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Struggle for the dynamo

Larmor (1919): first qualitative ideas
* Cowling (1933): no = antidynamo theorem

* Larmor (1934): vehement response
— 2-D not mentioned
* Parker (1955): cyclonic events, dynamo waves
* Herzenberg (1958): first dynamo
— 2 small spinning spheres, slow dynamo (A~R ")
* Steenbeck, Krause, Radler (1966): awdynamo
— Many papers on this since 1970

* Kazantsev (1968): small-scale dynamo
— Essentially unnoticed, simulations 1981, 2000-now



Mile stones in dynamo research

* 1970ies: mean-field models of Sun/galaxies
* 1980ies: direct simulations
* Gilman/Glatzmaier: poleward migration

* 1990ies: compressible simulations, MRI
— Magnetic buoyancy overwhelmed by pumping
— Successful geodynamo simulations

* 2000- magnetic helicity, catastr. quenching
— Dynamos and MRI at low Pr,=[][1[]



Easy to simulate?

Yes, but it can also go wrong
2 examples: manipulation with diffusion

Large-scale dynamo in periodic box
— With hyper-diffusion curl*B
— ampitude by (k/k )™

Euler potentials with artificial diffusion
— Do/Dt=[][]a,
DB/Dt=[ITT1J/TTgrad[Jk0gradl



Euler Potentials ot

100:_ £ Ugk

Dynamos with o ﬂl 1

Brmﬂ/Bﬂ

B = gradll X grad[l .,
A =1 gradl, so A.B=0 1077 EP ",

107"k

1073 F

Here: Robert flow : - .
— Details MNRAS 401, 347

lﬂlﬁ:”“1uln ey -
Agreement for t<8 T
[ 1]":i.f
— For smooth fields, not for ~ _ 10°%}° R .
[Jcorrelated initial fields < b~ 7 Tw ™ %
S bl -
Exponential growth (A) = 0%} R
. 1o “o..._ EP
Algebraic decay (EP) 107
1007
1 10 100



Reasons for disagreement

* because dynamo field is helical?
* because field is three-dimensional?

* none of the two: it is because N is finite




Is this artificial diffusion kosher?
BD— -n0%a H],B HD— nDZﬁ@]a =R+0¢@

Dt (1Dt

R =n(0a I0)0B -n(0B M) 0a

Make [] very small, it is artificial
anyway,
Surely, the R term cannot matter then?




Problem already in 2-D nonhelical

B — (0,0, Sin XSiHZ y) a =-—cosy, ﬁ:COSXSiIly

H 0 H H—sinxsinyH

1.0 , . , — o =3inyy OB =[]cosxcosy []

. Ho H 4 0o

mE EP
1y * Works only when a and 3
_ are not functions of the
00 02 04 06 08 10 same coordinates
nk® t
Alternative a = %y —%sin zy, 'B = COS X

possible in 2-D
Remember: R =n(0amM)0B-n(0M)0a g



Method of choice? No, thanks

required and the corresponding terms can be switched off. The Euler
potential approach shows in all tests a considerably higher accuracy
than previous magnetic SPH formulations and is our method of
choice for our future astrophysical applications of the MAGMA code.

* It’s not because of helicity (cf. nonhel dyn)

* Not because of 3-D: c¢f. 2-D decay problem
* It’s really because a(x,y,z,t) and [(x,y,z,t)



Other good examples of dynamos

Helical turbulence (B)) Helical shear flow turb.

t=100 t=200

0 200 400 600 800

0 200 , 400 . 600 800 550 G000 650
Urms Xt t/Tmt 10



Magnetic helicity measures linkage of flux

H:IAEBCIV
2N
B=0xA
H

=[A
/

= [DxAlS =, =@,
S)



Decay of helical field: inverse cascade

Important applications to early Universe: EW & QCD phase transitions

* Inverse cascade on large scales
* Forward cascade on small scales

1 D E T

107}
10‘5;—
10 2
10'?;-
% | Christensson et al.
107°L - i (2001, PRE 64, 056405)

10 10
12



Nonhelical & helical turbulence

Dynamos in both cases: non-magnetic solutions do not exist

, t=5.00058 t1=2.00385
107 ' 1072 '

10“‘- 107
107

10°° % 10_5é' ;

n-8 10_65’ 3

1078} : ]

. 10'75— /?P///v\,_f\\ :

1010 10781 ' A

1 10 100
k

With helicity: gradual build-up of large-scale field
13
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One big flaw: slow saturation

(explained by magnetic helicity conservation)

0.12[
o.taf
0.08 |
0.08f
0.04
a.ozf

0.00[ .

