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Overview

Today we will...

What to do when replicated experimentation is not possible

Matrices in conservation

The Soay sheep system as an example of use of a stochastic matrix

Integral projection models and the Yellowstone wolves system
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Overview

What to do when replicated experimentation is not possible

There is only one St.Kilda and one Yellowstone National Park

So it is impossible to have experimental controls to investigate
consequences of changes in plant phenology, or species reintroduction
on ecosystem functioning, community structure and population
dynamics of competitors or prey
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Overview

What to do when replicated experimentation is not possible

Insights into how environmental variation drives fluctuations in
selection pressures, the additive genetic variance, and the response to
selection in free-living populations requires detailed pedigrees, which
can only be obtained through the study of marked individuals
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Overview

What to do when replicated experimentation is not possible

Currently the best we can do is to collect observational data,
construct models from these data and analyse these models

The analysis of models should provide insights into the workings of
the system under study, but they should also allow the posing of
hypotheses that themselves may suggest small-scale experiments or
additional data that require collection
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Matrices and conservation

Matrix models

Matrix models are appropriate to study the dynamics of discrete
characters, like age or genotype at a single locus

Identifying key factors: association between demographic rate and
population growth

Building a structured, stochastic model of population growth requires
multiple steps.

After the population has been split into a number of (st)ages with
differing demographic rates, a series of environmental states needs to
be identified
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Matrices and conservation

Matrix models

The environmental states might describe years when population
growth is low, intermediate or high

The environmental states need to be linked to associated population
transition matrices

Elasticities (and sensitivities) are the tools to shed light upon the
demographic rates that influence population growth in stochastic
environments
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Matrices and conservation

Matrix models

This machinery consists of three broad steps:

Define environmental states

Construct a sequence of environmental states using a Markov chain

Which is a mathematical system that undergoes transitions from one
state to another, between a finite or countable number of possible
states. It is a random process usually characterized as memoryless:
the next state depends only on the current state and not on the
sequence of events that preceded it

Perform perturbation analysis to calculate the influence of
demographic rates on the long-run stochastic growth (λ)
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Soay sheep in the St. Kilda archipelago
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Soay sheep

Wild, primitive breed, sexually dimorphic (females weigh up to 30kg,
males 45kg), Sexually mature by six months, Females can mate with
many males each oestrus

Lambs born in April, animals gain condition in the summer, Rut in
November, during winter they lose condition
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Soay sheep

Why do we study them?

Population fluctuates in an interesting way

A simple system sheep and vegetation

High population growth rate and population crashes
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Soay sheep

How do we study them?

Mark individuals, follow them throughout life and construct individual
life-histories

Collect data on population size, food availability and climate
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Soay sheep

Since 1985 - capture and mark lambs with unique ear tag. >95% of
animals in study area are marked
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Time series of Soay sheep counts
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Density dependence and stochasticity

Threshold = c = 7.066 or 1170 sheep. Below c the slope of the
regression line is not significantly different from unity. The growth
rate is not density dependent

Above c the slope is significantly different from unity. The growth
rate is density-dependent

Storms at the end of winter explained some of the variation around
the regressions ( Bento PhD thesis - 2012)
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Survival rates vary with age and sex

Significant time variation in survival

Figure. Female survival with age (left). Male survival with age (right)
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Factors associated with survival

Different demographic classes respond in contrasting ways to
density and climate
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Why contrasting responses?

Caused by life-history differences

Males: cost of reproduction in the rut (Autumn)

Females: cost of reproduction in late winter / early spring
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Fertility

Fertility rates influenced by density and climate in different ways in
different demographic classes

December-April temperature influences recruitment rates
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A stochastic matrix model for Soay sheep

One matrix for females, one matrix for males

Density calculated as sum of male and female matrix

Survival and fecundity functions include density-dependent and
climatic effects

Climatic effects drawn from mutually correlated, serially independent
normal distributions
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Stochastic, density-dependent structured model

nt + 1= Atnt

where f represents fecundity and s survival, L lambs, Y yearlings, P
prime-aged, O oldest individuals

Environmental variability is implemented using a markov chain (set of
numbers generated by transition rules)

Population transition matrix at time t ontains demographic rates
drawn from a specific environmental state ev (which is a year or
specific type of year)

