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What do we mean by magnetohydrodynamics ?

It is a fluid-like theoretical description for the dynamics of matter

Baryonic matter in the Universe is mostly hydrogen. 

At temperatures above 104 K  it becomes a hydrogen plasma, i.e. a gas made of  
protons and electrons

The large scale behavior of this gas can be described through fluidistic equations 
(Navier-Stokes).

This fluid is made of electrically charged particles and therefore it suffers electric and 
magnetic forces.

Not only that, these charges are sources of self-consistent electric and magnetic fields.
Therefore, the fluid equations will couple to Maxwell’s equations.

At small spatial scales (and fast timescales) non-fluid or kinetic effects become 
non-negligible. 



Magnetic fields in Astrophysics

Earth and planets Sun and stars Interstellar medium

Pulsars Accretion disks Galaxies



Number of sunspots vs. time

It clearly shows an 11 yr period 
  with irregularities in  its maxima,   
  its periods and rise-fall times.

Area covered by spots as a function 
  of latitude and time.

At the beginning of each cycle, sunspots are born at latitudes of            and migrate to the Equator.

 Magnetic polarities are reversed from one cycle to the next and are different at different  
   hemispheres (Hale´s law)
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Magnetic field of the Sun



Wolf Number vs. time 

 Maunder minimum lasts from 1650 to 1700.

 There is evidence of more Maunder-like 
   events (Beer 2000).

 N-S asymmetries were enhanced during the 
   Maunder minimum (Ribes & Nesme-Ribes 1993).

Maunder minimum 
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 The equations for the fluid are:

JBuE c



σ
1

1 =×+

 The magnetic field is generated by the plasma, and satisfies the 
so-called induction equation. 
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 It is obtained as a result of Ohm’s law (see below) and 
Faraday’s equation. 

Magnetic pressure 
and magnetic tension

Frozen-in condition

MHD equations
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 The MHD equations are:

 These equations describe a large number of important plasma processes, such as

•  instabilities and wave propagación (Alfven and magnetosonic waves)
•  dynamo mechanisms to generate magnetic fields
•  MHD turbulence
•  magnetic reconnection

 Note that even though the electric field is not present, it does not 
mean that it is not relevant
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MHD equations
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 If we assume the magnetic field B to be very small, the MHD equations decouple. We can 
first solve the equations of motion. For instance, in the incompressible limit
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 Now that we know              , we can solve the induction equation to obtain  ),( txu 
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 This particular and convenient approximation is known as the kinematic dynamo. 
Note that the induction equation is linear in            ,  for any given              . For 
stationary flows, there will be a dynamo solution whenever
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What kind of permanent flows are ubiquitous in astrophysical objects ?

Kinematic dynamos 
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Rotation
(macro)

Convection
(micro)

o Radial differential rotation 

o Latitudinal differential rotation 

o Meridional flow

o Helicoidal convective turbulence

o Giant cells (driven by Coriolis)

o Regular and stochastic components

Rotation and Convection

Omega effect

Alpha effect



The Sun rotates with a well documented 
   differential rotation profile, obtained from 
   helioseismology.

 Radial: Almost solid body rotation in the interior 
    at a rate 

 
 There is an abrupt jump at the base of the 
    convective zone (tachocline).
 

 Latitudinal: Differential rotation at the surface is faster  at 
     the Equator and is given by (Beck 1999)

    where     is the colatitude.
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Differential rotation (Omega effect)



 We assume an incompressible meridional 
   flow with a surface speed of  approx. 

 The mass flux is given by the following 
   stationary stream function

    
where                         and         

 We adopt a density profile

     
     and perform a radial average of the poloidal velocity components. 
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Meridional flow



MDI (SoHO) observations remarkably show the various components  
    involved in convective and rotational motions (Beck et al. 1998).

 Rising convective flows might become helical as a result of the   
   Coriolis force. This process is relevant whenever the Rossby number  
    is less than unity.

The Rossby number  is

                                      only  for the giant cells. 

 Note that with only 20-40 of these vortices we cover the whole  
    solar surface. 

 Because of this poor statistics, we assume the alpha coefficient 
   to have a regular and a stochastic part (Choudhuri 1992, Ossendrijver 1996).
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 We integrate the induction equation numerically, assuming axi-symmetry.

 We use empirical profiles of differential rotation and meridional flow. (Mininni & 
Gómez 2002, ApJ 573, 454).

Meridional flow               Small-scale convection          Dissipation
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 Toroidal field vs. latitude and time.

 Hale´s law can cleary be observed.

 Magnetic energy vs. latitude and time.

 It is a proxy of Wolf´s number.

Non-stochastic butterfly diagrams



 We model          as a  gaussian 
   stochastic process, with spatial and 
  temporal correlations corresponding 
  to typical giant cells.  
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 Toroidal magnetic field obtained from solar 
    magnetograms, displaying the change of polarity
   in the polar regions.

 Our results correctly reproduce the general 
    behavior, although our butterflies arise at 
    higher latitudes

Role of stochasticity



 Toroidal magnetic field 
   for a long time integration
   (Gómez & Mininni 2006).

 A minimum of activity is 
    observed at the center. After 
   a few cycles, normal activity 
   is restablished.

 Magnetic energy at mid-latitudes vs. time. Two Maunder-like events are observed.

Maunder-like events



The movie shows  the solar magnetic cycle  and  the emergence  of coronal loops as a result of  differential 
      rotation  and magnetic buoyancy.

Babcock-Leighton picture



Most planets in the solar system have their own magnetic field. The impact of the solar wind on the planetary 
fields generate the so-called magnetospheres.

 Mars and  Venus  do not have magnetic fields, but 
do have atmospheres. 

 The frozen-in condition of the magnetic field carried 
by the SW with atmospheric ions create the so-called 
induced magnetospheres.

 In a stationary regime, the magnetic field should satisfy

 The velocity field is the stationary and  irrotational flow 
past a sphere. The Figure shows the corresponding 
streamlines for this flow.

Induced magnetospheres
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Induced magnetospheres

 Integration of                                                                seems straightforward, but it is not.

 It can be integrated analitically using the method of characteristics along the flow streamlines.

 Below I show the magnetic fieldlines for the 2D version. The 3D version is in the poster by Romanelli et al.

 Let the magnetic field at infinity be tilted at an angle       with respect to the vertical
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Conclusions

Today we presented the MHD equations  as a valid description of the large-scale 
behavior of astrophysical plasmas.

As a first application, we presented the Alpha-Omega dynamos to describe the 
basic features of the solar dynamo.

Using empirical profiles of differential rotation and meridional flows, we manage to 
reproduce various observed aspects of the solar cycle, such as its period, rise-fall 
asymmetry and sunspot migration toward the Equator.

Moreover,  considering a stochastic part for the Alpha effect, we not only 
reproduce the irregularities observed in the cycle, but also the potential  
occurrence of Maunder-like events where magnetic activity on the Sun switches 
off for several decades. 

Finally, we solved the stationary induction equation for a stationary flow past a 
sphere, as a simple model to describe induced magnetospheres.



Energy cascade

  - energy flux toward high k

  - vortex breakdown

Scale invariance 

   - energy flux in k:

   - energy power spectrum:

Therefore
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