
Vasiliev’s Equations, Deformed Oscillators and
Topological Open Strings

Per Sundell

UNAB, Santiago

Workshop on Higher-Spin and Higher-Curvature Gravity

ICTP-SAIFR, São Paulo

Nov 6, 2013

Talk based on collaboration with

Boulanger and Valenzuela ’12-’13
Boulanger, Colombo and Sezgin ’10-’12

Engquist and Tamassia ’05-’07
Vasiliev’s Eqs., Deformed Oscillators and Top. Open Strings Sundell, UNAB



Outline

3D fractional-spin Chern–Simons gravity
Vasiliev ’88; Bergshoeff, Blencowe, Stelle ’89; also Plyushchay ’93

3D and 4D fractional-spin Vasiliev gravity
Prokuskin, Vasiliev ’98

Secret agenda: Testing ground for first- and second-quantized
Poisson sigma models — topological open strings related to
tensionless discretized closed strings.
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3D CS FSGRA

Stress two technical details:

Construction bi-graded associative fractional-spin algebra via
“fusion” of polynomial and matrix sectors in the
non-polynomial completion of the enveloping algebra of the
deformed oscillator algebra.

Bi-linear form via the canonical trace operation.

Leading up to the point we would like to make in this talk on the
CS FSGRA:

While the on-shell formulation can be fetched working entirely
within standard Fock spaces, the off-shell formulation requires
the star-product algebra realization (in the apparent absence
of any meaningful regularization of Fock-space traces of
monomials in deformed oscillators).
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3D CS FSGRA: Deformed oscillator algebra

Wigner’s deformed oscillator algebra

[qα, qβ]? = 2iεαβ(1 + νk) , {k , qα}? = 0 , k ? k = 1

Its enveloping algebra Env(2, ν) consists of arbitrary
star-polynomials in k and qα modulo the above relations.

Main theme: Non-polynomial extensions/completions of
Env(2, ν) with well-defined star-product compositions obeying
associativity?
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3D CS FSGRA: Non-polynomial completions

One way of thinking of such a non-polynomial associative
algebra, A(2, ν) say, is as a direct sum of infinite-dimensional
vector spaces, each with a specific basis,

A(2, ν) =
⊕

Σ

AΣ ,

Instead of requiring all possible combinations of star-products
to be non-trivial, one may adopt a fusion rule

AΣ ? AΣ′ =
∑
Σ′′

NΣ′′
ΣΣ′AΣ′′ , NΣ′′

ΣΣ′ ∈ {0, 1} ,

such that the resulting nested star-products obeys
associativity, which in particular requires∑

Σ

NΣ
Σ1Σ2
NΣ′

ΣΣ3
=
∑

Σ

NΣ′
Σ1ΣNΣ

Σ2Σ3
.

For extensions of minimal models, some nested products
require prescriptions, but end result is associative.
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3D CS FSGRA: Monomial basis

Non-polynomial extension in monomial basis

Mon∞(2, ν) :=
{
Mo(k, q) = Π+ ?Mo+(q) + Π− ?Mo−(q)

}
Mo±(q) :=

∑
n>0

Moα1...αn

±;(n) q(α1
? · · · ? qαn) , Π± = 1

2 (1± k) ,

Forms an associative algebra on its own provided sums and
star products exchangeable.

One-sided actions: the only non-trivial operator whose
left-action is diagonal in monomial basis is k .
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3D CS FSGRA: Matrix basis

Diagonilize “Hamiltonian”, N say, yields new basis.

Choose N := 1
2 {a

−, a+}? − 1
2 (1 + ν), which has a

normalizable integer spectrum, viz.

(N −m) ? Pn
m(σ) = 0 = Pn

m(σ) ? (N − n) ,

Πσ ? P
n
m(σ) = Pn

m(σ) ,

Pn
m(σ) ? Pn′

m′(σ′) = δnm′δσσ′,(−1)m+nPn′
m (σ) .

Pn
m(σ) have non-polynomial real-analytic Weyl-ordered

symbols.

Non-polynomial extension in matrix basis

Mat∞(2, ν;N) :=

Ma(k , q) =
∑

m,n>0

Manm(σ)Pm
n (σ)

 .