For details on how to implement a markov chain see Ezard and
Coulson 2010
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Stochastic, density-dependent structured model

nt + 1= Atnt

Describe the probability of moving from one number to another

Different markov chains generate different environmental dynamics

For details on how to implement a markov chain see Ezard and
Coulson 2010

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 22 / 65



Stochastic, density-dependent structured model

nt + 1= Atnt

Describe the probability of moving from one number to another

Different markov chains generate different environmental dynamics

For details on how to implement a markov chain see Ezard and
Coulson 2010

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 22 / 65



Stochastic, density-dependent structured model

Perturbation

Unlike deterministic analysis (when there is only one number to
perturb, in stochastic perturbation analysis we have distributions

We perturb by varying amounts to ensure that either the coefficient
of variation, mean or the variance of the distribution of demographic
rates remains fixed.

The stochastic elasticity of λ with respect the rate we will perturb is
the proportional change in λ for a proportional change in that rate

Different age-classes respond in different ways to environmental
stochasticity such that we might want to quantify the responses of
life-history stages to disturbances within and between different
environmental states
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Stochastic, density-dependent structured model

Perturbation
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Why does this model perform well?

Model performance
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Why does this model perform well?

Strength of density dependence and climatic affects differ across
demographic classes

Population size at time t independent of population size at time t

Need to consider total density, population structure and climate
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Predicting a crash

The distribution of weather is associated with the frequency and
severity of a crashes over a period of time

Each line represents one simulation.

Initial population size identical, but different population structures.
Age structure drawn from data
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Predicting a crash

Two identical population sizes experiencing the same weather
conditions (but with different initial structures) can experience very
different trajectories.

In red:age-structure dominated by animals not susceptible to density

In black: age-structure dominated by animals susceptible to density
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Model performance and conclusions

The detail matters

The probability of any one crash occurring is determined by the
population density, the weather and the population structure

Different models from the same system can generate different
predictions
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Integral projection models (IPMs)

Overview

What is an IPM

Devise a model that allows quantities of interest to be calculated

Perturb model; how quantities change?

What to model?

Temporal dynamics of multivariate distribution of individual
characters (genotypes and phenotypes)
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Integral projection models (IPMs)

Linking population dynamics, life history, population and quantitative
genetics

A relatively new, extremely powerful model that examines the
behaviour of numerous aspects of a system is the integral projection
model (IPM) (Easterling et al. 2000).

IPMs allow the dynamics of continuous phenotypic character
distributions to be tracked

Individuals in different positions along the continuum have different
rates of survival, reproduction and development
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Integral projection models (IPMs)

Linking population dynamics, life history, population and quantitative
genetics

Ellner and Rees (Ellner and Rees 2006, 2007, Rees and Ellner 2009)
have conducted most of the fundamental research on analysing these
models

But they are yet to be widely used, although a growing number of
researchers have begun to construct and analyse IPMs (Metcalf et al.
2008, Ozgul et al. 2010).
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Integral projection models (IPMs)

Linking population dynamics, life history, population and quantitative
genetics

There are 4 quantities to take into consideration:

Population dynamics: population growth rate, variance in population
growth rate, long run stochastic growth rate and population
age-structure

Life history: generation length, dispersion of reproduction, mean and
variance in life reproductive success (LRS) and mean and variance in
longevity

Quantitative genetics: additive genetic (co)variances, heritabilities
and selection via LRS

Population genetics: allele frequencies, growth rates of alleles or
genotypes, variation in allele frequencies and strength of selection
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genotypes, variation in allele frequencies and strength of selection
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Integral projection models (IPMs)

Linking population dynamics, life history, population and quantitative
genetics

If immigration and emigration are ignored, IPMs (and matrix models)
consist of four fundamental functions that describe the associations
between discrete or continuous characters (or both) and the individual
1) survival, 2) development, 3) recruitment, and 4) inheritance rates
(Easterling et al. 2000).
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Integral projection models (IPMs)

How are these quantities related?

To find out we need to track:

Allele frequencies to address population genetic questions

Phenotypic traits to address quantitative genetic questions

Population size to address population dynamics

Survival and fertility rates to address life history questions

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 35 / 65



Integral projection models (IPMs)

How are these quantities related?

To find out we need to track:

Allele frequencies to address population genetic questions

Phenotypic traits to address quantitative genetic questions

Population size to address population dynamics

Survival and fertility rates to address life history questions

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 35 / 65



Integral projection models (IPMs)

How are these quantities related?

