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Waves, turbulence, low-frequency fluctuations

Consider the 3D MHD equations,

u = u(x, y, z, t) = plasma velocity

B = B(x, y, z, t) = magnetic field

ρ(
∂u
∂t

+ u · ∇u) = −∇p+ J×B + ρν∇2u + fu(t)

∂B
∂t

= ∇× (u×B) + η∇2B + fb(t)

J = ∇×B = current density, ∇ ·B = 0 , ∇ · u = 0

And we will assume also a background magnetic field B0,so B = B0 + b.



We numerically (DNS) solve the MHD equations using a pseudospectral code. The fields are
evolved in k-space, and we add forcing terms fuk (t) and f bk(t) to achieve a steady state.
The forcing terms are narrow in k-space (1 ≤ k ≤ 2) and include a memory part and a random
part. A component of the forcing is of the form:

αi+1 = mαi +
√

1−m2ri+1

with 0 ≤ m ≤ 1 the memory parameter and ri a (uniform) random number.
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It can be seen that
< αnαn+l >→ ml, when n→∞

By constructing a (discrete) time series with tn = n∆t,

< α(t)α(t+ τf ) >→ e−t/τf

with τf = l∆t, m = 1−∆t/τf .
So the forcing can be made to have a fixed chosen correlation time τf .
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< α(t)α(t+ τf ) >→ e−t/τf

with τf = l∆t, m = 1−∆t/τf .
So the forcing can be made to have a fixed chosen correlation time τf .

We use units of length L0 = 1/2π size of the box, that is L0 = 1, and u0 =< b2 >1/2 (t =
0) =< u2 >1/2 (t = 0) = 1, and t0 = L0/u0 = 1. We chose τf = 1.



We consider probes inside the box, where we can measure magnetic and velocity fluctuations,
b(x, y, z, t), u(x, y, z, t) as a function of time.

MHD

simulation box
probe : b(t), u(t)

probe
probe

Dmitruk & Matthaeus, Phys. Plasmas 16, 1, 2009.



Time series
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Frequency spectra
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Recall Alfven waves, satisfy,
w = k ·B0 = k‖B0
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Here B0 = 8 and we see the peaks at multiples of B0. Also plotted with light line the spectrum
in the case of linear ideal MHD (i.e., only waves).
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We define the Signal to Noise Ratio,

SNR = log10

[
P(w0)
P0(w0)

]
.

and the Wave Power Ratio,

WPR =

∫ w2

w1
[P(w)− P0(w)]dw∫

w>0 P(w)dw

SNR = 0, 0.3, 0.6, 1.5, 3.1 for B0=0, 1, 2, 8, 16
WPR = 0, 0.1, 0.13, 0.03, 0.02 for B0=0, 1, 2, 8, 16

Although waves can be clearly distinguished (large SNR ratio), most of the power (WPR ratio)
it is on eddies (turbulent fluctuations).



We can also look at the frequency spectrum of individual modes in k-space,
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And the real and imaginary parts of a mode bk, which for the case of a wave should be a circle
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Low-frequency fluctuations, 1/f noise

Look at low frequency fluctuations (Dmitruk & Matthaeus, Phys. Rev. E 76, 036305, 2007)
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see solar wind observations in Matthaeus & Goldstein, Phys. Rev. Lett. 57, 495, 1986
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Frequency spectra for different modes b(k)
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Consider hydrodynamics (3D HD) → no 1/f !!
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Other systems with low frequency fluctuations: MHD2D, HD2D
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Frequency spectra of individual modes
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Ideal MHD (η = ν = 0) with non-zero magnetic helicity, Hm < a · b >, where ∇ × a = b is
the potential vector. No DC field (i.e. B0 = 0).

Time behavior of the lowest k mode
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Frequency spectra
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Correlation function < b(t0)b(t0 + t) >
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Phase space behavior of modes in complex plane, k = (1, 0, 0)
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k = (2, 0, 0)
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We also consider MHD and HD inside a sphere, with or without rotation Ω,

∂u
∂t

+ ω × u + 2Ω× u = −1
ρ
∇P + j×B

∂B
∂t

= ∇× (u×B)

with null boundary conditions, B · n̂ = 0u · n̂ at the radius R = 1 of the sphere.

Ω

MHD

sphere

We use a Galerkin spectral code, with Chandrasekar-Kendall functions in the sphere (Dmitruk,
Mininni, Pouquet, Servidio, Matthaeus, Phys. Rev. E 2011)



Ideal MHD in the sphere, with rotation
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Frequency spectra
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Ideal HD in the sphere, with rotation
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Frequency spectra
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Recall that in our defined units, t0 = L0/u0 = 1, and the eddy turnover time (non-linear time)
is

τk = lk/uk = (kuk)−1

So, for k = 1, we get τk = t0 = 1. Following Kolmogorov scaling, uk ∼ k−1/3 we can get

τk ∼ t0k−2/3

and so in general, all non-linear times, for different scales are usually shorter than t0 = 1.
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Which is the origin then of these long time fluctuations that we see in many
systems ?
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Non-local interactions between large scale modes and a thermal bath of small scale fluctuations
give long time fluctuations, i.e., low-frequency fluctuations.

∂b(k)
∂t

= −ik
∑
k=p+q

u(q)b(p)

where b(k), u(q), b(p) are generic Fourier mode amplitudes, with the constraint that k = p+ q.
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So, for k = 1, we get τk = t0 = 1. Following Kolmogorov scaling, uk ∼ k−1/3 we can get
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Which is the origin then of these long time fluctuations that we see in many
systems ?

Non-local interactions between large scale modes and a thermal bath of small scale fluctuations
give long time fluctuations, i.e., low-frequency fluctuations.

∂b(k)
∂t

= −ik
∑
k=p+q

u(q)b(p)

where b(k), u(q), b(p) are generic Fourier mode amplitudes, with the constraint that k = p+ q.
In particular we consider the lowest wavenumber mode k = 1. If the particular interaction
is local, then k ∼ p ∼ q and the timescale of that interaction is given by [ku(k = 1)]−1 ∼
1, whereas if the interaction is nonlocal, then p, q � k = 1, p ∼ q and the timescale is
[ku(q)b(q)/b(k = 1)]−1 which is much longer than the local timescale since u(q), b(q)� v(k =
1), b(k = 1).



A nice example: geomagnetic field reversals



We solve ideal MHD equations inside a rotating sphere, and consider the dynamics of the
magnetic dipole moment

µ =
1
2

∫
r× j dV



We solve ideal MHD equations inside a rotating sphere, and consider the dynamics of the
magnetic dipole moment

µ =
1
2

∫
r× j dV

We found reversals !! These are long-time fluctuations...



Magnetic dipole 1/f frequency spectrum



Waiting time between reversals is compatible with geological observations (Cande-Kent 95).


