1. Competition increases with temperature





290

Temperature (K)

300

310

Trait (k<sub>1</sub>)

Temperature (K)

Recruitment Maturation Death

$$\begin{split} \frac{dE}{dt} &= \mathbf{b}(\mathbf{T}, \mathbf{A})A - m_E(T)E - d_E(T)E & \text{Egg} \\ \frac{dN}{dt} &= m_E(T)E - m_N(T)N - d_N(T)N - \mathbf{q_N}(\mathbf{T}, \mathbf{N})N \\ \frac{dA}{dt} &= m_N(T)N - d_A(T)A - \mathbf{q_A}(\mathbf{T}, \mathbf{A})A & \text{Juvenile} \\ \end{split}$$

1. Constant temperature

2. Diurnal and/or seasonal variation in temperature

$$\begin{split} \frac{dE}{dt} &= \mathbf{b}(\mathbf{T}, \mathbf{A})A - m_E(T)E - d_E(T)E & \text{Egg} \\ \frac{dN}{dt} &= m_E(T)E - m_N(T)N - d_N(T)N - \mathbf{q_N}(\mathbf{T}, \mathbf{N})N \\ \frac{dA}{dt} &= m_N(T)N - d_A(T)A - \mathbf{q_A}(\mathbf{T}, \mathbf{A})A & \text{Adult} \end{split}$$

# Stage-structured dynamics under constant temperatures

Conditions for population to increase from low density when vital rates are temperaturedependent. Stage-structured dynamics under constant temperatures

Conditions for population to increase when rare: intrinsic growth rate (r<sub>m</sub>) > 0

r<sub>m</sub> = f(birth, development, death)

Age-structured population dynamics with temperature dependence of life history traits

$$\int_0^\infty e^{-r_m x} l_x b_x \, \mathrm{d}x = 1$$

**Euler-Lotka equation** 

$$r_m(T) = -d(T) + \frac{1}{\alpha(T)} W\left(b(T)\alpha(T)e^{\left(d(T) - \bar{d}(T)\right)\alpha(T)}\right)$$

b(T) temperature response of fecundity  $\overline{d}(T), d(T)$  temperature responses of juvenile and adult mortality  $\alpha(T)$  temperature response of development

(Amarasekare and Savage 2012)

### Temperature dependence of r<sub>m</sub> in terms of temperature responses of life history traits

### **Reproduction:** Gaussian

Development: exponential

Mortality: exponential

$$r_{m}(T) = -d_{T_{R}}e^{A_{d}TD} + \frac{1}{\alpha_{T_{R}}e^{A_{\alpha}TD}}W\left(\bar{b}_{T_{R}}\alpha_{T_{R}}e^{A_{\alpha}TD} - \frac{(T-T_{\text{opt}_{\bar{b}}})^{2}}{2s^{2}} + \alpha_{T_{R}}e^{A_{\alpha}TD}\left(d_{T_{R}}e^{A_{d}TD} - \bar{d}_{T_{R}}e^{A_{\bar{d}}TD}\right)\right)$$

where

W=Lambert W function (product logarithm)

 $TD = \left(\frac{1}{T_R} - \frac{1}{T}\right)$ 

(Amarasekare and Savage 2012)

### Temperature dependence of r<sub>m</sub>



Temperature (C)

### Case studies: Tropical and temperate insects

#### Tropical



*Clavigralla shadabi* Benin, Africa 8<sup>0</sup>20'N

#### Temperate



Acyrthosiphon pisum York, England 53<sup>0</sup>57'N



**Tropical** (Dryer and Baumgartner 1996)

Temperate (Morgan *et al.* 2001)

#### Tropical and temperate species



## Temperature effects on population persistence

Density-independent population growth

Fitness = 
$$r_m(T) \begin{bmatrix} > 0 => Persistence \\ < 0 => Extinction \end{bmatrix}$$

r<sub>m</sub>(T): f(b(T), a(T), d(T))

#### **Temperature effects on population persistence**

Temp. responses of life history traits conserved across ectotherm taxa

Predict r<sub>m</sub>(T) for any species

r<sub>m</sub>(T): metric of extinction risk due to climate warming

**Temperature effects on population persistence** 

Density-independent population growth

Fitness = 
$$r_m = \begin{cases} > 0 \Rightarrow Persistence \\ < 0 \Rightarrow Extinction \end{cases}$$

Density-dependent population growth (resources, natural enemies)

Fitness = f(density)



