Particle Acceleration II: by Magnetic Reconnection

ElisaBete de Gouveia Dal Pino. (IAG - University of São Paulo

ICTP-SAIFR School Fundamental Astrophysics, São Paulo, October 2013

CR acceleration: new challenges

 UHECRs - extragalactic astrophysical sources origin: birth of compact objects, GRBs, AGNs, ICM medium? mechanism?

 Very high energy observations of pulsars, AGNs and GRBs (Fermi, Swift, HESS, VERITAS, MAGIC):

→ compact magnetized emission regions: sometimes shocks absent

MAGNETIC RECONNECTION?

Approach of magnetic flux tubes of opposite polarity:

magnetotail

Reconnection is FAST !

Magnetic Reconnection Models

Standard Sweet-Parker (57-58) reconnection: SLOW

$$V_{rec} \sim V_A (\Delta/L)$$

$$V_{rec} \sim V_A S^{-1/2} << 1$$

Petschek (1964): X-point configuration -> FAST

 $V_{rec} \sim \pi/4 v_A \ln S$

Unstable and collapse to S-P (Biskamp'96) unless *collisionless pair* plasma with localized η (Sturrock 1966; Birn+01, Yamada+10).

Magnetic Reconnection Models

• Petschek-X-point configuration in *collisionless* pair plasmas ($L \sim \lambda_{e,mfp}$):

 \rightarrow δ_{ion} = v_A/ω > S-P diffusion scale Δ_{SP} = (Lη/v_A)^{1/2}

At these scales Hall effect important:

$$\vec{v}_e = \vec{v}_i - (\vec{v}_i - \vec{v}_e) \simeq \vec{v} - \frac{J}{n_e e}$$

 \rightarrow v_e × B term in Ohm's law:

$$\vec{E} = -\left(\vec{\frac{v_e}{c}} \times \vec{B}\right) + \frac{m_e}{e}\vec{g} - \frac{1}{n_e e}\vec{\nabla}p_e + \eta\vec{J}$$

→ sustains X-point -> **FAST reconnection**

(Shay et al. 1998, 2004, Yamada et al. 2006)

Ubiquitous Fast Magnetic Reconnection

TURBULENT RECONNECTION (Lazarian & Vishniac 1999):

✓ Reconnection layer : THICKER
✓ THREE-DIMENSIONAL

Successfully tested in numerical simulations (Kowal et al. 2009, 2012)

B dissipates on a small scale $\lambda_{||}$: many simultaneous reconnection events

$$V_{\rm rec} = V_{\rm A} \left(\frac{l}{L}\right)^{1/2} \left(\frac{v_l}{V_{\rm A}}\right)^2$$

(does not depend on η)

(Similar description: Loureiro+07; Shibata & Tanuma01; Uzdensky+10)

Accretion disk coronae

> Stellar Xray Flares

Star Formation and ISM

Reconnection beyond Solar System

Pulsars

AGN & GRB Jets

Accreting NS and SGRs

Reconnection Beyond the Solar System

Stellar X-ray flares (Cassak+08; Shibata+05)

Young stellar objects (van Ballegooijen94; Hayashi+1996; Goodson+1997; Feigelson & Montmerle'99; Uzdensky+'02; 04; de Gouveia Dal Pino+'10; D'Angelo & Spruit'10)

Interstellar medium and star formation (Zweibel89; Lesch & Reich92; Brandenburg & Zweibel95; Lazarian & Vishniac99; Heitsch & Zweibel03; Lazarian05; Santos-Lima+10, 12, 13; Leao+13)

Accreting neutron stars & white dwarfs (Aly & Kuijpers90; van Ballegooijen 1994; Warner & Woudt02)

Accretion disk coronae (Galeev+79; Haardt & Maraschi91; Tout & Pringle96; Romanova+98; Di Matteo+99; de Gouveia Dal Pino & Lazarian01, 05; Liu+03; Schopper et al. 1998; Uzdensky & Goodman08; Goodman & Uzdensky08; de Gouveia Dal Pino+10)

