<u>The ionization, excitation and thermal</u> <u>state of flows in the ISM</u>

A. Raga (Instituto de Ciencias Nucleares, UNAM)

1. Gasdynamic equations (3D, Cartesian)

continuity equation \rightarrow

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j}\rho u_j = 0,$$
 (1)

momentum equation (3 components) \rightarrow

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_i u_j + P \delta_{ij}) = 0,$$
 (2)

energy equation \rightarrow

$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial x_j} \left[u_j \left(E + P \right) \right] - G - L , \qquad (3)$$

with $E = \rho u_j u_j / 2 + P / (\gamma - 1)$ (γ is the specific heat ratio, -5/3 for our discussion of a non-relativistic, atomic/ionic gas).

Heating and cooling: contributions from many species

$$G = \sum_{a} G_a; \quad L = \sum_{a} L_a,$$
 (4)

Continuity equations for all of the species:

$$\frac{\partial n_a}{\partial t} + \frac{\partial}{\partial x_j} n_a u_j - S_a,$$
 (5)

Alternative, transport form:

$$\frac{\partial y_a}{\partial t} + u_j \frac{\partial}{\partial x_j} y_a - \frac{S_a}{n}$$
, (6)

where $y_a - n_a/n$ is the fractional abundance of the species a (with $n - \rho/m$, m being the average mass per atom or ion).

Rate equations for a constant density gas

$$\frac{dn_{a,z}}{dt} - S^{c}_{a,z} + S^{ph}_{a,z}, \qquad (7)$$

with the collisional (S^e) and photoionisation (S^{ph}) source terms being given by

$$S_{a,x}^{c} = n_{e} \left[n_{a,x-1}c_{a,x-1} + n_{a,x+1}\alpha_{a,x+1} - n_{a,x} \left(c_{a,x} + \alpha_{a,x} \right) \right],$$
 (8)

$$S^{ph}_{a,z} = n_{a,z-1}\phi_{a,z-1} - n_{a,z}\phi_{a,z}$$
. (9)

The electron density

$$n_e - \sum_a \sum_x z n_{a,x}$$
. (10)

 \rightarrow Charge exchange reactions

<u>Collisional ionisation and radiative+dielectronic</u> <u>recombination coefficients:</u>

$$\alpha(T), c(T) = \int_{0}^{\infty} f(v, T)\sigma_{v} v dv,$$
 (11)

Arrhenius:

It is common to give analytic fits to these coefficients in the "Arrhenius interpolation" form :

$$r(T) = b_1 T^{b_2} e^{b_5/T}$$
. (12)

Aldrovandi & Pequignot (1973, 1976)

$$r(T) = b_1 \left(\frac{T}{10^4}\right)^{-b_2} + b_3 T^{-3/2} \exp\left(-b_4/T\right) \left[1 + b_5 \exp\left(-b_6/T\right)\right],$$
 (13)

for recombination coefficients.