Forms an associative algebra on its own provided it is possible
to exchange sums and star products.
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3D CS FSGRA: Associative FS algebra

Z2-graded associative algebra

Fs(2, ν;N) :=

{[
Π+ ? Mon ? Π+ Π+ ? Mat ? Π−
Π− ? Mat ? Π+ Π− ? Mat ? Π−

]}
Product rule: 2× 2-matrix product using

(Monomial) ? (Monomial) =
∑
finite

(Monomial) ,

(Monomial) ? (Matrix element) =
∑
finite

(Matrix element) ,

(Matrix element)?(Matrix element) =
∑
finite

(Matrix element) ,

and the real-analyticity of Pn
m(σ) to expand

(Matrix element)?(Matrix element) =
∑

infinite

(Monomial) .

No need to expand basis of Mon(2, ν) in basis of Mat(2, ν;N).
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3D CS FSGRA: Master one-form

Add two Clifford algebras and define master one-form

Aε :=

[
W ψε
ψε U

]
∈ Fs(2, ν;N; ε)

Fs(2, ν;N; ε) := [Fs(2, ν;N)⊗ Cl1(Γ)⊗ Cl1(ξ)] /Z2(ε)

Statistics and intrinsic parities of generating elements:

εstat(qα, k , Γ, ξ) = (0, 0, 0, 1)

πq(q, k , Γ, ξ) = (−q, k , Γ, ξ) idem πk , πΓ, πk

Statistics and intrinsic parities of master fields

εstat(Aε) = 0 , εq,ξ(W , ψε, ψε,U) = (+1, ε, ε,+1) ,

where εq,ξ denotes the πqπξ-parity.

(W ,U) and (ψ−, ψ−) consist of bosonic component fields.

(ψ+, ψ+) consist of fermionic component fields.
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3D CS FSGRA: Trace on Env(2, ν)⊗ Cl1(Γ)⊗ Cl1(ξ)

Trace operation on Env(2, ν)⊗ Cl1(Γ)⊗ Cl1(ξ):

Trν(f ) = STrν(k ? f )|ξ=0=Γ ,

with supertrace STrν operation on Env(2, ν) fixed uniquely by
its defining properties

STrν(f ? g) = (−1)εq(f )STrν(g ? f ) , STrν(1) = 1

where εq(f ) is the q-parity of f , i.e. εq(f )f := πq(f ).

In the Weyl-ordered basis

STrν(f (k, q)) = f0;(0) − νf1;(0)

Extend Trν to non-polynomial completions of Env(2, ν) whose
Weyl-ordered symbols are real-analytic at qα = 0.
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3D CS FSGRA: Trace on Fs(2, ν;N ; ε)

Tr(Mε) := Tr(Mo−εMa) for Mε =

[
Mo Biε
Biε Ma

]
∈ Fs(2, ν;N; ε)

Cyclicity property

Tr(Mε ?M′ε) = Tr(M′ε ?Mε)

Expand

Biε =
∑
I

Bi IεΘε
I , εs(Θε

I ) = εs(Bi
I
ε) = −ε ,

Θε
I basis elements, Bi Iε components idem Biε.

It follows from Tr(Θε
I ?Θε

J) = Tr(Θε
J ?Θε

I ) that
Tr(M1;ε ?M2;ε) = Tr(Mo1 ?Mo2 − εMa1 ?Ma2)−
ε
∑

I ,J(Bi I1;εBi
J
2;ε + Bi I2;εBi

J
1;ε)Tr(Θε

I ?Θε
J)

which is manifestly symmetric under 1←→ 2 .
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3D CS FSGRA: Chern–Simons action

The Chern–Simons action

S [A±] =

∫
Tr
(

1
2A± ? dA± + 1

3 (A±)?3
)

=

∫
STrν

(
1
2W ? dW + 1

3W
?3 + W ? ψ± ? ψ±

±( 1
2U ? dU + 1

3U
?3 + U ? ψ± ? ψ±)

+ 1
2 (ψ± ? dψ± ± ψ± ? dψ±)

)
|Γ=0=ξ ,

using the Π± projections and

STrν(ψ± ?W ? ψ±) = ±STrν(W ? ψ± ? ψ±) ,

STrν(ψ± ? U ? ψ±) = ±STrν(U ? ψ± ? ψ±) .

In Π− ? Mat(2, ν;N) ? Π− 3 U the STrν reduces to matrix
traces proportional to STrν

(
P0

0 (±1)).

Correlated ν-dependent levels of tensorial and internal gauge
theories.
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3D CS FSGRA: Summary so far

Non-polynomial formally associative completion of Env(2, ν)
by fusing together monomial and matrix sectors.