To find out we need to track:

Allele frequencies to address population genetic questions

Phenotypic traits to address quantitative genetic questions

Population size to address population dynamics

Survival and fertility rates to address life history questions

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 35 / 65



Integral projection models (IPMs)

How are these quantities related?

To find out we need to track:

Allele frequencies to address population genetic questions

Phenotypic traits to address quantitative genetic questions

Population size to address population dynamics

Survival and fertility rates to address life history questions

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 35 / 65



Integral projection models (IPMs)

The data more specifically

To find out we need to record:

Survival from time t to t+1,

The character value of surviving individuals at time t+1

The number of offspring produced between t and t+1 that recruit to
the population at time t+1

The character values of offspring at time t+1 when they recruit to
the population

For a step by step guide on the construction of models see
Coulson’s paper (Oikos 2012)
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Integral projection models (IPMs)

The functions- Survival

The survival function determines the number of individuals (and their
character values) that remain in the population between time t and
t+1

The aim is to identify an equation that describes how a specific trait
(e.g. body weight) influences survival.
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Integral projection models (IPMs)

The functions- Survival

There is a large literature on how best to do this, with markrecapture
analysis widely used for cases when not all living individuals are seen
at each population census (Lebreton et al. 1992).

Or you can use classic linear regression techniques: e.g. binomial
error structure and a logit link function because individuals either
survive (1) or die (0) over each time step

So we then get S(z, t): the predicted probability of survival given a
specific character value z
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Integral projection models (IPMs)

The functions- Recruitment

The recruitment function describes the number of new individuals that
are added to the population at time t+1 in other words the number
of offspring produced between time t and t+1 that survive to t+1.

The analysis focuses on identifying the expected number of offspring
produced by a female of a given value of a specific trait (e.g. body
weight)

Again you can use classic linear regression techniques: e.g. binomial
error structure and a logit link function because individuals either
successfully produce a recruit (1) or not (0) over each time step

So we then get R(z, t): the predicted probability of producing
offspring given a specific character value z
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Integral projection models (IPMs)

The functions- Development

The development function describes how the character value (e.g.
body weight) changes among surviving individuals from time t to t+1.

We need to bear in mind that not all surviving individuals that had
the same body weight at time t will have identical body weights at
time t+1. This means that for each body weight at time t we require
a probability distribution of possible body weights at time t+1.

The aim is to work out the expected distribution of body weights at
time t+1 among survivors given their distribution of body weights at
time t.
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Integral projection models (IPMs)

The functions- Development

Working out the distribution of expected body weights at time t+1
for each observed body weight at time t before adding these
distributions together.

The mathematical notation to describe this is G(z‘| z, t). Here the z
is body weight at time t and z is body weight at time t+1. The |
symbol means ‘given’ or ‘conditional on’.
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Integral projection models (IPMs)

The functions- Development

A body weight distribution for time t + 1 is obtained by summing this
function over all body weights at time t

First, it assumes that the probability distribution of character values
at t +1 for any given character value at t is Guassian (see details in
Easterling et al. (2000))

G(z‘| z, t) is consequently a function describing how body weight at
time t maps to body weight at time t +1 among those individuals
that survive.
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Integral projection models (IPMs)

The functions- Inheritance

Identical logic to that used to construct the function G(z‘| z, t) is
used to identify D(z‘| z, t)

Regress the body weights of recruits that enter the population at time
t + 1 against that of parents (in this case the mother) at time t.
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Integral projection models (IPMs)

Why do distributions change? And what are the biological processes?

Mass removed by mortality and emigration

Mass added by reproduction and immigration

Mass is transformed by ontogenetic development
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Integral projection models (IPMs)

Mass removal- Mortality
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Integral projection models (IPMs)

Transformation- Ontogenic development
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Integral projection models (IPMs)

Mass addition- fertility

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 47 / 65



Integral projection models (IPMs)

Mass addition- Inheritance
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Integral projection models (IPMs)

Putting it all together

The model will project a distribution of the character (e.g.body
weight) at time t to a new distribution at t+1 (Easterling et al. 2000)
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Integral projection models (IPMs)

Putting it all together
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Integral projection models (IPMs)

Calculation of quantities

Annual population growth

Age-structure

Distribution of body sizes

Genotype and allele frequencies

Covariance between parent and offspring characters
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Integral projection models (IPMs)

Calculating quantities

Calculation of some quantities too involved to provide derivations in this

lecture, but see...
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Integral projection models (IPMs)

Calculating quantities

The easiest way to work with the IPM is to take the continuous
distribution, N(z, t), and to discretise it. In other words, choose a
sequence of values (closely spaced) that start below the smallest value
of the character observed, and above the largest value.

