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Heating in open regions: coronal holes

Observational evidence (UVCS/SOHO, Spartan) that the high speed solar wind results
from plasma heating (T ∼ 106 K) very close to the Sun.



Fluid models for the acceleration of the solar wind require a heating dissipation per
unit volume which is a rapidly decreasing function of heliocentric distance. The heating
per unit mass has to be extended throughout the model corona.
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Fluid models for the acceleration of the solar wind require a heating dissipation per
unit volume which is a rapidly decreasing function of heliocentric distance. The heating
per unit mass has to be extended throughout the model corona.
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MHD turbulence as in coronal loops → RMHD (B0 >> b⊥, u⊥, ∇‖ << ∇⊥).

But there is a new problem: how to maintain turbulence in an open region, where Alfven
waves can transport the energy out of the region.



RMHD turbulence driven by waves

RMHD equations using Elsasser variables (can be viewed as propagating fluctuations)
z+ = u + b, z− = u− b, VA = B0/
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linear solutions (if only one-way propagating fluctuations exist): z± ∼ exp[ik‖(s± VAt)]
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For non-linear terms to be non-zero we need simultaneous presence of both type of
fluctuations:

z− · ∇⊥z+

z+ · ∇⊥z−

so that we can have a turbulent cascade, transfer of energy to small scales, enhance
dissipation, produce heating.
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RMHD in an inhomogeneous medium

ρ = ρ(s)→ VA = VA(s)

waves can be reflected due to Alfven velocity gradients
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ρ = ρ(s)→ VA = VA(s)

waves can be reflected due to Alfven velocity gradients

Modified RMHD equations in an inhomogeneous medium
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Boundary conditions

∂z−
∂s

bot

(k⊥) = A(k⊥) cos(2πf t) , if 2 ≤ k⊥ ≤ 5

∂z+

∂s

top

(k⊥) = 0 ,∀ k⊥

f = (low) frequency forcing
fluctuations amplitude (at the base) = δu0 ∼ 30− 50 km/s
(for a coronal hole)
perpendicular structures size (at the base) = l0 ∼ 10− 30 Mm
(supergranules or inter-network length)
unit of parallel length = L ∼ Rs ∼ 700 Mm (solar radius).
unit of time t0 = l0/δu0 (typical timescale of the forcing structures)

Numerical simulations

Pseudospectral code: Fourier (x, y) + Chebyshev (s).

Resolution 512× 512× 33.



Simulations without reflections

Normalized cross helicity
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Simulations with weak reflections

Normalized cross helicity
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Simulations with weak reflections and small correlation length

t0 = l0/δu0 << tA = Rs/VA

Normalized cross helicity
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Conditions for sustaining turbulence (efficiently)

• Presence of reflections (not neccesarily strong)

• Presence of non-propagating fluctuations

• Timescale ordering: tNL < t0 < tA ∼ tR < tf < tη



Conditions for sustaining turbulence (efficiently)

• Presence of reflections (not neccesarily strong)

• Presence of non-propagating fluctuations

• Timescale ordering: tNL < t0 < tA ∼ tR < tf < tη

tNL = lk/δuk=nonlinear time; t0 = l0/δu0=forcing; tA = Rs/VA=Alfven crossing time;
tR = Rs/∆VA=reflection; tf = 1/f=forcing period; tη = l20/η=dissipative time.



Heating distribution profile

Consider RMHD equations in a radially expanding box.
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Compute heating profile from turbulent dissipation rate

Q(r) = ρ(r) εturb(r)
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Dmitruk et al, ApJ 2002

Top left: number density profiles; Top right: corresponding Alfven speed profiles.
Bottom left: heating per unit volume; Bottom right: heating per unit mass.



The previous results show explicitly (from simulations) the connection between the as-
sumed Alfven speed profile (density) and the heating profile. Further understanding of
this connection: phenomenological model

Replace non-linear terms z∓ · ∇⊥z± with modeling Z∓ | Z± | /2λ⊥(r), with λ⊥(r)=correlation
length scale (for instance, linearly increasing with r), and obtain one dimensional equa-
tions for Z∓(r).
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Comparison of heating profile from direct numerical simulation and from numerical
solution of the phenomenological model.



Asymptotic limit as λ⊥ → 0 (λ⊥ = 1 → 30000 km, λ⊥ = 0.1 → 3000 km) of the
phenomenological model solution.
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In this limit, | Z+ |<<| Z− | and Q = ρε ≈ ρZ2

− | Z+ | /λ⊥ ≈ ρZ2
− | dVA/dr |. From flux

F = ρAVAZ
2
− balance equation dF/dr = −A(r)Q we can obtain
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In this limit, | Z+ |<<| Z− | and Q = ρε ≈ ρZ2

− | Z+ | /λ⊥ ≈ ρZ2
− | dVA/dr |. From flux

F = ρAVAZ
2
− balance equation dF/dr = −A(r)Q we can obtain

Q(r) ≈ FA0 (A0/A) | dVA/dr | (VA0/V
2
A) r < rm

Q(r) ≈ FA0 (A0/A) | dVA/dr | (VA0/V
2
Am

) r > rm

with FA0 flux at the base, rm radial distance where VA = VAm=maximum.

This express again (in this case for an asymptotic limit in the phenomenological model)
the connection between the heating profile and the Alfven speed profile.