Pulsar magnetospheres and winds (Coroniti90; Michel94; de Gouveia Dal Pino & Lazarian01; Blasi+01; Lyubarsky & Kirk01; Lyubarsky03; Kirk & Skjæraasen03; Contopoulos07; Arons07; P'etri & Lyubarsky07; Spitkovsky08; Lyutikov10; Cerutti+13)

SGRs (Thompson & Duncan95, 01; Lyutikov 03, 06; Uzdensky08; Masada+10)

Relativisitc jets (microquasars/AGNs/GRBs) (Romanova & Lovelace92; Larrabee+03; Lyutikov+03; Jaroschek+04; Giannios10; Giannios+09, 10; de Gouveia Dal Pino+10; Nalewajko et al. 2010); Spruit et al. 2001; Lyutikov & Blackman01; Lyutikov & Blandford02; Drenkhahn & Spruit02; Giannios & Spruit05, 06, 07; Rees & M'esz'aros 2005; Uzdensky & MacFadyen06; McKinney & Uzdensky10; 12; Uzdensky11; Zhang & Yan09).

Reconnection & Particle Acceleration

Reconnection breaks the magnetic field topology -> releases magnetic energy into plasma in short time -> explains bursty emission

Solar/stellar flares produced by fast reconnection
Particle acceleration connected with flares

Can reconnection lead to direct particle acceleration?

Reconnection & Particle Acceleration

Particle acceleration in reconnection site: due to advective electric field directed along z-axis (linear)

 $e_z = v_{rec} B/c \rightarrow reconnection electric field$

1st-order FERMI ACCELERATION @ RECONNECTION SITE

Shock Acceleration

1st-order Fermi (Bell+1978):

Reconnection Acceleration

1st-order Fermi (de Gouveia Dal Pino & Lazarian 2005):

particles bounce back and forth between 2 converging flows

$$<\Delta E/E > ~ 8v_{rec}/3c$$

1st-order FERMI ACCELERATION @ RECONNECTION SITE

 ✓ Relax the assumption considered above that particle escapes rate ~ shock (Drury 2012) →

 $N(E) \sim E^{-(r+2)/(r-1)}$, $r = \rho_2/\rho_1 \rightarrow N(E) \sim E^{-2-1}$

Reconnection a powerful mechanism to accelerate particles?

To probe analytical results \rightarrow numerical simulations:

Most 2D simulations of particle acceleration by magnetic reconnection: collisionless plasmas (PIC) @ scales (e.g. Drake+; Zenitani & Hoshino):

few plasma inertial length $\sim 100 \text{ c}/\omega_p$

> Larger-scale astrophysical systems (pulsar, AGNs, GRBs):

 \rightarrow MHD description \rightarrow collisional resistive reconnection

MHD Simulations of Reconnection Particle Acceleration

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} &= -c_s^2 \nabla \rho + (\nabla \times \mathbf{B}) \times \mathbf{B} - \rho \nabla \Psi + \mathbf{f}\\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta_{\text{Ohm}} \nabla^2 \mathbf{B} \end{split}$$

- 2nd order shock capturing Godunov scheme with HLLD solver (Kowal et al. 2007, 2009)

- f: isotropic, non-helical, solenoidal, delta correlated in time random force term (responsible for injection of turbulence)

Probing Particle Acceleration by Reconnection with Numerical MHD Simulations

• **Isothermal MHD equations solved:** second-order Godunov scheme and HLLD Riemann solver (Kowal et al. 2007, Kowal et al 2009)

 Test particles injected in the MHD domain of reconnection and their trajectories followed:

$$\frac{d}{dt}(\gamma m \boldsymbol{u}) = q\left[(\boldsymbol{u} - \boldsymbol{v}) \times \boldsymbol{B}\right]$$

