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and now many more….

(...just google for Pencil Code)
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Kolmogorov spectrumKolmogorov spectrum
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Scintillations        Big Power Law in Sky
• Armstrong, 

Cordes, Rickett 
1981, Nature

• Armstrong, 
Rickett, 
Spangler 1995, 
ApJ
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Simulation of turbulence at 1024Simulation of turbulence at 102433  

(Porter, Pouquet,& Woodward 1998) 
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Direct vs hyper at 512Direct vs hyper at 51233

With
hyperdiffusivity

Normal
diffusivity

Biskamp & Müller (2000, Phys Fluids 7, 4889)
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Ideal hydro: should we be worried?Ideal hydro: should we be worried?

• Why this k-1 tail in the power spectrum?
– Compressibility?
– PPM method
– Or is real??

• Hyperviscosity destroys entire inertial range?
– Can we trust any ideal method?

• Needed to wait for 40963 direct simulations
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Non-ideal equationsNon-ideal equations
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Hyperviscous, Smagorinsky, normalHyperviscous, Smagorinsky, normal

Inertial range unaffected by artificial diffusion
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Bottleneck effect: Bottleneck effect: 1D vs 1D vs 3D3D spectra spectra

Compensated 
spectra

(1D vs 3D)

Why did wind tunnels not show this?
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Relation to ‘laboratory’ 1D spectraRelation to ‘laboratory’ 1D spectra
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Nonhelical MHD turbulent spectrumNonhelical MHD turbulent spectrum



PencilPencil
codecode

• Started in Sept. 2001 with Wolfgang Dobler
• High order (6th order in space, 3rd order in time)
• Cache & memory efficient
• MPI, can run PacxMPI (across countries!)
• Maintained/developed by ~80 people (SVN)
• Automatic validation (over night or any time)
• 0.0013 µs/pt/step at 10243 , 2048 procs
• http://pencil-code.googlecode.com

• Isotropic turbulence
– MHD, passive scl, CR

• Stratified layers
– Convection, radiation

• Shearing box
– MRI, dust, interstellar
– Self-gravity

• Sphere embedded in box
– Fully convective stars
– geodynamo

• Other applications
– Chemistry, combustion
– Spherical coordinates
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Pencil formulationPencil formulation

• In CRAY days: worked with full chunks f(nx,ny,nz,nvar)

– Now, on SGI, nearly 100% cache misses

• Instead work with f(nx,nvar), i.e. one nx-pencil
• No cache misses, negligible work space, just 2N

– Can keep all components of derivative tensors

• Communication before sub-timestep
• Then evaluate all derivatives, e.g. call curl(f,iA,B)

– Vector potential A=f(:,:,:,iAx:iAz), B=B(nx,3)
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Switch modulesSwitch modules
• magnetic or nomagnetic (e.g. just hydro)
• hydro or nohydro (e.g. kinematic dynamo)
• density or nodensity (burgulence)
• entropy or noentropy (e.g. isothermal)
• radiation or noradiation (solar convection, discs)
• dustvelocity or nodustvelocity (planetesimals)
• Coagulation, reaction equations
• Chemistry (reaction-diffusion-advection equations)

Other physics modules: MHD, radiation, partial 
ionization, chemical reactions, selfgravity
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High-order schemesHigh-order schemes

• Alternative to spectral or compact schemes
– Efficiently parallelized, no transpose necessary
– No restriction on boundary conditions
– Curvilinear coordinates possible (except for singularities)

• 6th (or other) order central differences in space
• Non-conservative scheme

– Allows use of logarithmic density and entropy
– Copes well with strong stratification and temperature 

contrasts
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(i) High-order spatial schemes(i) High-order spatial schemes
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Wavenumber characteristicsWavenumber characteristics

( )
kx

dxkxd
keff sin

/cos

−
=

( )
xk

kx

dxkxd
k Nyeff δπ /       ,

cos

/cos 22
2 =

−
=



18

Higher order – less viscosityHigher order – less viscosity
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Less viscosity – also in Less viscosity – also in 
shocksshocks
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(ii) High-order temporal schemes(ii) High-order temporal schemes
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Shock tube testShock tube test
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Vector potentialVector potential

• B=curlA,  advantage: divB=0
• J=curlB=curl(curlA) =curl2A
• Not a disadvantage: consider Alfven waves
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Comparison of A and B methodsComparison of A and B methods
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Faster and bigger machinesFaster and bigger machines
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Online data reduction and visualizationOnline data reduction and visualization

non-helically forced turbulence
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Scalars on periphery of the boxScalars on periphery of the box
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MRI turbulenceMRI turbulence
MRI = magnetorotational instabilityMRI = magnetorotational instability

2563

w/o hypervisc.
t = 600 = 20 orbits

5123

w/o hypervisc.
∆t = 60 = 2 orbits
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Vorticity and DensityVorticity and Density

See poster by Tobi Heinemann on density wave excitation!
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Transfer equation & parallelizationTransfer equation & parallelization

Analytic Solution:

Ray direction

Intrinsic Calculation

Processors
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The Transfer Equation & The Transfer Equation & 
ParallelizationParallelization

Analytic Solution:

Ray direction

Communication

Processors
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The Transfer Equation & The Transfer Equation & 
ParallelizationParallelization

Analytic Solution:

Ray direction

Processors

Intrinsic Calculation
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ConclusionsConclusions

• Advantage of high order
• Bottleneck real
• Boundary conditions 

easy to implement
• Online data analysis
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