Universal trace operation yields Chern–Simons action

S [A±] =

∫
Tr
(

1
2A± ? dA± + 1

3 (A±)?3
)

=

∫
STrν

(
1
2W ? dW + 1

3W
?3 + W ? ψ± ? ψ±

±( 1
2U ? dU + 1

3U
?3 + U ? ψ± ? ψ±)

+ 1
2 (ψ± ? dψ± ± ψ± ? dψ±)

)
|Γ=0=ξ ,

with fixed relative normalizations of all kinetic terms.

On-shell formulation: fetched by Fock-space realization.

Off-shell formulation: requires star-product realization.
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Inclusion of local fractional spin degrees of freedom?

Let’s side-step important issues related to

Real forms and positivity

Dual CFTs and boundary anyons

Critical limits

and instead take a look at generalizations of the basic ideas to
Vasiliev’s systems with local degrees of freedom.
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3D and 4D Vasiliev fractional-spin gravities

Observations that we will make use of:

Vasiliev’s master-field formulation does not refer to any a
priori Lorentz structure.

Inequivalent models could therefore arise by expanding the
dependence of the master fields on the fiber coordinates into
inequivalent sets of sectors of fiber functions glued together
into associative structures using fusion rules.

Moreover, in each case, yet another choice governs the
embedding of the Lorentz connection, after which the fully
non-linear system should be written on manifestly
Lorentz-covariant form using Vasiliev’s deformed oscillator
algebra.

In particular, this allows for Lorentz structures with one-forms
and zero-forms valued in fractional-spin algebras.
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3D/4D Vasiliev FSGRA: Main technical steps

Implementation of fusion rules using separation of variables

(Non-canonical) embedding of Lorentz connection

Manifestly Lorentz-covariant form of the equations

Lorentz representation matrices in symbol calculus
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3D/4D Vasiliev FSGRA: Master field equations

Three overall bosonic master fields (Â, B̂, Ĵ) of form degrees
(1, 0, 2) obeying

d̂ Â + Â ? Â + B̂ ? Ĵ = 0 , d̂ B̂ + Â ? B̂ − B̂ ? Â = 0 ,

d̂ Ĵ = 0 , [Ĵ, Â]? = 0 = [Ĵ, B̂]? ,

on a correspondence space C with a bundle structure

F → C → B ,

in which d̂ and (Â, B̂, Ĵ) are horizontal.
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3D/4D Vasiliev FSGRA: The fiber space

The fiber space
F = Y × I ,

where Y and I are two non-commutative spaces.

Y is a bosonic twistor space.

I is internal; its coordinates generate a unital associative
algebra AI .

Coordinatize I using generators of bosonic and fermionic
Clifford algebras ClM(Γi ) and ClN(ξr ), respectively.
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3D/4D Vasiliev FSGRA: The base manifold

The base is generalized fiber bundle

B →M
with non-commutative base M containing commutative
space-time sub-manifolds.
Over each point p ∈M there is a non-commutative fiber Zp.
Zp looks locally like Y but its global geometry is determined

by the field configuration (Â, B̂, Ĵ).
Thus, if p 6= p′ then Zp need not be isomorphic to Zp′ .
Locally, charts MI ⊆M embedded into sections

MI
i→ B ,

such that i∗(Â) =: U and i∗(B̂) =: B provide a set of
boundary conditions on Zp for each p ∈MI .
The deformation problem on Zp requires additional
gauge/boundary conditions on the Z-space connection

V̂ := Â ∩ ker i∗ .
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3D/4D Vasiliev FSGRA: Fusion rules

Think of the full master fields as sections of a fiber bundle

A→ E → B .

A =
⊕

Σ AΣ is a unital associative algebra consisting of sectors
AΣ of functions on F .

AΣ thus consists of composite operators built from the
non-commutative coordinates of F and represented by
suitable symbols.

Use fusion rules to endow A with associative structure, viz.

AΣ1 ? AΣ2 ⊆
∑

Σ

NΣ1Σ2
ΣAΣ , NΣΣ′Σ

′′ ∈ {0, 1}

NΣ1Σ2
ΣNΣΣ3

Σ′
= NΣ1Σ

Σ′NΣ2Σ3
Σ .
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3D/4D Vasiliev FSGRA: Matrix fusion and central element

{AΣ} =
{
Aλ

λ′
}
, NΣ1Σ2

Σ3 = δ
λ′1
λ2
δλ3
λ1
δ
λ′2
λ′3
,

Aλ
λ′ ? Aλ′

λ′′ ⊆ Aλ
λ′′ (no sum!) .