Table 1: Ionisation, recombination and charge exchange coefficients

-

reaction	coefficientsª
$e + HI \rightarrow 2e + HII$	1: 5.83×10^{-11} , 0.5, -157800
$e + HII \rightarrow HI$	1: 3.69×10^{-10} , -0.79, 0
$e + HeI \rightarrow 2e + HeII$	1: 2.707×10^{-11} , 0.5, -285400
$e + HeII \rightarrow HeI$	2: 4.3×10^{-13} , 0.672, 0.0019,
	4.7×10^5 , 0.3, 94000
$e + HeII \rightarrow 2e + HeIII$	1: 5.711×10^{-12} , 0.5, -631000
$e + HeIII \rightarrow HeII$	1: 2.21×10^{-9} , -0.79, 0
$e + CH \rightarrow 2e + CHI$	1: 3.93×10^{-11} , 0.5283000
$e + CIII \rightarrow CII$	2: 3.2×10^{-12} , 0.770, 0.038,
	9.1×10^4 , 2.0, 3.7×10^5
$e + CIII \rightarrow 2e + CIV$	1: 2.04×10^{-11} , 0.5, -555600
$e + CIV \rightarrow CIII$	2: 2.3×10^{-12} , 0.645,
	7.03×10^{-3} , 1.5×10^{5} ,
	$0.5, 2.3 \times 10^5$
$e + NI \rightarrow 2e + NII$	1: 6.18×10^{-11} , 0.5 -168200
$e + NII \rightarrow NI$	2: 1.5×10^{-12} , 0.693, 0.0031
	2.9×10^5 , 0.6, 1.7×10^5
$e + NII \rightarrow 2e + NIII$	1: 4.21×10^{-11} , 0.5, -343360
$e + NIII \rightarrow NII$	2: 4.4×10^{-12} , 0.675, 0.0075
	2.6×10^5 , 0.7, 4.5×10^5
$e + OI \rightarrow 2e + OII$	1: 1.054×10^{-10} , 0.5, -157800
$e + OII \rightarrow OI$	2: 2.0×10^{-12} , 0.646, 0.0014
	1.7×10^5 , 3.3, 5.8 × 10 ⁴
$e + OII \rightarrow 2e + OIII$	1: 3.53×10^{-11} , 0.5, -407200
$e + OIII \rightarrow OII$	2: 3.1×10^{-13} , 0.678, 0.0014
	1.7×10^5 , 2.5, 1.3×10^5
$e + OIII \rightarrow 2e + OIV$	1: 1.656×10^{-11} , 0.5, -636900
$e + OIV \rightarrow OIII$	2: 5.1×10^{-12} , 0.666, 0.0028
	1.8×10^5 , 6.0, 91000
$e + SII \rightarrow 2e + SIII$	1: 7.12×10^{-11} , 0.5, -271440
$e + SIII \rightarrow SII$	2: 1.8×10^{-12} , 0.686, 0.0049
	1.2×10^5 , 2.5, 88000
$\rm HI + \rm NII \rightarrow \rm HII + \rm NI$	1: 1.1×10^{-12} , 0, 0
$H\Pi + NI \rightarrow HI + N\Pi$	1: 4.95×10^{-12} , 010440
$\mathrm{HI} + \mathrm{OII} \rightarrow \mathrm{HII} + \mathrm{OI}$	1: 2.0×10^{-9} , 0, 0
$\rm HII + OI \rightarrow \rm HI + OII$	1: 1.778×10^{-9} , 0, -220

"The interpolation formulae are of the form "1:" Arrhenius, or "2:" Aldrovandi & Péquignot (1973), see equations (12) and (13)

Photoionization rates:

$$\phi_{a,x} = \int_{\nu_{a,x}}^{\infty} \frac{4\pi J_{\nu}}{h\nu} \sigma_{a,x}(\nu) d\nu$$
, (14)

Radiative transfer equation:

$$\frac{dI_{\nu}}{dl} - j_{\nu} - \kappa_{\nu}I_{\nu} \qquad (15)$$

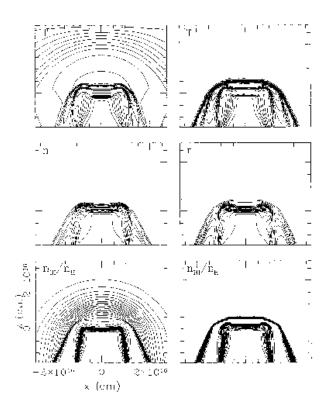
Average intensity:

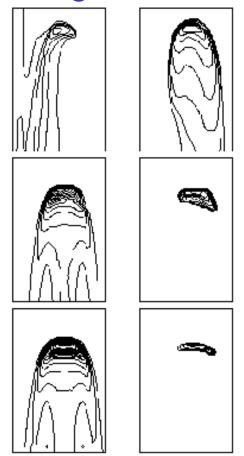
$$J_{\nu} = \frac{1}{4\pi} \oint I_{\nu} d\Omega \qquad (16)$$

 \rightarrow Included in 1D (stationary and time-dependent) shock models

 \rightarrow Two papers in which the "diffuse" ionisation field is included

 \rightarrow Of order 20 papers in which an external ionising field is included (flows in HII regions)





Standard calculations:

→ S and C are assumed to be at least singly ionised
→ Photoionisation (and associated heating) neglected

<u>Coronal ionisation equilibrium (S=0):</u>

$$n_{a,z}c_{a,z} = n_{a,z+1}\alpha_{a,z+1}$$
. (17)