Write model in matrix form. The larger the number of bins, the
greater the number of calculations required.
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Integral projection models (IPMs)

Calculating quantities

Having identified the range of character values to encompass, and
chosen a number of bins, next calculate the midpoint value of each
bin, and then evaluate each of the four functions at each midpoint
value.

Generate four matrices, one describing predicted transition rates from

each function of the functions
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Integral projection models (IPMs)

The wolves in Yellowstone as an example

Science 2011
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Integral projection models (IPMs)

The wolves in Yellowstone as an example
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Integral projection models (IPMs)

Coat colour variation

Yellowstone wolf population has been extensively monitored since its
introduction in 1995

Grey and black wolves co-exist (only in North America)

Grey allele ancestral

Coat colour caused by genotype at one locus
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Integral projection models (IPMs)

Model assumptions and stucture

Sexes have identical demography

No age structure and random mating

Mendelian inheritance for coat colour locus

Demographic stochasticity can be ignored

Discrete time
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Integral projection models (IPMs)

Analysis

Run simulation and calculate quantities

Perturb environment by altering values in variance-covariance matrix
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Integral projection models (IPMs)

Putting it all together

Graphical representation of the IPM that maps the bivariate distribution of
genotype and body weight at time t to a new distribution at time t + 1.
Functions (b) and (d) are probability density functions showing the range
of y values for each x value; both of these functions are identical across
genotypes. Associations between body weight and both survival and
reproductive success varied with genotype, whereas growth rates and
inheritance did not. The body weight and genotype distributions at times t
and t + 1 are, respectively, on the right and left of the functions to
provide a graphical representation of the mathematical structure of the

IPM
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Integral projection models (IPMs)

Predictions

The model performed well in predicting key features of the wolf
population

Provided insight into the dynamics of the coat color genotype.

The IPM predicts that black heterozygotes have higher annual survival
rates and annual reproductive rates, longer generation times, and
greater lifetime reproductive success than either of the homozygotes
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Integral projection models (IPMs)

Results

Alter mean environment ecological and evolutionary parameters
inevitably change together

Alter environmental variance small impact

Rapid eco-evolutionary dynamics primarily shuffling of existing
variance rather than adaptation

On average years will get worse for wolves (less snow, fewer prey,
more disease); will hit survival and fertility

increase in year-to-year variance in survival and fertility
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Integral projection models (IPMs)

Results

Consequences of perturbing the mean value of function intercepts (A)
and (C to J) and the standard deviation of the intercept distribution
(B) on the distribution of various population biology parameters
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Integral projection models (IPMs)

Results

The gray distributions represent values from a simulation with no
function perturbed
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Integral projection models (IPMs)

Results

The coloured distributions are from simulations in which one intercept
distribution was perturbed
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Summary

When IPMs are useful in that they have a very general way to
combine theory from population ecology, population genetics,
quantitative genetics and life history

Their strength not only comes from the ease with which they can be
parameterized, but also from the observation that all fundamental
population parameters describe a summary statistic of a character
distribution or its dynamics

Prediction requires an understanding of which parts of the life cycle
environmental change will impact

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 66 / 65



Summary

When IPMs are useful in that they have a very general way to
combine theory from population ecology, population genetics,
quantitative genetics and life history

Their strength not only comes from the ease with which they can be
parameterized, but also from the observation that all fundamental
population parameters describe a summary statistic of a character
distribution or its dynamics

Prediction requires an understanding of which parts of the life cycle
environmental change will impact

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 66 / 65



Summary

When IPMs are useful in that they have a very general way to
combine theory from population ecology, population genetics,
quantitative genetics and life history

Their strength not only comes from the ease with which they can be
parameterized, but also from the observation that all fundamental
population parameters describe a summary statistic of a character
distribution or its dynamics

Prediction requires an understanding of which parts of the life cycle
environmental change will impact

Ana I. Bento Imperial College London Advanced Topics-II Southern Summer School January 2013 66 / 65


