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 The MHD equations are:

 These equations describe a large number of important plasma processes, such as

•  instabilities and wave propagación (Alfven and magnetosonic waves)
•  dynamo mechanisms to generate magnetic fields
•  MHD turbulence
•  magnetic reconnection

 Note that even though the electric field is not present, it does not 
mean that it is not relevant
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MHD equations



 Energy cascade

  - energy flux toward high k

  - vortex breakdown

 Scale invariance 

   - energy flux in k:

   - energy power spectrum:

 Therefore

k
u

E k
k

2

≈

k

k
k

u
τ

ε
2

≈

.,
1 2

const
u

ku k

k
k

k
k =≈≈

τ
ετ

inertial range

injection
dissipation

Fluid turbulence

3

5

3

22 −
=≈ k

k

u
E k
k ε Kolmogorov spectrum (K41)



Simulations

 We integrate the MHD equations numerically, using a 
spectral scheme in all  three spatial  directions  (Gomez, 
Milano and Dmitruk 2000; also Dmitruk, Gomez & 
Matthaeus 2003)

 We show results from 256x256x256  runs performed  in 
(CAPS), our linux cluster with 80 cores

 For the spatial derivatives, we use a pseudo-spectral  
scheme with  2/3-dealiasing. Spectral codes are well suited 
for  turbulence studies, since they provide exponentially fast 
convergence. 

 Time integration is performed with a second order 
Runge-Kutta scheme.The time step is chosen to satisfy the 
CFL condition.



 We focus on Fourier-Galerkin methods. Let us ilustrate on Burgers equation

for u(x,t) on the interval                        assuming periodic boundary conditions and 
the initial condition 

 We expand in a truncated Fourier expansion

 Demanding zero projection of the solution u(x,t) on the truncated Fourier space

 This truncated expansion                  converges exponentially fast to the exact 
solution as  

However, it is computationally very demanding, it involves                  operations.
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Simulations: spatial integration



 The FFT algorithm yields the discrete set         from the set               after                      

  floating point operations.

 The strategy of computing spatial derivatives in Fourier space and nonlinear terms 

in physical space, is known as pseudo-spectral, i.e. 

 The relation between discrete Fourier coefficients           and the continuous ones is 

 This sum causes a spurious effect known as aliasing when computing nonlinear 

terms. Aliasing effects can be suppressed by applying the “two-thirds rule”, i.e.

}ˆ{
k
u

))()(()(,)( 112

kkkxkkxkt
ikuFFTuFFTFFTuuukuuu −−=∂−∂−=∂ ν

)log( NNO

{ }2/1,/ˆ10,
2π

N,+2N=k,uFFTN,=j,j
N

=x,)u(x kjj …−






 −…

)}({
j
xu

}ˆ{
k
u

∑+=
≠

+
0

ˆ
m

Nmkkk
uuu

3||,0ˆ Nku
k

≥∀=

Simulations: spatial integration



 We advance the solution through discrete time steps

 In compact notation, if     

where F is a nonlinear and spatial differential operator, we use a second order 

Runge-Kutta scheme. 

 We first advance half a step

and use                   to jump the whole step

 This is second order accurate (i.e.                   ). The size of the step is limited by 

the CFL condition, i.e                               for 
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Simulations: temporal integration



(a ) Magnetic flux tube 

(b ) Stretching (frozen to inhomogeneous flows

(c ) Twisting (helicoidal flows)

(d ) Folding (with reconnection)

Stretch-twist-fold (Vainshtein-Zeldovich 1972)

back to (a) ...

... with twice as much
 magnetic flux !!

A.L=const.

A.B=const.

2.L

2.B

L

2.B

Stretch-twist-fold dynamo



 It provides a quantitative expresion for the coefficient alpha. The first assumption is that 
there is a scale separation between the large scale magnetic field being  generated and the 
small scale convective motions, i.e

>=<>=<+→+→ ubuUubBB 
0,,

where <...> is an average over small scales. To compute the evolution of the mean field, we 
average the induct ion equation 
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 The extra term can be interpreted as an electromotive force exerted by small scale motions

>×=< buEMF

ε
 We still need to obtain an expresion for the electromotive force, and that requires some 
assumptions ((Steenbeck, Krause & Radler 1966).).

