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1 Introduction

I have been asked to describe the status of perturbative expansions of gravity theories.

This is a fairly active and interesting subject. I will try to be brief, because I have a lot

to say about string theory, which is the main subject of my lectures at this school. The

motivation for studying perturbative gravity expansions is to ascertain whether standard

methods of quantum field theory are applicable to theories based on actions that contain

the Einstein–Hilbert action. It was realized long ago that classical Einstein gravity in four

dimensions, reinterpreted as a quantum theory, is probably nonrenormalizable. At the time,

this was not considered an important problem, because relativists were not interested in

quantum mechanics and particle physicists were not interested in gravity. That has changed

dramatically over the past 30 years.

The most straightforward possibility to consider for a theory of quantum gravity is the

original one: gravity formulated as a quantum field theory, based on pointlike constituents,

just like the other forces. Most of what we know about quantum field theory is based on

perturbation expansions. So the first question is whether there is a sensible way of defining



them for quantum gravity, and that is what Nathan has asked me to discuss. If we conclude

that this is not possible, this does not mean that we are out of business. The real question

ought to be the following: given that Einstein’s theory of general relativity gives the correct

effective theory of gravity at energies small compared to the Planck scale, what are the

possibilities for a UV completion that is consistent with the dictates of quantum theory.

I am convinced that superstring theory/M-theory provides a multitude of successful UV

completions, one of which ought to be realistic, even though many details are not yet fully

understood. It is reasonable to ask whether there are any alternative possibilities.

2 Power counting

Quantum field theories are usually formulated by starting with a Lagrangian formulation of

a classical field theory and then “quantizing” it. Schematically, one is given an action S[ϕ] =∫
Ldx that is a functional of fields ϕ(x). (The Lagrangian density L is a function of the fields

and their derivatives.) The classical theory is given by extremizing the action, whereas the

quantum theory is formally given by Feynman path integrals. For example, the expectation

value of an observable A, which is made out of the fields, is given by
∫
A exp(iS/h̄)Dϕ. As

you probably know, it is not easy to make sense of such formulas.

Perturbation theory is an attempt to describe the path integrals by an expansion in

powers of h̄. Usually, h̄ multiplies a coupling constant g, so the expansion is equivalently

viewed as one in g, and one loses nothing by setting h̄ = 1. These series never converge;

the best one can hope for are asymptotic expansions. The first question then is whether

the individual terms in the expansion are well-defined. There may be infrared divergences,

but they can be dealt with, so the more important question is whether there are ultraviolet

divergences. If there are, can they also be dealt with?

Given a classical Lagrangian, one can determine by elementary considerations the dimen-

sions of the parameters that appear as coefficients of the various terms — coupling constants,

masses, etc. If all such parameters are dimensionless or a positive power of a mass, then the

theory is called “power-counting renormalizable”. If this is the case, the next question is

whether or not the theory is asymptotically free or finite, which is determined by the sign of a

beta function. If that is also the case, then there is considerable evidence for the existence of

a quantum field theory that is well-defined both perturbatively and nonperturbatively. QCD

is the outstanding example of an asymptotically free theory, and N = 4 super Yang–Mills

theories are examples of superconformal (and hence finite) theories.
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How about gravity? The Einstein–Hilbert action is schematically of the form

SEH ∼ G−1

∫ √
−gRdx,

where G is Newton’s constant and R is the curvature scalar. In D-dimensional spacetime

dx has dimension −D, and R, which is quadratic in derivatives, has dimension 2. There-

fore, G has dimension 2 −D. It follows that the Einstein–Hilbert action is power-counting

nonrenormalizable for D > 2.1

3 Supergravity Theories

The fact that a field theory is power-counting nonrenormalizable does not prove that it is

UV divergent. What it means is that the loop expansion is generically expected to give rise

to UV divergences whose cancellation would require the introduction of operators of higher

dimension than appear in the initial Lagrangian. It is conceivable, however, that such terms

do not arise: there might be a miraculous cancellation, for example. In the case of pure

Einstein gravity in four dimensions, all potential one-loop counterterms vanish on shell or

are a total derivative. Thus, as noted by ’t Hooft and Veltman in 1974, it is UV finite at one

loop. The first potential problem for the pure gravity theory arises at two loops. (Coupling

to matter typically gives nonrenormalizable UV divergences already at one loop.) Two of my

students (Goroff and Sagnotti) carried out the two-loop gravity calculation in 1985. They

found that the expected UV divergence does in fact occur. This established the absence of

a miraculous cancellation and proved perturbative nonrenormalizability.2

One way one can hope to obtain a better UV behavior is to extend the theory so that

there are additional symmetries that ensure the cancellations required to prevent the UV

divergences. This is the situation in supergravity theories. The dimension of Newton’s

constant is unchanged, of course, so these theories are still power-counting nonrenormalizable

forD > 2. However, specific candidate counterterms are incompatible with their symmetries.

