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Turbulence, magnetic reconnection, particle acceleration

• Understand the mechanisms that accelerate charged particles in tur-
bulent plasmas.

• Relation to magnetic reconnection.

• Clues for dissipation mechanisms.

• Differential energization: T e‖ � T e⊥, T i⊥ � T i‖

• Direct approach: Test particles trajectories are followed in the tur-
bulent fields obtained from a direct numerical solution of the MHD
equations.

Dmitruk, Matthaeus, Seenu, ApJ 617, 667 (2004)
Dmitruk, Matthaeus, Seenu, Brown, ApJ 597, L81 (2003)
Ambrosiano, Matthaeus, Goldstein, Plante, JGR 93, 14383 (1988)
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• Turbulent fields are not modeled but a direct result of the MHD simulations:
→ energy cascade, coherent structures

• Current sheets (reconnection) are a natural result of the (resistive) MHD evolution
(i.e. not set up as an initial condition)

Disadvantages

• Extremely computationally demanding if we want to fully resolve from turbulent
(MHD) to particle scales

• Lack of self-consistency in the MHD-kinetic physics interplay at the “dissipative
scales”
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We use turbulent fields obtained from a Direct Numerical Solution (pseudospectral code)
of the compressible 3D MHD equations → b(x, y, z, t),v(x, y, z, t) fluctuating fields,
with a background magnetic field B0ẑ, such that B = B0ẑ + b and we set B0 = 8 δB,
δB = 〈| b |2〉1/2.

Start with some initially large scale eddies: energy containing scale (turbulent correlation
length) L = 1/2π box size.
Periodic boundary conditions.

Set 〈| v |2〉1/2 = v0 = δB/
√

4πρ the plasma alfvenic speed based on the fluctuations
(distinct from vA = B0/

√
4πρ the alfvenic speed based on the DC field, vA = 10v0).

Plasma β = v2
T/v

2
A = 0.16→ vT = 4v0, Mach number Ms = v0/cs = 0.25

Reynolds numbers R = v0L/ν = Rm = v0L/µ = 1000 (limited by numerical resolution
at 2563)

Run the code for two t0 = L/v0 (eddy turnover times), fully turbulent state developed,
take a snapshot for pushing the test particles.



MHD turbulence energy spectrum: obtained
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MHD spatial structure: parallel current density Jz



Cross-sections: magnetic field over current density

xz plane xy plane
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Equations of motion for charged particles:

du

dt
=

q

m
(
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c
u×B + E),

dx

dt
= u

with electric field

E = −1

c
v ×B +

v0L

Rmc
J = inductive + resistive

Particle gyrofrequency wg = qB/(mc)→ (small) lengthscale rg = u⊥/wg = u⊥mc/(qB).
If u⊥ = v0, B = B0 → gyroradius r0 = v0mc/(qB0).
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Dissipation length ld ≈ ρii (ion skin depth)

Supported by solar wind observations, linear Vlasov theory, kinetic physics reconnection
studies.

ρii = ion skin depth = c/wpi = c/
√
e24πn/mp

ρii/L� 1 for astrophysical and space plasmas (ρii/L ≈ 10−5 for solar wind)

We consider ρii/L = 1/32, Lbox ≈ 200ρii

Particle (nominal) gyroradius vs turbulent dissipative scale
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Electrons (rms displacement)
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Electrons (rms velocity)
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Electrons (parallel/transverse velocity square)
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Electrons (velocity distribution)
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Electrons (velocity scatter plot)
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Electrons (gyroradii)
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Electrons (trajectories)
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Using Jmax‖ /J0 = 47 we get t‖ ≈ 0.03t0 and ∆u‖ ≈ 74v0 for the maximum
velocity

Using J̄‖/J0 = 4.5 we get t‖ ≈ 0.09t0 and ∆u‖ ≈ 20v0 for the average
velocity



Protons (mean square velocities)
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Protons (velocity distribution function)
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Protons (velocity scatter plot)
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Protons: gyroradii at t = 2τp = 0.04t0

10−5 10−4 10−3 10−2 10−1 100

rg
p  [L]

1

10

100

1000
N

−1
 d

N
/d

r gp   [
L

−1
]

ld

rpg = u⊥mpc/(eB0)



Protons: gyroradii at t = 20τp = 0.4t0
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Protons: gyroradii at t = 90τp = 1.8t0
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Protons: trajectories



Protons: trajectories top view
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Proton transverse velocity gain: scaling

In the gyromotion u⊥ = wpr, with wp = eB0/(mpc) or equivalently
u⊥/v0 = (B0/δB)(r/ρii).

Energy gain stops at a critical gyroradius r. Estimating r =
√
Lρii, we

get
u⊥
v0
∼ B0

δB
[
L

ρii
]
1/2

Using the numerical values u⊥ ≈ 60v0
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• Electrons move fast and with very small gyroradius, so, remain com-
pletely unaffected by the slow evolution of the MHD fields

• Ions are more sensitive to the time evolution of the MHD fields,
(because they move slower and with larger gyroradius) resulting in
slower energy gain, but still, we get large perp velocities in times of
the order of the Alfven time. When up >> vA then the dynamics of
the particles becomes unaffected by the slow time evolution of the
fields.

• Another issue: influence of the Hall effect→, negligible for electrons,
it affects more (but not much) the behavior of ions (see Dmitruk &
Matthaeus, Jour. Geophys. Res. 111, A12110, 2006)
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Hall MHD turbulence

Electric field
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Distribution functions
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Effect on reconnection → changes the reconnection rate

  

 

 

Dmitruk and Matthaeus, Phys. Plasmas 2006; also Reduced Hall MHD in Gomez, Dmitruk,
Mahajan, Phys. Plasmas 2009; Martin, Dmitruk, Gomez, Phys. Plasmas 2010
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Electrons (momentum distribution function)
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Protons (momentum distribution function)
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Results with time dependent fields

Electrons (velocity distribution function)
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Protons (velocity distribution function)
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