Mean field theory
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Let us substract the averaged equation from the general induction equation

                 [1]                                                            [2]

[1] Can be removed with a Galilean transformation.
[2] It´s a departure from average of a second order quantity (FOSA).

 Let us further assume that this system evolves in a typical correlation time of these 
small scale convective motions. 

Therefore

where we neglected the gradient of the large scale magnetic field.

 For an isotropic state of these small scale flows, these tensors become

ijij uu δτα >×∇•<−= 

3

 The kinetic helicity of convective flows is important for dynamo activity.

ijij uu δτβ >•<= 

2

Mean field theory



MHD 3D dynamos

 From mean field theory (Krause & Radler 1980), we know that the turbulent generation of 
magnetic fields (the alpha effect) is proportional to the kinetic helicity of the flow.

 To study this mechanism through direct simulations, we externally drive the flow with a helical 
force at large scales (an ABC pattern), until a stationary turbulent state is reached (Mininni, 
Gómez & Mahajan, 2003, ApJ, 587, 472; Mininni, Gómez & Mahajan, 2005, ApJ, 619, 1019) 

 At that point, a magnetic seed is implanted at small scales and the 
3D  MHD equations are evolved (Meneguzzi, Frisch & Pouquet 1981).
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 The boxes show the intermittent 
spatial distribution of positive and 
negative kinetic helicity H, clearly 
displaying a net unbalance.
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 The power spectrum of magnetic energy grows in time until it 
reaches equipartition at each scale (Brandenburg et al. 2003). 

 The Kolmogorov slope is also displayed for reference.

 The full line is the kinetic energy power spectrum and the 
dotted line is the total energy.  

t = 0

t = 20

Energy power spectra
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 The power spectrum of magnetic energy grows in time until it 
reaches equipartition at each scale (Brandenburg et al. 2003). 

 The Kolmogorov slope is also displayed for reference.

 The full line is the kinetic energy power spectrum and the 
dotted line is the total energy.  

t = 0

t = 20

Energy power spectra



 The image on the right shows the spatio-temporal 
distribution of magnetic energy.

 The image below shows an initial exponential 
growth stage (kinematic dynamo) for the total 
magnetic energy. At later times it saturates when 
it reaches approximate equipartition with the total 
kinetic energy of the turbulent flow.

 As predicted by MFT (Steenbeck et al. 
1966), kinematic helicity (H) at the microscale 
produces magnetic field at macroscopic scales 
(large-scale dynamos).

Turbulent dynamos 



 When the forcing is applied  at intermediate 
scales, an accumulation  of magnetic energy is 
observed at the  largest scales.

 This behavior is caused by the inverse 
cascade of magnetic helicity. 

 The magnetic field at large scales is 
approximately force-free, i.e.

BB


//×∇

 Small scales, however, are consistent with a strongly 
turbulent MHD regime.

 This configuration can be representative of active 
regions of the solar corona, which are approximately 
force-free at large scales and at the same time are being 
heated by a strong MHD turbulence at smaller scales 
(Gómez & F.Fontán 1988)

Force-free equilibria



Conclusions

Using Mean Field Theory, we have seen that large-scale dynamos are generated 
by turbulent helical flows, i.e. with a high concentration of kinematic helicity. 

We briefly mentioned the main features of the spectral codes used in our 
numerical simulations. In particular, spectral schemes present exponential 
convergence as the number of grid points increases. 

We showed MHD 3D simulations of a turbulent and helical flow. An initial magnetic 
seed is seen to exponentially grow and to saturate when it reaches approximate 
equipartition with the kinetic energy of the flow.

When the flow is externally driven at intermediate scales, an accumulation of 
magnetic energy is observed at the largest scales in the box. Furthermore, the 
magnetic field at these large scales is well described by a force-free regime.

This state is relevant to coronal active regions, which are observed to be close to 
force-free equilibria. Yet, at smaller scales they might show a strongly turbulent 
regime responsible for the heating of the plasma confined in these regions.
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