MHD turbulence in the solar corona and solar wind

Pablo Dmitruk

Departamento de Física, FCEN, Universidad de Buenos Aires

Heating in open regions: coronal holes

Observational evidence (UVCS/SOHO, Spartan) that the high speed solar wind results from plasma heating $(T \sim 10^6 \text{ K})$ very close to the Sun.

Fluid models for the acceleration of the solar wind require a **heating dissipation** per unit volume which is a rapidly decreasing function of heliocentric distance. The heating per unit mass has to be extended throughout the model corona.

Fluid models for the acceleration of the solar wind require a **heating dissipation** per unit volume which is a rapidly decreasing function of heliocentric distance. The heating per unit mass has to be extended throughout the model corona.

MHD turbulence as in coronal loops \rightarrow RMHD $(B_0 >> b_{\perp}, u_{\perp}, \nabla_{\parallel} << \nabla_{\perp}).$

But there is a new problem: how to maintain turbulence in an open region, where Alfven waves can transport the energy out of the region.

RMHD turbulence driven by waves

RMHD equations using Elsasser variables (can be viewed as propagating fluctuations) $\mathbf{z}_{+} = \mathbf{u} + \mathbf{b}, \quad \mathbf{z}_{-} = \mathbf{u} - \mathbf{b}, \quad V_{A} = B_{0}/\sqrt{4\pi\rho}$

RMHD turbulence driven by waves

RMHD equations using Elsasser variables (can be viewed as propagating fluctuations) $\mathbf{z}_{+} = \mathbf{u} + \mathbf{b}, \quad \mathbf{z}_{-} = \mathbf{u} - \mathbf{b}, \quad V_{A} = B_{0}/\sqrt{4\pi\rho}$

$$\frac{\partial \mathbf{z}_{+}}{\partial t} - V_{A} \frac{\partial \mathbf{z}_{+}}{\partial s} = -\nabla_{\perp} p' - \mathbf{z}_{-} \cdot \nabla_{\perp} \mathbf{z}_{+} + \eta \nabla_{\perp}^{2} \mathbf{z}_{+}$$

$$\frac{\partial \mathbf{z}_{-}}{\partial t} + V_A \frac{\partial \mathbf{z}_{-}}{\partial s} = -\nabla_{\perp} p' - \mathbf{z}_{+} \cdot \nabla_{\perp} \mathbf{z}_{-} + \eta \nabla_{\perp}^2 \mathbf{z}_{-}$$

RMHD turbulence driven by waves

RMHD equations using Elsasser variables (can be viewed as propagating fluctuations) $\mathbf{z}_{+} = \mathbf{u} + \mathbf{b}, \quad \mathbf{z}_{-} = \mathbf{u} - \mathbf{b}, \quad V_{A} = B_{0}/\sqrt{4\pi\rho}$

$$\frac{\partial \mathbf{z}_{+}}{\partial t} - V_{A} \frac{\partial \mathbf{z}_{+}}{\partial s} = -\nabla_{\perp} p' - \mathbf{z}_{-} \cdot \nabla_{\perp} \mathbf{z}_{+} + \eta \nabla_{\perp}^{2} \mathbf{z}_{+}$$

$$\frac{\partial \mathbf{z}_{-}}{\partial t} + V_{A} \frac{\partial \mathbf{z}_{-}}{\partial s} = -\nabla_{\perp} p' - \mathbf{z}_{+} \cdot \nabla_{\perp} \mathbf{z}_{-} + \eta \nabla_{\perp}^{2} \mathbf{z}_{-}$$

linear solutions (if only one-way propagating fluctuations exist): $\mathbf{z}_{\pm} \sim \exp[ik_{\parallel}(s \pm V_A t)]$

For non-linear terms to be non-zero we need simultaneous presence of both type of fluctuations:

$$egin{array}{lll} \mathbf{z}_{-} \cdot
abla_{\perp} \mathbf{z}_{+} \ \mathbf{z}_{+} \cdot
abla_{\perp} \mathbf{z}_{-} \end{array}$$

so that we can have a turbulent cascade, transfer of energy to small scales, enhance dissipation, produce heating.