For example, N = 1 supergravity in four dimensions, which contains a gravitino field, the

gauge field for local supersymmetry, in addition to the gravity field, is two-loop finite. The

first divergence allowed by symmetry is at three loops. As the amount of supersymmetry

is increased, the situation improves further. For example, in the case of the maximally

supersymmetric 4d gravity theory, N = 8 supergravity, the first counterterm compatible

1For D = 2 the Einstein–Hilbert action is topological, since
√
−gR is a total derivative. String world-sheet

theories are two-dimensional quantum gravity theories.
2Their result was confirmed many years later by others.
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with the symmetry is believed to arise at seven loops. Nevertheless, as I will discuss, this

theory might be UV finite to all orders in the perturbation expansion.

Even though there has been enormous progress in recent years in explicitly constructing

multiloop amplitudes, a seven-loop supergravity calculation is not yet feasible. Fortunately,

there are other ways of developing our intuition and testing our understanding. One way is

by extending the analysis to arbitrary number of spatial dimensions, even a number that is

not an integer. (The number of time dimensions is always one.) Another way is to study

analogous issues for supersymmetric Yang–Mills theories. The super Yang–Mills results may

be relevant to the supergravity problem if one can relate the two problems. Bern, Carrasco,

and Johansson (BCJ) proposed a specific way of doing this (arXiv:1004.0476), which has

been tested in several cases, but not proved in general.

4 Dimensional Reduction

Maximally supersymmetric Yang–Mills (MSYM) theories have 16 conserved supercharges. In

4d these are four Majorana (or Weyl) spinors of the N = 4 theory, whereas in ten dimensions

they belong to a single Majorana–Weyl spinor. Dimensional reduction to D dimensions is

achieved by compactifying the ten-dimensional theory on a (10−D)-dimensional torus and

keeping only the zero Fourier modes on the torus. The formulas for amplitudes computed in

this way can be analytically continued in D. For each number of loops L there is a maximum

dimension D(L) below which the amplitudes are UV finite. There is a completely analogous

construction for maximally supersymmetric supergravity (MSG) theories. For example, one

can toroidally compactify 11-dimensional supergravity.

In 1982 Brink, Green, and I showed that both MSYM and MSG are finite at one loop

for D < 8. The way we did this was to explicitly compute corresponding one-loop four-

particle superstring theory amplitudes, which are UV finite, and then to deduce the field

theory amplitudes by evaluating the limit of the amplitudes in which the string excitations

decouple. This means sending the string mass scale to infinity. The resulting amplitudes,

analytically continued in dimension, were shown to be UV finite for D < 8 and to have poles

at D = 8.

For each theory it is an interesting problem to determine the dimension D(L), which is

the onset of the L-loop UV divergence. In the case of MSYM there is a plausible argument

that the answer for L ≥ 2 should be D(L) = 4 + 6/L. (This formula is not applicable for

L = 1, since D(1) = 8.) This formula came into question for a while, when Douglas specu-
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lated that 5d MSYM might actually be UV finite. The motivation involved its relationship

to a certain superconformal theory in six dimensions. Remarkably, Bern, Douglas et al.

(arXiv:1210.7709) settled the question by showing by explicit calculation that 5d MSYM

has a UV divergence at six loops, exactly as predicted by the formula for D(L).

The BCJ conjecture, if true, would imply that D(L) should be the same for MSYM

and MSG. In fact, in a series of papers, Bern and collaborators have verified the formula

D(L) = 4 + 6/L for MSG for L = 2, 3, 4. If that continues to be the case for all L, perhaps

because the BCJ conjecture is correct, this would mean that N = 8 supergravity in four

dimensions is perturbatively UV finite!

5 Conclusion

There is a reasonable possibility thatN = 8 supergravity is perturbatively finite to all orders,

even though it is power-counting nonrenormalizable. This would be “miraculous” inasmuch

as there exists an operator, consistent with all known symmetries, that would ordinarily lead

one to expect a seven-loop divergence. A miraculous cancellation of its coefficient would be

required. Additional miraculous cancellations would be required for L > 7. If perturbative

finiteness turns out to be the case, would it mean that N = 8 supergravity is a consistent

quantum theory? Could it be an alternative to superstring theory for a fundamental unified

theory? Concerning the second question, it should be noted that there is no known plausible

scenario for relating this theory to the standard model.

In the case of QCD we know that the quantum theory exists nonperturbatively, at least

by the standards of rigor in theoretical physics. The same would not be the case for per-

turbatively finite N = 8 supergravity. Whether or not it is perturbatively finite, one can

ask for its (nonperturbative) UV completion. Only one such UV completion is known at the

present time, and it is given by toroidally compactified superstring theory/M-theory. From

this point of view, it seems to me that whether or not N = 8 supergravity is perturbatively

finite isn’t very important.
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