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Accelerated particles - COSMIC RAYS 

 

High energy charged particles reaching the Earth’s   
atmosphere: 

  

 - electrons ∼ 1% 
  

 - protons ∼ 89% 
  

 - heavier nuclei, mainly helium ∼ 10% 
  

 - very few: antiparticles, muons, pions, kaons (from 

      interactions of CRs with the interstellar gas) 

Accelerated Particles – Cosmic Rays 



COSMIC RAY SPECTRUM 
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COSMIC RAY SPECTRUM 
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CR – Magnetic Fields 

 Charged particles – circular orbits in Magnetic Field (MF): 

 gyro-radius: 

 CRs with energies < 1015 eV:  sky distribution ISOTROPIC 

 

 Higher energy CRs: 
 

    are not as much deflected: ANISOTROPIC 

       Example: 

       E = 1019 eV 

       B = 2 µG 

    no correlation with galactic plane: 

 extragalactic origin 

 

rg = 10 kpc 
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COSMIC RAY SOURCES 

 Emax  = B L 

Emax:  

Maximum energy 

that can be 

extracted from the 

source for 

acceleration  

1984  

For particle to be 

confined within 

accelerating source: 

 

Gyro-radius < source size 

 

 rg < L 
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Electromagnetic Acceleration  

• Time dependent MFs: 

Compact sources with large scale magnetic fields 

 

9  solar sunspots                                          pulsars 



Electromagnetic Acceleration  
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Kaiser courtesy  

Cyclotron 
mechanism  



Electromagnetic Acceleration  
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Example : Merging Sunspots 



CRs from the Sun 
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Power law spectrum at 
high energies 
 
 

Other mechanisms can be 
occurring:  
 

• Diffusive shock acceleration 
 

• Magnetic Reconnection 
 
 



FERMI ACCELERATION – MIRROR 
EFFECT 
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FERMI ACCELERATION 
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Fermi (1949):  could CRs be produced via random scattering with 

magnetized interstellar clouds? 



FERMI ACCELERATION 
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Frequency of head-on collisions  >  frequency of catch-up collisions            

  

                 

 

 

 

 

 

                                net energy gain by particles 



FERMI ACCELERATION 

Head-on collision: 

Catch-up collision: 

2nd Order Fermi 
 Net energy gain:  



2nd ORDER FERMI ACCELERATION 
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u <<v ≈ c:  the energy gain per collision is very small 
 

 Statistical reflection on many different clouds in a galaxy 

 

 Stochastic acceleration in magnetized turbulent medium 

There is net energy gain per collision:  



2nd ORDER FERMI ACCELERATION 
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 BUT - second order energy gain: 
 
too slow to obtain high energy particles in the few million years that 
a cosmic ray stays in the galaxy 

 Energy increases exponentially with # of reflections (ΔE ∝ E): 

a = Acceleration rate 



2nd ORDER FERMI ACCELERATION 
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 Power Law spectrum: 

 Particles accelerated in this statistical process satisfy diffusion-loss 
equation: 

a =Acceleration rate 

 t = time a cosmic ray stays in the galaxy 

   g 



2nd ORDER FERMI ACCELERATION 
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Nice, BUT:  
   

Observed  g ~ 2.7 !!  
 

  2nd ORDER FERMI: too slow 

a ~  

  L = 100pc = mean separation between clouds (scatterers) 

 <V> = 10 km/s = clouds average velocity 

  t = 2×107anos = decay time of CRs in the Galaxy  

!!! 



1st ORDER FERMI ACCELERATION 
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REMEMBER:  
 

Head-on collision: 

1st  Order Fermi 

       Net energy gain:  

Thus we need scattering in a CONVERGING FLOW:  
  acceleration in a SHOCK (Bell et al. 78)  



DIFFUSIVE SHOCK ACCELERATION 

22 

• Particles with higher velocity than the plasma flow may travel  against the stream 

and cross the shock 
 

• Scatter and interact with magnetic field fluctuations (Alfven waves) 
 

• Shock  contains converging scatterers because particles experience higher 

(head-on) collision velocities upstream than (catch-up) velocities downstream 



DIFFUSIVE SHOCK ACCELERATION 
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DIFFUSIVE SHOCK ACCELERATION 
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Every round trip: particle executes one catch-up and one head-on     
 
   Average energy gain:  

1st order in ~u/c 

 Fermi I more efficient than Fermi II 



DIFFUSIVE SHOCK ACCELERATION 
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• ΔE/E ~ u/c 
• loss of particles downstream in each cycle: ΔNloss/N ∝ u/c 



DIFFUSIVE SHOCK ACCELERATION 
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DIFFUSIVE SHOCK ACCELERATION 
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Calculating the spectrum 
 

= average particle energy change/collision: 

 

P= probability that particle remains in the acceleration regime after one collision 

 
After k collisions, the number of particles still scattering N : 
 
 
 
 
 
Thus, eliminating k: 
 
 

     
 
 
  
  
 
 
_ 



DIFFUSIVE SHOCK ACCELERATION 
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P= probability that particle remains in the acceleration region after one 

collision: 

 
      - number of particles (w/ ~ c) crossing unit surface area/time:  
 
      - steady state, the number of particles that cross back upstream:  
 

  

 
 
Thus:                                                      and 
 
 
for  STRONG shock   M>>1    

 
 

             !!! 
 
 
  
  
 
 
_ 



LIMITS TO ACCELERATION 
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_ 



ACCELERATION SITES 
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 Varying large scale MFs: 
 

        - pulsars 
        - sunspots 
 Diffusive shock acceleration (1st order Fermi): 
 

        - structure formation shocks (e.g. in merging galaxy clusters) 
        - supernovae remnants 
        - shocks in jets and active galactic nuclei (AGNs)  
        - compact sources (near black holes or neutron stars) 
        - galactic winds 
        - solar flares? 
 2nd Order Fermi acceleration: 
  

        - near shock fronts (smaller contribution             ) 
        - turbulent regions in ISM and IGM (scattering @ B irregularities)  
 Acceleration in Reconnection zones (1st order Fermi ?): 
 

        - solar/stellar flares 
        - accretion disks (around black holes, neutron stars,…) 
         
         



ACCELERATION SITES 
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Supernova Remnants (SNRs): 

• SN II eject shell – shock 
front 
  

 M = 10 Msol    

 v=100 km/s 
 SN rate = 10-2 yr-1 

 

 Power output: 
 

 PSN = 5 x 1042 J yr-1 

 

• Power to accelerate CRs in the Galaxy: 
      galactic radius:  R~15 kpc 
      thickness:         D~0.2 kpc  
      CRs energy density:    rE=1 eV cm-3  

 

 PCR = 2 x 1041 J yr-1 

SNRs more than 
sufficient to 
account for GCRs 
 



ACCELERATION SITES 

32 

Merging clusters of galaxies: 

??? 

Bagchi et 
al. 2006 



ACCELERATION SITES 
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Astrophysical Jets: 

Shock Acceleration: 
in internal shocks  
and terminal shocks (hot spots) 

Acceleration in 
Magnetic  
Reconnection  Cygnus A 



ACCELERATION SITES 
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ISM and Star formation regions in galaxies: 

galaxy M51 
 

• Synchrotron radiation traces MFs 
and relativistic electrons – CR sites 
 

• turbulent MFs in spiral arms 
where ISM, star formation regions, and 
SNRs 
 

 

 diffusive shock acceleration 
(1st  order)  

 behind shocks in stellar jets 
 and SNRs  
 
2nd order Fermi in turbulent    
ISM 
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