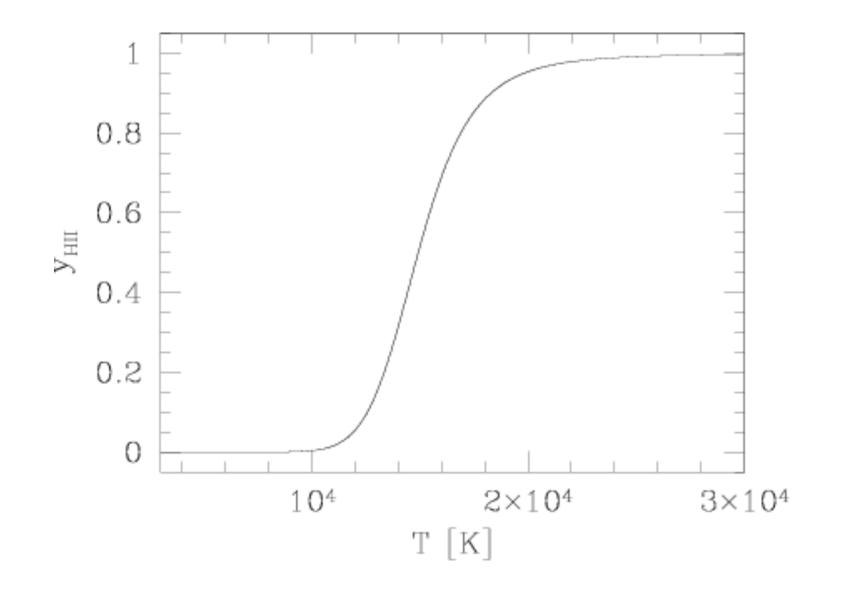
Equilibrium for H:

$$n_{HI}c(T) - n_{HII}\alpha(T). \qquad (18)$$

We can combine this equation with $n_H - n_{HI} + n_{HII}$ to obtain

$$y_{HII} = \frac{n_{HII}}{n_H} = \frac{1}{1 + \alpha(T)/c(T)},$$
 (19)

where the Arrhenius interpolations for the coefficients are $\alpha(T) - 3.69 \times 10^{-10} T^{-0.79}$ and $c(T) - 5.83 \times 10^{-11} T^{0.5} e^{-157800/T}$



The cooling function:

Recombination and free-free cooling:

$$L_{ff}(HII) - n_e n_{HII} \beta_{ff}(T)$$
, (20)

where the interpolation formula

$$\beta_{ff}(z,T) = 1.846 \times 10^{-27} z^2 T^{1/2}$$
, (21)

$$L_{rec}(HII) = n_e n_{HII} \beta_{rec}(T),$$
 (22)

where the interpolation formula

$$\beta_{rec}(t) = 1.133 \times 10^{-24} t^{-1/2} \left(-0.0713 + 0.5 \ln t + 0.640 t^{-1/3}\right)$$
 (23)

with t = 157890/T (see Seaton 1959).

$$\beta_{rec}(z, T) = z\beta_{rec}(1, T/z^2),$$
 (24)

Collisional ionisation:

$$L^{ion}_{a,x} = n_e n_{a,x} c_{a,x}(T) \chi_{a,x}$$
,

Collisionally excited lines:

l=1,...N : excited levels

$$n_{a,x} = \sum_{l=1}^{N} n_l$$
. (26)

Energy loss \rightarrow

$$L_{a,x}^{col} = \sum_{l=1}^{N} n_l \sum_{m < l} A_{l,m} h \nu_{l,m},$$

(27)

Populations of the excited levels \rightarrow

$$\sum_{m>l} n_m A_{m,l} + n_e \sum_{m \neq l} n_m q_{m,l}(T) - n_l \left[\sum_{m < l} A_{m,l} + n_e \sum_{m \neq l} q_{l,m}(T) \right], \quad (28)$$

$$n_{a,x} - \sum_{l=1}^{N} n_l. \quad (26)$$

\rightarrow Linear system of equations for the populations of the N levels

Collisional de-excitation coefficient \rightarrow

$$q_{m,l}(T) = \frac{8.629 \times 10^{-6}}{T^{1/2}} \frac{\Omega_{ml}(T)}{g_m},$$
 (29)

Collisional excitation coefficient \rightarrow

$$q_{l,m}(T) = \frac{g_m}{g_l} e^{-h\nu_{m,l}/kT} q_{m,l}(T).$$
 (30)

Collision strengths \rightarrow Chianti database

A coefficients

The 3-level atom:

$$n_1 + n_2 + n_3 - n_{a,z}$$
. (31)