If all Aλ
λ′ = A0 one has A = (Matn(A0)) for some n.

In these cases, the central element

Ĵλ
λ′ = Ĵ0 δ

λ′
λ , i∗(Ĵ0) = 0 .

Canonical coordinates (yα, zα) of Y × Z, obeying

[yα, yβ]? = 2iεαβ , [zα, zβ]? = −2iεαβ .

Ĵ0 is two-form on undeformed Z built from function κ̂ on
Z × F (and its hermitian conjugate) defining Klein element,

Ĵ0 = i(bdzαdzακ̂+ h.c.) ,

such that Ĵ ? B̂ cannot be removed by any ?-function field
redefinition.
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3D/4D Vasiliev FSGRA: Central element for Fs models

In the case of non-trivial fusion rules,

Ĵ =
∑

Σ

ĴΣ .

In the case of matrix fusion rules, it is natural to use the
factorization property

κ̂ = κZ ? κF .

to take
Ĵλ
λ′ = (Ĵ0)λ δ

λ′
λ ,

(Ĵ0)λ = i(bdzαdzακZ ? (κF )λ + h.c.) .

For 3D models with A = Fs(2, 0;N,−1) (undeformed bosonic
model), we use

J = ibdzαdzακZ ?

[
[2πδ2(y)]Weyl−order 0

0 [(−1)N? ]Fock−space

]
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3D Vasiliev FSGRA: Statistics/twistor-space parity

Correlate semi-classical statistics to twistor-space parity

πyπzπξ(ÂΣ, B̂Σ, ĴΣ) = σΣ(ÂΣ, B̂Σ, ĴΣ) , σΣ ∈ {1,−1}

NΣΣ′Σ
′′

(σΣσΣ′ − σΣ′′) = 0 .

Split the exterior derivative and connection one-form into

d̂ = d + d ′ , d := dXM∂M , d ′ := dzα∂α ,

Â = Û + V̂ , Û := dXM ÛM , V̂ := dzαV̂α .

Expand in ξr and symbols on Y × Z with definite parities

εy ,z

{
B̂Σ;r [k], ÛΣ;M;r [k], V̂Σ;α;r [k]

}
= (−1)kσΣ {+1,+1,−1} ,

εstat

{
B̂Σ;r [k], ÛΣ;M;r [k], V̂Σ;α;r [k]

}
= 1

2 (1 + (−1)k) {1, 1, 1} .
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3D Vasiliev FSGRA: Full Lorentz generators

Embed an sl(2;R)Lor connection Prokushkin, Vasiliev ’98

Û = Ŵ +
1

4i
ωαβ ? M̂αβ , , ωαβ = dXMωM

αβ ,

ωαβ ? f̂ = (−1)deg(f̂ )f̂ ? ωαβ ∀f̂ ∈ Ω̂hor(C) ? A .

The full Lorentz generators

M̂αβ := M̂
(0)
αβ + M̂

(S)
αβ ,

consists of “orbital” plus “internal” parts, respectively.
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3D Vasiliev FSGRA: Internal part and deformed oscillators

Internal part

M̂
(S)
αβ := Ŝ(α ? Ŝβ) , Ŝα := zα − 2i V̂α ,

from deformed oscillators

[Ŝα, Ŝβ]? = −2iεαβ(1 +
1

2
εγδ Ĵγδ ? B̂) ,

[Ĵαβ, Û]? = [Ĵαβ, B̂]? = 0 = {Ĵαβ, Ŝγ}? .

So Ŝα carries a Lorentz doublet index and hence, from what
follows, so does V̂α.
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3D Vasiliev FSGRA: Orbital part

Orbital part

M̂
(0)
αβ := M

(Y)
αβ + M

(Z)
αβ ,

M
(Z)
αβ := −z(α ? zβ) , M

(Y)
αβ =

∑
Σ

MΣ;αβ .

M
(Z)
αβ transform the canonical coordinates of Z as doublets.