RMHD in an inhomogeneous medium

$$\rho = \rho(s) \to V_A = V_A(s)$$

waves can be reflected due to Alfven velocity gradients

RMHD in an inhomogeneous medium

$$\rho = \rho(s) \to V_A = V_A(s)$$

waves can be reflected due to Alfven velocity gradients

Modified RMHD equations in an inhomogeneous medium

$$\frac{\partial \mathbf{z}_{+}}{\partial t} - V_{A} \frac{\partial \mathbf{z}_{+}}{\partial s} = -\frac{1}{2} \frac{dV_{A}}{ds} \mathbf{z}_{+} + \frac{1}{2} \frac{dV_{A}}{ds} \mathbf{z}_{-} - \nabla_{\perp} p' - \mathbf{z}_{-} \cdot \nabla_{\perp} \mathbf{z}_{+} + \eta \nabla_{\perp}^{2} \mathbf{z}_{+}$$
$$\frac{\partial \mathbf{z}_{-}}{\partial t} + V_{A} \frac{\partial \mathbf{z}_{-}}{\partial s} = \frac{1}{2} \frac{dV_{A}}{ds} \mathbf{z}_{-} - \frac{1}{2} \frac{dV_{A}}{ds} \mathbf{z}_{+} - \nabla_{\perp} p' - \mathbf{z}_{+} \cdot \nabla_{\perp} \mathbf{z}_{-} + \eta \nabla_{\perp}^{2} \mathbf{z}_{-}$$

Boundary conditions

$$\frac{\partial \mathbf{z}_{-}}{\partial s}^{\text{bot}}(\mathbf{k}_{\perp}) = A(k_{\perp}) \cos(2\pi f \ t) \quad \text{, if } 2 \le k_{\perp} \le 5$$
$$\frac{\partial \mathbf{z}_{+}}{\partial s}^{\text{top}}(\mathbf{k}_{\perp}) = 0 \quad \text{, } \forall \ \mathbf{k}_{\perp}$$

 $\mathbf{f} = (low)$ frequency forcing

fluctuations amplitude (at the base) = $\delta \mathbf{u_0} \sim 30 - 50 \text{ km/s}$

(for a coronal hole)

perpendicular structures size (at the base) = $\mathbf{l}_0 \sim 10 - 30$ Mm (supergranules or inter-network length)

unit of parallel length = $L \sim R_s \sim 700$ Mm (solar radius).

unit of time $\mathbf{t_0} = \mathbf{l_0} / \delta \mathbf{u_0}$ (typical timescale of the forcing structures)

Numerical simulations

Pseudospectral code: Fourier (x, y) +Chebyshev (s).

Resolution $512 \times 512 \times 33$.

Simulations without reflections

Simulations with reflections

Simulations with weak reflections and small correlation length

 $t_0 = l_0 / \delta u_0 \ll t_A = R_s / V_A$

Conditions for sustaining turbulence (efficiently)

- Presence of reflections (not neccesarily strong)
- Presence of non-propagating fluctuations
- Timescale ordering: $t_{NL} < t_0 < t_A \sim t_R < t_f < t_\eta$

Conditions for sustaining turbulence (efficiently)

- Presence of reflections (not neccesarily strong)
- Presence of non-propagating fluctuations
- Timescale ordering: $t_{NL} < t_0 < t_A \sim t_R < t_f < t_\eta$

 $t_{NL} = l_k/\delta u_k$ =nonlinear time; $t_0 = l_0/\delta u_0$ =forcing; $t_A = R_s/V_A$ =Alfven crossing time; $t_R = R_s/\Delta V_A$ =reflection; $t_f = 1/f$ =forcing period; $t_\eta = l_0^2/\eta$ =dissipative time.

Heating distribution profile

Consider RMHD equations in a radially expanding box.

$$\frac{\partial \mathbf{z}_{+}}{\partial t} - V_{A} \frac{\partial \mathbf{z}_{+}}{\partial r} = R_{1} \mathbf{z}_{-} - R_{2} \mathbf{z}_{+} - \nabla_{\perp} p' - \mathbf{z}_{-} \cdot \nabla_{\perp} \mathbf{z}_{+} + \eta \nabla_{\perp}^{2} \mathbf{z}_{+}$$
$$\frac{\partial \mathbf{z}_{-}}{\partial t} + V_{A} \frac{\partial \mathbf{z}_{-}}{\partial r} = -R_{1} \mathbf{z}_{+} + R_{2} \mathbf{z}_{-} - \nabla_{\perp} p' - \mathbf{z}_{+} \cdot \nabla_{\perp} \mathbf{z}_{-} + \eta \nabla_{\perp}^{2} \mathbf{z}_{-}$$

Heating distribution profile

Consider RMHD equations in a radially expanding box.