Now, for l - 1, from equation (28) we obtain

$$n_1 \left[-n_e (q_{12} + q_{13})\right] + n_2 (A_{21} + n_e q_{21}) + n_3 (A_{31} + n_e q_{31}) = 0,$$
 (32)

and for l - 2, we obtain :

$$n_1(n_eq_{12}) + n_2[-A_{21} - n_e(q_{23} + q_{21})] + n_3(A_{32} + n_eq_{32}) = 0.$$
 (33)

\rightarrow System of 3 linear equations

2-level atom:

Equation (26) takes the form

$$n_{a,x} = n_1 + n_2$$
, (34)

and equation (28) takes the form

$$n_1 n_e q_{12} - n_2 (n_e q_{21} + A_{21}).$$
 (35)

Solution \rightarrow

$$n_2 = \frac{n_{a,z}}{(g_1/g_2)e^{E_{21}/kT} + 1 + n_e/n_e}$$
, (36)

where the critical density is defined as $n_c \equiv A_{21}/q_{12}$.

Low and high density regimes:

for $n_e \ll n_c$ (the "low density regime"), we have

$$n_2 = \frac{n_{a,z}n_eq_{12}}{A_{21}}$$
, (37)

and for $n_e \gg n_c$ (the "high density regime"), we have

$$n_2 = \frac{n_{a,z}g_2e^{-E_{21}/kT}}{g_1 + g_2e^{-E_{21}/kT}},$$
(38)

Cooling: general, low and high density regime

$$L_{21} = n_2 A_{21} h \nu_{21}$$
, (39)

which for the low density regime then takes the form

$$L_{21} = n_{a,z}n_eq_{12}h\nu_{21}$$
, (40)

and for the high density regime becomes

$$L_{21} = n_2(LTE)A_{21}h\nu_{21}$$
, (41)

Recipes for calculating the cooling function

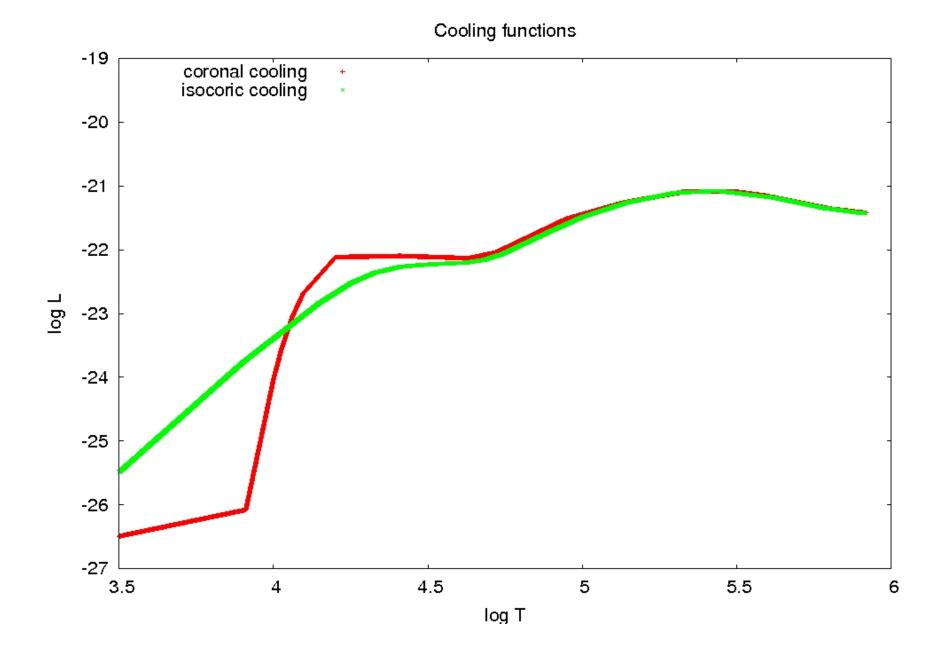
2 most simple approaches:

 \rightarrow Coronal ionisation cooling function

 \rightarrow Isochoric cooling function

$$\frac{3}{2} \frac{d}{dt} (n + n_e)kT = -L, \qquad (42)$$

Both tabulated as a function of T (for n=1)



→Tabulations of cooling functions for many ions(as a function of n and T)