_ Run B
= el
A T ™
T —
fﬁ___---"‘"i Run &
1000 1500

%<A B) = -27(J B

"< (BY) = =2k (B2) + 21k, (v°)

/ molecular value!!

<§2> — <b2>k_f[1_e—2/7k12(t—ts)]

15



Helical dynamo saturation with
hyperdiffusivity

°f < (A B)=-20(s B)
40} t
= 30 3/R2\ = 1,3/l
g KB =)
= 20? i for ordinary 14
10} j hyperdiffusion 1,
0 : e T S S SR J

0 2000 4000: 6000 8000 K, <§2>: k <b2>

PRL 88, 055003 ratio 53=125 instead of 5
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MTA — the Minimal Tau Approximation

1% aspect: replace triple correlation by quadradatic

_ub o . uub
uudb = — Similar in spirit to tau approx in EDQNM =  uuudb=—

T T

2" aspect: do not neglect triple correlation

%:Dx%xb+ux§+ uxb —qu%

—
not neglected!

3t aspect: calculate OE /0t =uxb-+uxb
rather than E =ux [ b(¢')dt'

(Kleeorin, Mond, & Rogachevskii 1996, Blackman & Field 2002,
Rddler, Kleeorin, & Rogachevskii 2003)

17



Implications of MTA

1. MTA does not a priori break down at large R .

(Strong fluctuations of b are possible!)

1. Extra time derivative of emf % =GB-f 3—E7
T aE 170 O =-1 1
E —O'B ,BJ r— with a TN C: 3_(1)|_—lll+3]|:ﬂ)
D[@ B=18, B=3u

new

[J[] -2 hyperbolic egn, oscillatory behavior possible!
3. Tis not correlation time, but relaxation time

18



Revised nonlinear dynamo theory
(originally due to Kleeorin & Ruzmaikin 1982)

i<A B)=-2n(J B)
dt
Two-scale assumption E =aB-nJ
d — — _ T _
E<A B)=+2(E B)-2n(JB)
d

Production of large scale helicity comes at the price
of producing also small scale magnetic helicity

19



Express in terms of a

4 (am) = —2(E B)-27(jb)

a. =1t / de
M — 3 < > Py \kf(a[ﬂ)):(j[li))

—> Dynamical a-quenching (Kleeorin & Ruzmaikin 1982)

EarM = =2nks; %m <E EB> +a,,

dt B,
no additional free parameters a
_ 0

Srondy Tim 1+R,B*/B;,
consistent with a= m A e a=nk
Vainshtein & Cattaneo (1992) 1+R B/ Bezq ] 11K

(algebraic k =J[B/B?

. Is n, quenched? - can be m
quenching)

checked in models with shear 20



Full time evolution

(J EEZ:{ jb)

7

equipartition / I

end of time :

kinematlie final

phege saluration |

<b®> ]

<B*> I

..... <B®> (adiab) .
100 1000 10000

Lt
+(alb)=0

(n, quenched
constant)

=0

Significant field
already after
kinematic
growth phase

followed by
slow resistive
adjustment
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Magnetic helicity flux

Advantage over magnetic helicity
1) <j.b> is what enters a effect
2) Can define helicity density —

F,° =exa
0 — M - SS
—alb=-2e-ULF,
R alsointhe Ot
numeratolr\A
R []
a, +R, 4T B -1 K2OF,S /2 9970t
O] 2n.ki O
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Large scale vs small scale losses

Diffusive large scale losses:
SO— ' —> lower saturation level
with LS losses | (Brandenburg & Dobler 2001)

Periodic
box

with equator
TR T NV Rty VTP pany

t

Small scale losses (artificial)
—> higher saturation level
—> still slow time scale

Numerical experiment:

] remove field for k>4

o e 40 8 s 100 every 1-3 turnover times
(Brandenburg et al. 2002)
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Where do we stand after 30 years

* Mean-field theory qualitatively confirmed!

— Convection (e.g. Ossendrijver), forced turbulence

— Alternatives (e.g. QxJ and SJ effects) to be explored
* Homogeneous dynamos saturate resistively

— Entirely magnetic helicity controlled

* Inhomogeneous dynamo

— Open surface, equator

— Current helicity flux important
* Finite if there is shear

— Avoid magnetic helicity, use current helicity

24
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