$$\frac{\partial \mathbf{z}_{+}}{\partial t} - V_{A} \frac{\partial \mathbf{z}_{+}}{\partial r} = R_{1} \mathbf{z}_{-} - R_{2} \mathbf{z}_{+} - \nabla_{\perp} p' - \mathbf{z}_{-} \cdot \nabla_{\perp} \mathbf{z}_{+} + \eta \nabla_{\perp}^{2} \mathbf{z}_{+}$$
$$\frac{\partial \mathbf{z}_{-}}{\partial t} + V_{A} \frac{\partial \mathbf{z}_{-}}{\partial r} = -R_{1} \mathbf{z}_{+} + R_{2} \mathbf{z}_{-} - \nabla_{\perp} p' - \mathbf{z}_{+} \cdot \nabla_{\perp} \mathbf{z}_{-} + \eta \nabla_{\perp}^{2} \mathbf{z}_{-}$$
$$R_{1}(r) = \frac{1}{2} \frac{dV_{A}}{dr}, \quad R_{2}(r) = \frac{1}{2} (\frac{dV_{A}}{dr} + \frac{V_{A}}{A} \frac{dA}{dr}) \text{ (reflection rates)}$$
$$A(r) = A_{0} \frac{B_{0}}{B(r)} \text{ (cross section area)}$$

Compute heating profile from turbulent dissipation rate

$$Q(r) = \rho(r) \epsilon_{\rm turb}(r)$$

Dmitruk et al, ApJ 2002

Top left: number density profiles; Top right: corresponding Alfven speed profiles. Bottom left: heating per unit volume; Bottom right: heating per unit mass.

The previous results show explicitly (from simulations) the connection between the assumed Alfven speed profile (density) and the heating profile. Further understanding of this connection: phenomenological model

Replace non-linear terms $\mathbf{z}_{\mp} \cdot \nabla_{\perp} \mathbf{z}_{\pm}$ with modeling $Z_{\mp} \mid Z_{\pm} \mid /2\lambda_{\perp}(r)$, with $\lambda_{\perp}(r)$ =correlation length scale (for instance, linearly increasing with r), and obtain one dimensional equations for $Z_{\mp}(r)$. The previous results show explicitly (from simulations) the connection between the assumed Alfven speed profile (density) and the heating profile. Further understanding of this connection: phenomenological model

Replace non-linear terms $\mathbf{z}_{\pm} \cdot \nabla_{\perp} \mathbf{z}_{\pm}$ with modeling $Z_{\pm} \mid Z_{\pm} \mid /2\lambda_{\perp}(r)$, with $\lambda_{\perp}(r)$ =correlation length scale (for instance, linearly increasing with r), and obtain one dimensional equations for $Z_{\pm}(r)$.

Comparison of heating profile from direct numerical simulation and from numerical solution of the phenomenological model.

Asymptotic limit as $\lambda_{\perp} \rightarrow 0$ ($\lambda_{\perp} = 1 \rightarrow 30000$ km, $\lambda_{\perp} = 0.1 \rightarrow 3000$ km) of the phenomenological model solution.

Asymptotic limit as $\lambda_{\perp} \to 0$ ($\lambda_{\perp} = 1 \to 30000$ km, $\lambda_{\perp} = 0.1 \to 3000$ km) of the phenomenological model solution.

In this limit, $|Z_+| << |Z_-|$ and $Q = \rho \epsilon \approx \rho Z_-^2 |Z_+| /\lambda_\perp \approx \rho Z_-^2 | dV_A/dr |$. From flux $F = \rho A V_A Z_-^2$ balance equation dF/dr = -A(r)Q we can obtain

Asymptotic limit as $\lambda_{\perp} \rightarrow 0$ ($\lambda_{\perp} = 1 \rightarrow 30000$ km, $\lambda_{\perp} = 0.1 \rightarrow 3000$ km) of the phenomenological model solution.

In this limit, $|Z_+| << |Z_-|$ and $Q = \rho \epsilon \approx \rho Z_-^2 |Z_+| /\lambda_\perp \approx \rho Z_-^2 | dV_A/dr |$. From flux $F = \rho A V_A Z_-^2$ balance equation dF/dr = -A(r)Q we can obtain

 $Q(r) \approx F_{A_0} (A_0/A) \mid dV_A/dr \mid (V_{A_0}/V_A^2) \quad r < r_m$

 $Q(r) \approx F_{A_0} (A_0/A) \mid dV_A/dr \mid (V_{A_0}/V_{A_m}^2) \quad r > r_m$

with F_{A_0} flux at the base, r_m radial distance where $V_A = V_{A_m}$ =maximum.

This express again (in this case for an asymptotic limit in the phenomenological model) the connection between the heating profile and the Alfven speed profile.