Kowal, de Gouveia Dal Pino, Lazarian 2011; 2012

Particle Acceleration in MHD Reconnection

Particle Acceleration in 2D MHD Reconnection

Kowal, de Gouveia Dal Pino, Lazarian 2011 (see also Drake)

Particle Acceleration in 3D MHD Fast reconnection

Kowal, de Gouveia Dal Pino, Lazarian 2012

Particle Maximum Energy in Fast Reconnection

✓ Particle can no longer be confined within the reconnection region when: $r_q = E/B e c > I_{rec} → E_{max} ~ I_{rec}c e B = 9. 10^{12} eV I_{rec,cm} B_G$

Cooling of the particle is fast enough to inhibit further acceleration:

Khiali, de Gouveia Dal Pino, del Valle, Sol (20130

Particle Acceleration in pure turbulence

Kowal, de Gouveia Dal Pino, Lazarian, 2012

Turbulent reconnection versus Turbulence

Kowal, de Gouveia Dal Pino, Lazarian, 2012

APPLICATIONS

Reconnection Acceleration of UHECRs in GRB & AGN jets?

Assuming multiple field reversals along jet (separated by ~ c t_{rot}) \rightarrow 1st-order Fermi acceleration (Giannios 2010):

Reconnection acceleration in accretion disk corona?

Accretion disk/Jet systems (AGNs & galactic BHs)

AGNs and microquasars

de Gouveia Dal Pino & Lazarian 2005, de Gouveia Dal Pino+2010

Power Released by Fast Reconnection

Explains fundamental plane of Merloni+2003)

de Gouveia Dal Pino, Piovezan & Kadowaki, 2010 Kadowaki & de Gouveia Dal Pino 2013

Relativistic Reconnection

Fast reconnection in relativistic environments: $v_{rec} \sim v_A \rightarrow c$

Theoretical grounds (Blackman & Field 1994; Lyubarsky 2005; Lyutikov & Uzdensky 2003; Jaroschek et al. 2004; Hesse & Zenitani 2007; Zenitani & Hoshino 2008; Zenitani et al. 2009; Komissarov 2007; Coroniti 1990; Lyubarsky & Kirk 2001):

Sweet–Parker relativistic reconnection (Lyubarsky 05): SLOW

$$\rightarrow v_{rec} << c$$

> X-point (Petschek) relativistic reconnection: FAST

→
$$\mathbf{v}_{rec} \simeq \pi/4 \ln S$$
, S = Lc/η

> Numerical advances: in relativistic collisionless Petschek's reconnection only:

 \rightarrow confirmed analytical theory

In situ 1st-order Fermi Relativistic MHD Reconnection x shock acceleration

10

 10^{3}

What is Next?

Particle acceleration in:

- ✓ Relativistic MHD fast reconnection with turbulence (e.g. de Gouveia Dal Pino & Kowal 2013)
- Relativistic reconnection electron-ion, high energy density, radiative plasmas (e.g. Uzdenski 2011):

→ open fundamental issues → SGRs, GRBs, AGNs,...?

CTA – Cherenkov Telescope Array

REFERENCES

Grupen, C., Astroparticle Physics, Springer 2005

- Kaiser, H., Principles of Cosmic Ray Acceleration, Notes 2007
- de Gouveia Dal Pino, E., Plasma Astrophysics Notes, 2005
- Melia, F., High Energy Astrophysics
- Melrose, D. (2009), <u>arXiv:0902.1803v1</u> [astro-ph.SR]
- Fermi, E. On the Origin of Cosmic Radiation, Phys. Rev. Vol. 75, 8 (1949) 1169
- Lugones, G., Procs. of Science, 2011 (in press)
- Perkins, D., Particle Astrophysics, 2006
- de Gouveia Dal Pino, e. & Kowal, G. Acceleration by M. Rec. 2013 ³⁰