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Struggle for the dynamoStruggle for the dynamo
• Larmor (1919): first qualitative ideas
• Cowling (1933): no  antidynamo theorem
• Larmor (1934): vehement response

– 2-D not mentioned
• Parker (1955): cyclonic events, dynamo waves
• Herzenberg (1958): first dynamo

– 2 small spinning spheres, slow dynamo (λ~Rm
-1)

• Steenbeck, Krause, Rädler (1966): αω dynamo
– Many papers on this since 1970

• Kazantsev (1968): small-scale dynamo
– Essentially unnoticed, simulations 1981, 2000-now 
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Mile stones in dynamo researchMile stones in dynamo research

• 1970ies: mean-field models of Sun/galaxies

• 1980ies: direct simulations

• Gilman/Glatzmaier: poleward migration

• 1990ies: compressible simulations, MRI
– Magnetic buoyancy overwhelmed by pumping
– Successful geodynamo simulations

• 2000- magnetic helicity, catastr. quenching
– Dynamos and MRI at low PrM=
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Easy to simulate?Easy to simulate?
• Yes, but it can also go wrong

• 2 examples: manipulation with diffusion

• Large-scale dynamo in periodic box
– With hyper-diffusion curl2nB 

– ampitude by (k/kf)2n-1

• Euler potentials with artificial diffusion
– Dα/Dt=α, 

Dβ/Dt=gradxgrad



Dynamos withDynamos with
Euler PotentialsEuler Potentials

• B = grad x grad
• A =  grad, so A.B=0
• Here: Robert flow

– Details MNRAS 401, 347

• Agreement for t<8
– For smooth fields, not for 
-correlated initial fields

• Exponential growth (A)
• Algebraic decay (EP)
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Reasons for disagreementReasons for disagreement

• because dynamo field is helical?

• because field is three-dimensional?

• none of the two: it is because η is finite
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Is this artificial diffusion kosher?Is this artificial diffusion kosher?
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Problem already in 2-D nonhelicalProblem already in 2-D nonhelical

• Works only when α and β 
are not functions of the 
same coordinates
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Method of choice? No, thanksMethod of choice? No, thanks

• It’s not because of helicity (cf. nonhel dyn)

• Not because of 3-D: cf. 2-D decay problem

• It’s really because α(x,y,z,t) and β(x,y,z,t)
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Other good examples of dynamosOther good examples of dynamos
Helical turbulence (By) Helical shear flow turb.
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Magnetic helicity measures linkage of fluxMagnetic helicity measures linkage of flux
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DecayDecay of helical field: inverse cascade of helical field: inverse cascade

• Inverse cascade on large scales

• Forward cascade on small scales

Christensson et al.
(2001, PRE 64, 056405)

Initial slope
     E~k4

Important applications to early Universe: EW & QCD phase transitions
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Nonhelical & helical turbulenceNonhelical & helical turbulence
Dynamos in both cases: non-magnetic solutions do not exist

…when conductivity high enough

With helicity: gradual build-up of large-scale field
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Inverse cascadeInverse cascade
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One big flaw: slow saturation One big flaw: slow saturation 
(explained by magnetic helicity conservation)
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Helical dynamo saturation with Helical dynamo saturation with 
hyperdiffusivityhyperdiffusivity
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MTA – the Minimal Tau ApproximationMTA – the Minimal Tau Approximation

1st aspect: replace triple correlation by quadradatic

2nd aspect: do not neglect triple correlation

3rd aspect: calculate            

      rather than 
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Implications of MTAImplications of MTA
1. MTA does not a priori break down at large Rm.

(Strong fluctuations of b are possible!)

1. Extra time derivative of emf 

  hyperbolic eqn, oscillatory behavior possible!

3. τ is not correlation time, but relaxation time
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Revised nonlinear dynamo theoryRevised nonlinear dynamo theory
(originally due to Kleeorin & Ruzmaikin 1982)(originally due to Kleeorin & Ruzmaikin 1982)
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Production of large scale helicity comes at the price
of producing also small scale magnetic helicity
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Express in terms of Express in terms of αα
bjBba ⋅−⋅−=⋅ η22
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Full time evolutionFull time evolution

Significant field
already after
kinematic
growth phase

followed by
slow resistive
adjustment

0=⋅+⋅ bjBJ

0=⋅+⋅ baBA

(η(ηtt quenched quenched

constant)constant)
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Magnetic helicity fluxMagnetic helicity flux
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Large scale vs small scale lossesLarge scale vs small scale losses

Numerical experiment:
remove field for k>4
every 1-3 turnover times
(Brandenburg et al. 2002)

Small scale losses (artificial)
 higher saturation level
 still slow time scale

Diffusive large scale losses:
 lower saturation level

(Brandenburg & Dobler 2001)

Periodic
box  

with LS losses
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Where do we stand after 30 yearsWhere do we stand after 30 years

• Mean-field theory qualitatively confirmed!
– Convection (e.g. Ossendrijver), forced turbulence
– Alternatives (e.g. ΩxJ and SJ effects) to be explored

• Homogeneous dynamos saturate resistively
– Entirely magnetic helicity controlled

• Inhomogeneous dynamo
– Open surface, equator
– Current helicity flux important

• Finite if there is shear

– Avoid magnetic helicity, use current helicity 
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