→Fits to the low density regime cooling (as a function of T, for n=1)

$$\log_{10} \left(\frac{L_{OI}}{n_e n_{OI}} \right) = -45.0 + 1.23t_1 + 0, 5t_1^{10} + 1.2t_2 + 1.2 \left[\max(t_2, 0) \right]^2, \quad (43)$$
$$\log_{10} \left(\frac{L_{OII}}{n_e n_{OI}} \right) = -47.3 + 7.9t_3 + 1.9 \frac{t_4}{|t_4|^{0.5}}, \quad (44)$$
with $t_1 - 1 - 100/T, t_2 - 1 - 10^4/T, t_3 - 1 - 2000/T, t_4 - 1 - 5 \times 10^4/T.$

Single-species non-equilibrium cooling:

 \rightarrow Single continuity/rate equation for HI (or HII)

→Assume that the OI/II ionisation follows HI/II

→Consider only HI collisional ionisation + OI/OII collisionally excited line cooling

→Has to include a switch to other cooling function above 20000 K

Cooling:

→coronal, isochoric

 \rightarrow single species non-equilibrium

→many species non-equilibrium

Calculation of the emitted spectrum

the emission coefficient \rightarrow

the total line emission coefficient can be computed as

$$j^{(L)}_{21} = \frac{n_2 A_{21} h \nu_{21}}{4\pi}$$
. (45)

The emission coefficient as a function of frequency ν is

$$j_{21}(\nu) = \frac{j^{(L)}_{21}}{\sqrt{\pi}\Delta\nu_D} e^{-(\nu-\nu_{21})^2/\Delta\nu_D^2},$$
 (46)

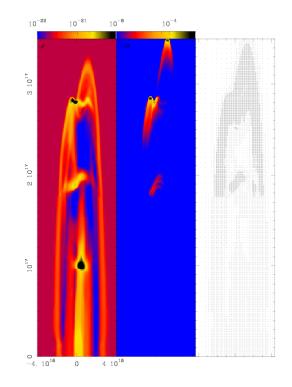
where $\Delta \nu_D - \nu_{21} v_T$ with $v_T - \sqrt{2kT/m_a}$ (m_a being the mass of the element which gives rise to the line). as a function of radial velocity:

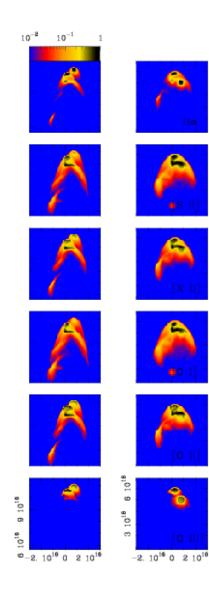
$$j_{21}(v_r) = \frac{j^{(L)}_{21}}{\sqrt{\pi}v_T} e^{-v_r^2/v_T^2}$$
. (47)

predicted emission line

intensity map:

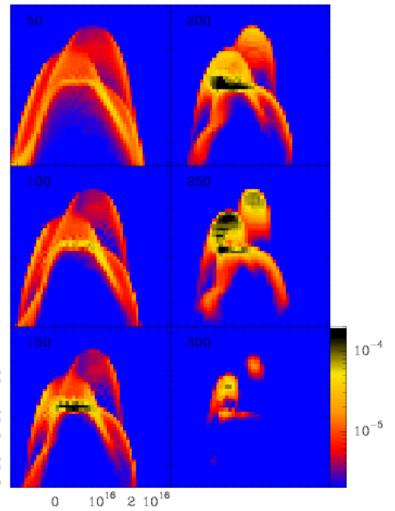
$$I_{21}(x, y) - \int j^{(L)}_{21}(x, y, z) dz$$
,





