
School on Particle Physics in the LHC Era
Project on Extra Dimensions

Often, numerical information regarding the KK spectrum and wavefunctions is sufficient,
and it is useful to have an “all-purpose” implementation that allows you to get this information.
This project requires no more than Mathematica and a bit of thinking.

1. A simple example of the “superpotential approach”: Derive the scalar profile,
φ(y), and metric function, A(y), for a linear superpotential written as

W (Φ) = 2

√
3kM3

5

L
Φ . (1)

Write also the corresponding potential to see what you are dealing with.

2. KK wavefunctions in arbitrary backgrounds: in this exercise it will be important
to keep in mind that, in a strongly warped background, the scale of KK resonances is set
by

k̃eff ≡ A′(L) e−A(L) . (2)

Also, all the orthonormality conditions take the form

1

L

∫ L

0
dy fn(y)fm(y) = δnm , (3)

i.e. all are “physical wavefunctions”.

(a) Gauge case: The equation of motion is

∂y
[
e−2A∂yf

n
V

]
+m2

nf
n
V = 0 . (4)

The corresponding equation for fn
5 can be obtained by using fn

5 = ∂yf
n
V /mn, for n 6=

0. The boundary conditions that allow a gauge zero-mode are ∂yf
n
V |0,L = fn

5 |0,L = 0.

i. Devise a general strategy for finding, numerically, mn and fn
V , in the absence of

a closed solution to the above equations [but given an explicit A(y)].

ii. Convince yourself that trying to solve directly Eq. (4) in strongly warped back-
grounds [A(L)� 1 with A(0) = 0] is delicate.

iii. I will guide you here by example. Show that the equation of motion for f̃n
5 ≡

e−2Afn
5 is ∂2

y f̃
n
5 +m2

ne
2Af̃n

5 = 0 and that the boundary conditions are f̃n
5

∣∣∣
0,L

= 0.

This form is better for a numerical analysis, and should be useful to you.

iv. Ideally, your code should be such that, given the background A(y), it should be
easy to find a given eigenvalue and the corresponding (normalized) eigenfunction.
Test it with the AdS5 case, where explicit solutions are available. Apply your
code also to the background of Problem 1, and compare the results to the AdS5

case. For definiteness, assume M5 = k.
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(b) Fermions: The equations of motion are(
∂y +Mf −

1

2
A′
)
fn
L = mne

Afn
R , (5)

(
∂y −Mf −

1

2
A′
)
fn
R = −mne

Afn
L , (6)

which imply the second order differential equations

fn
L
′′ − 2A′fn

L
′ +

[
3

4
A′2 − 1

2
A′′ −MfA

′ +M ′
f −M2

f + e2Am2
n

]
fn
L = 0 , (7)

fn
R
′′ − 2A′fn

R
′ +

[
3

4
A′2 − 1

2
A′′ +MfA

′ −M ′
f −M2

f + e2Am2
n

]
fn
R = 0 . (8)

It will be sufficient to implement the case where the 0-mode is LH, which is defined
by the boundary conditions

fn
L
′ +

(
Mf −

1

2
A′
)
fn
L

∣∣∣∣
y=0,L

= 0 , fn
R(0) = fn

R(L) = 0 . (9)

i. Clearly, a numerical solution requires to fix not only A(y), but also the fermion
mass Mf . For both the AdS5 case and the background of Problem 1, it will be
convenient to write

Mf (y) = cA′(y) . (10)

Do you see a simple physical interpretation for this ansatz?

ii. Now devise a strategy that allows you to find a given mn, and the two associated
wavefunctions fn

L and fn
R, as you did for the gauge case.

(c) Scalars: The equation of motion is

f ′′n − 2A′f ′n +
[
A′′ − 3A′2 −M2

s + e2Am2
n

]
fn = 0 , (11)

For localized mass terms L0,L = −1
2
M0,LΦ2, the boundary conditions read:

f ′n + (A′ ∓M0,L) fn
∣∣∣
0,L

= 0 . (12)

Assume a constant scalar bulk mass, Ms, and define new parameters α, mUV and
mIR via

M2
s =

(
α2 − 4

)
k2

eff , M0,L = ∓ (α− 2) keff +mUV,IR , (13)

where keff ≡ A′(L).

i. You know the drill: set up your code to tackle this problem. Test it in the two
canonical examples of AdS5 and the linear superpotential of Problem 1.

ii. By defining α ≡ c + 1/2, with c = Mf (L)/A′(L), compare to the fermion case.
Assume first that mUV and mIR are small.

iii. Do you see a meaning for the parametrization (13), and for the two masses mUV

and mIR?
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