M
(Y)
αβ transform the elements of A

[M
(Y)
αβ , fΣ]? = LΣ;αβfΣ ,∑

Σ′,Σ′′

(
NΣ′Σ

Σ′′
MΣ′;αβ ? fΣ −NΣΣ′Σ

′′
fΣ ?MΣ′;αβ

)
|AΣ′′ = LΣ;αβfΣ ,

where LΣ;αβ are differential operators on F acting on symbols
as to generate Lorentz representation matrices

[LΣ;αβ, LΣ;γδ] = 8iεβγLΣ;αδ .
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3D Vasiliev FSGRA: Full Lorentz algebra

The above generators obey

[M̂
(Y)
αβ , M̂

(Y)
γδ ]? = 8iεβγM̂

(Y)
αδ , [M̂

(Z)
αβ , M̂

(Z)
γδ ]? = 8iεβγM̂

(Z)
αδ ,

[M̂
(0)
αβ , M̂

(0)
γδ ]? = 8iεβγM̂

(0)
αδ , [M̂

(S)
αβ , M̂

(S)
γδ ]? = −8iεβγM̂

(S)
αδ .

It follows that

[M̂αβ, M̂γδ]? − 8iεβγM̂αδ = [M̂αβ, M̂
(S)
γδ ]? − ((αβ)↔ (γδ)) ,

has a field-dependent Lie algebra structure

[M̂αβ, M̂γδ]? − 8iεβγM̂αδ = L(cpts)
αβ M̂γδ − ((αβ)↔ (γδ)) ,

where L(cpts)
αβ generate Lorentz transformations on component

fields (in accordance with the transformations dictated by
LΣ;αβ and the fact that V̂Σ;α is a doublet).
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3D Vasiliev FSGRA: Manifestly Lorentz-covariant
master-field equations

Substituting Û = Ŵ + 1
4iω

αβM̂αβ into the equations of

motion for Û, B̂ and Ŝα yields

∇Ŵ + Ŵ ? Ŵ +
1

4i
rαβM̂αβ ≈ 0 ,

∇B̂ + [Ŵ , B̂]? ≈ 0 , ∇Sα + [Ŵ , Ŝα]? ≈ 0 .

Lorentz covariantized derivatives

∇Ŵ := dŴ + [ω̂(0), Ŵ ]? , ∇B̂ := dB̂ + [ω̂(0), B̂]? ,

∇Ŝα := dŜα − ωαβŜβ + [ω̂(0), Ŝα]? ,

ω̂(0) :=
1

4i
ωαβM̂

(0)
αβ , rαβ := dωαβ − ωαγωγβ ,
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3D Vasiliev FSGRA: Three types of symmetries

Lorentz transformations under which ωαβ transforms as a spin

connection and the component fields of Ŵ , B̂ and Ŝα in their
canonical Lorentz representations;

Lorentz-covariantized higher-spin symmetries

δε̂Ŵ = ∇ε̂+ [Ŵ , ε̂]? , δε̂ωαβ = 0 ,

δε̂B̂ = [B̂, ε̂]? , δε̂Ŝα = [Ŝα, ε̂]? ;

Shift symmetries with one-form parameters ζαβ acting as

δζωαβ = ζαβ , δζŴ = − 1

4i
ζαβ?M̂αβ , δζ(B̂, Ŝα) = 0 .
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3D Vasiliev FSGRA: Lorentz representation matrices in
perturbative symbol calculus

So far we have relied on separation of Y and Z coordinates.

However, in order to obtain a sensible “metric-like”
perturbation theory one needs to work with symbols defined
with respect to a normal-ordered basis that mixes Y and Z
coordinates in such a way that the symbol of the Klein
element κ̂ is real-analytic at yα = 0 = zα.

Let f̂Σ(y , z ; Γ, ξ) denote the resulting normal-ordered symbols.

The Lorentz representation matrices acting in this basis are
defined by

[M̂
(0)
αβ , f̂Σ]? = L̂Σ;αβ f̂Σ ,

where L̂Σ;αβ are differential operators on Z × F obeying

[L̂Σ;αβ, L̂Σ;γδ] = 8iεβγ L̂Σ;αδ .
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3D Vasiliev FSGRA: Conclusions

We have stressed:

Role of star-product quantization in FSGRA.

The Lorentz covariantization of FSGRA with local degrees of
freedom goes through formally as in the tensorial case.

Some basic questions:

Extension of linearized on-mass-shell theorem to local
propagating fractional spin fields?

Switching on 〈B̂〉 = ν in 4D deforms the higher-spin algebra
such that maximal subalgebra is so(2, 2) or so(1, 3) —
massive 3D boundary anyons?

Finally, besides holographic duals, it would be interesting to
quantize fractional-spin gravities using first- and second-quantized
Poisson sigma models — is FSGRA an example of a class of
models for which the PSM supercedes the metric-like approach?
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