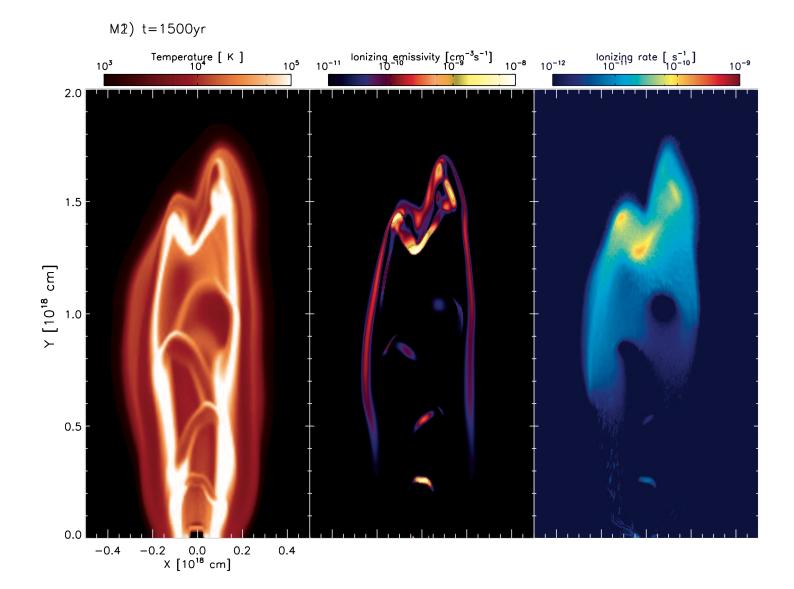
predicted velocity channel maps

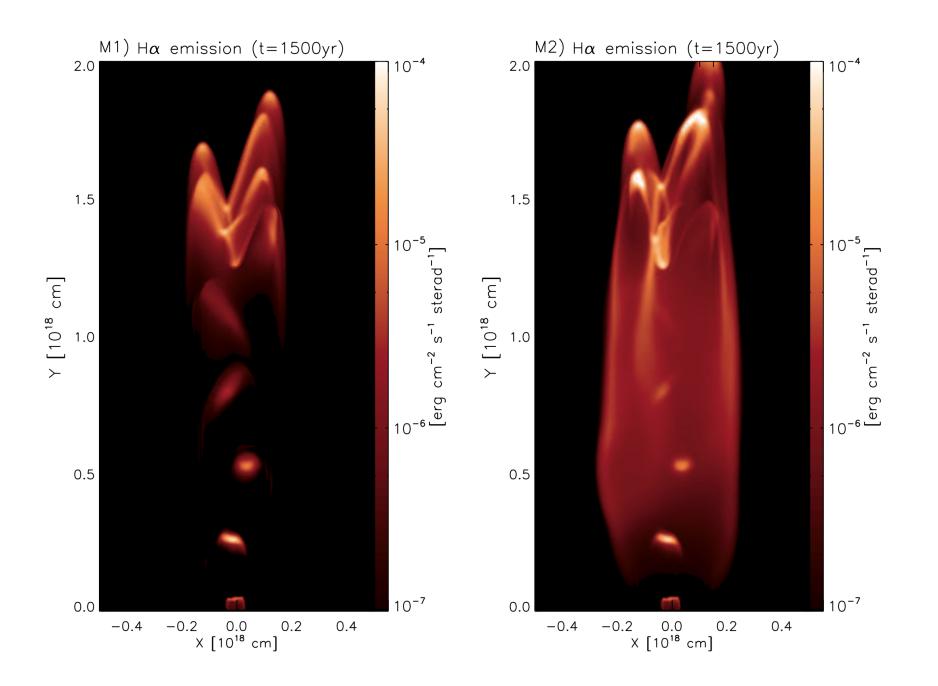
$$I_{21}(v_r, x, y) = \int \dot{j}_{21}(v_r - v^{(f)}_r, x, y, z) dz$$
,



(49)

 $8 \ 10^{16} \ 9 \ 10^{16} \ 10^{17}$





Optically thick lines

$$\tau_{21}(v_r, x, y, z) = \int_{-\infty}^{z} \kappa_{21}(v_r - v^{(f)}_r, x, y, z') dz',$$
 (50)

where κ_{21} is the absorption coefficient :

$$\kappa_{21}(v_r, x, y, z) = n_2(x, y, z) \left(\frac{g_2}{g_1}\right) \frac{c^2 A_{21}}{8\pi^{3/2} \nu_{21}^2 v_T} e^{(-v_r/v_T)^2},$$
 (51)

$$I_{21}(v_r, x, y) = \int j_{21}(v_r - v^{(f)}_r, x, y, z) \exp \left[-\tau_{21}(v_r, x, y, z)\right] dz$$
. (52)

Summary:

the calculation of the cooling function and the ionisation state of the gas can be done in 3 different degrees of complexity:

- \rightarrow coronal equilibrium or isochoric
- \rightarrow single species, non-equilibrium
- →many species, non-equilibrium