Densitydependent factors Temperature responses of life history traits Population viability

$$\begin{split} \frac{dE}{dt} &= \mathbf{b}(\mathbf{T}, \mathbf{A})A - m_E(T)E - d_E(T)E & \text{Egg} \\ \frac{dN}{dt} &= m_E(T)E - m_N(T)N - d_N(T)N - \mathbf{q_N}(\mathbf{T}, \mathbf{N})N \\ \frac{dA}{dt} &= m_N(T)N - d_A(T)A - \mathbf{q_A}(\mathbf{T}, \mathbf{A})A & \text{Adult} \end{split}$$

## Thermal environment: seasonal variation in temperature



*Clavigralla shadabi* **Benin** 8<sup>0</sup>20'N *Murgantia histrionica* **California, USA** 33<sup>0</sup>37'N Acyrthosiphon pisum York, England 53<sup>0</sup>57'N

## Incorporating seasonal variation into model

- Let T=m(t) where
  - T: temperature,
  - t: time (in days)
  - m(t): sinusoidal function describing seasonal variation

## Incorporating seasonal variation into model

$$T(t) = meanT - amplT\cos\left(\frac{2\pi t}{year}\right)$$

meanT= mean annual temperature, amplT = amplitude of temperature fluctuations (max-min) year = 365.25

Recruitment Maturation Death

$$\begin{aligned} \frac{dE}{dt} &= \mathbf{b}(\mathbf{T})(\mathbf{A})A - m_E(T)E - d_E(T)E & \text{Egg} \\ \frac{dN}{dt} &= m_E(T)E - m_N(T)N - d_N(T)N - \mathbf{q_N}(\mathbf{T})(\mathbf{N})N \\ \frac{dA}{dt} &= m_N(T)N - d_A(T)A - \mathbf{q_A}(\mathbf{T})(\mathbf{A})A & \text{Juvenile} \\ \end{aligned}$$

### Case study: Mediterranean species



Harlequin bug (*Murgantia histronica*)

### Well-studied in the field

Temperature responses of traits quantified

### Interplay between density-dependence and temperature variation

Case 1. Density-dependence at the earliest life stage (eggs)

### Stage-structured population model

Temperature –dependent parameters

**Density-dependent fecundity** 

### 1. Constant temperature

# 2. Seasonal variation in temperature

### Constant environment: density-dependent fecundity



## Stage-structured population dynamics in a seasonal environment



Competition increases with temperature

### Stage-structured population dynamics in a seasonal environment



Competition strongest at intermediate temperatures

### Density-dependence at egg stage



### Competition increases with temperature

Competition strongest at intermediate temperatures

## Interplay between density-dependent fecundity and temperature variation

Egg stage affected by competition and temperature

Nymphal stage tracks egg stage

Adult stage buffered from temperature variation

### Interplay between density-dependence and temperature variation

Case 2. Density-dependence at the intermediate life stage (nymphs/larvae)

### Stage-structured population model

$$\begin{aligned} \frac{dE}{dt} &= b(T)A - m_E(T)E - d_E(T)E\\ \frac{dN}{dt} &= m_E(T)E - m_N(T)N - d_N(T)N - q(T)N^2\\ \frac{dA}{dt} &= m_N(T)N - d_A(T)A \end{aligned}$$

#### **Density-dependent mortality at nymphal stage**

## Constant environment: density-dependent nymphal mortality



### Density-dependence at nymphal stage



### Competition increases with temperature

Competition strongest at intermediate temperatures

### Interplay between density-dependent nymphal mortality and temperature variation

Egg stage affected by temperature only

Nymphal stage affected by temperature and competition

Adult stage buffered from temperature variation

### Interplay between density-dependence and temperature variation

Case 3. Density-dependence at the adult stage

### Stage-structured population model

$$\begin{aligned} \frac{dE}{dt} &= b(T)A - m_E(T)E - d_E(T)E\\ \frac{dN}{dt} &= m_E(T)E - m_N(T)N - d_N(T)N\\ \frac{dA}{dt} &= m_N(T)N - d_A(T)A - q(T)A^2 \end{aligned}$$

#### Density-dependent mortality at the adult stage

## Constant environment: density-dependent adult mortality



### Density-dependence at adult stage



### Competition increases with temperature

Competition strongest at intermediate temperatures

## Interplay between density-dependent adult mortality and temperature variation

Egg and nymphal stages affected by temperature only

Adult stage affected by temperature *and* competition

Adult stage exhibits fluctuations in abundance

### Interplay between density-dependence and temperature variation

Egg stage exhibits the greatest fluctuations in abundance

DD fecundity\*temperature variation – more complex dynamics

DD at adult stage – lowest overall abundance