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General Motivation

 MHD is a fluidistic approach to describe the large scale dynamics of plasmas.  The 
standard approach is also known as one-fluid MHD. 

 Today we start from a somewhat  more general approach known as two-fluid MHD, 
which acknowledges the presence of ions and electrons and considers kinetic effects 
such as Hall, electron pressure and electron inertia.  

 For sufficiently diffuse media such as the interstellar medium, the Hall effect 
eventually becomes non-negligible. 

 To study the role of  the Hall effect on turbulent dynamos,  we present results from 
three dimensional simulations of the Hall-MHD equations subjected to non-helical 
forcing. and for different values of the Hall parameter. 

 The simulations are performed with a pseudospectral code to achieve exponentially 
fast convergence. 



Fluid equations for multi-species plasmas
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 For each species s we have (Goldston & Rutherford 1995):

o        Mass conservation

o        Equation of motion

o        Momentum exchange rate

These moving charges act  as sources for electric and magnetic fields:

o        Charge density (charge neutrality)

o        Electric current density
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Two-fluid MHD equations
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 For a fully ionized plasma with ions of mass        and massless electrons (since                     ):

o        Mass conservation:

o        Ions:

o        Electrons:

o        Friction force: 

o        Ampere’s law:

o        Polytropic laws:

o        Newtonian viscosity:
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Hall-MHD equations

 The dimensionless version, for a length scale     , density       and Alfven speed0L 0n 00 4/ nmBv iA π=

)()(
1

0

)(
1

0

2

eee

Ai
i

UU
n

BJJ
n

p
n

BUE

Lnvm
UJ

n
p

n
BUE

dt

Ud






−=×∇=+∇−×+−=

=∇+−∇−×+=

εε
ηβ

ε

µνν
ε
ηβ

ε

 We define the Hall parameter

    as well as the plasma beta                                       and the electric resistivity

 Adding  these  two equations yields:

 On the other hand, using 
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Hall-MHD
equations



 We studied a number of astrophysical problems, within the general framework of MHD:

 3D Hall-MHD turbulent dynamos. 
(Mininni, Gomez & Mahajan 2003, 2005;
Gomez, Dmitruk & Mininni 2010)

 2.5 D Hall-MHD magnetic reconnection 
in the Earth magnetosphere
(Morales, Dasso & Gomez 2005, 2006)

 3D HD helical fluid turbulence
(Gomez & Mininni 2004)

 RMHD heating of solar coronal loops
(Dmitruk & Gomez 1997, 1999)

 RHMHD turbulence in the solar wind
(Martin, Dmitruk & Gomez 2010, 2012)

 Hall magneto-rotational instability in accretion disks
(Bejarano, Gomez & Brandenburg 2011)

Some applications



Hall-MHD equations

 The dimensionless version (for a length scale       , density       and typical velocity         ) of the 
incompressible Hall MHD equations is

0L 0n

 We define the Hall parameter                      which is simply the dimensionless ion skin depth.

 The Prandtl number                    is the ratio of the viscosity  to the electric resistivity. Turbulent  

dynamos for different values of Pm have been studied by Haugen, Brandenburg & Dobler 2004 , and 
also by Schekochihin et al. 2004, but without Hall effect. We will focus on Pm=1.

 We maintain an external forcing      , which is non-helical, large-scale (               ) and 
 delta-correlated in time.
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Energy vs. time

 We start off with a purely HD run until it reaches a stationary turbulent regime, where the external forcing is balanced 
by viscous dissipation.  We then plant a magnetic seed at t=0 at large scales and re-start the simulation.

 Among the many outputs, we obtain kinetic and magnetic energy vs time.

 The purely MHD run is shown in blue, and the magnetic energy is shown with a dotted trace.
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by viscous dissipation.  We then plant a magnetic seed at t=0 at large scales and re-start the simulation.

 Among the many outputs, we obtain kinetic and magnetic energy vs time.

  The purely MHD run is shown in blue, and the magnetic energy is shown with a dotted trace. 

 The run with a moderate amount of Hall  is shown in purple.

 The run with the largest amount of Hall  is shown in red. 



Dissipation rate vs. time

 We also obtain dissipation rate vs time.

 The purely MHD run is shown in blue, and magnetic dissipation is shown with a dotted trace.
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Dissipation rate vs. time

 We also obtain dissipation rate vs time.

 The purely MHD run is shown in blue, and magnetic dissipation is shown with a dotted trace.

 The run with a moderate amount of Hall  is shown in purple.

 The run with the largest amount of Hall  is shown in red. The dissipation rate slightly decreases 
as the Hall parameter increases. The effect is a bit stronger for the magnetic dissipation rate.



Dynamo efficiency

 We display magnetic energy vs. time in lin-log plot to estimate its growth rate during the kinematic 
dynamo stage. The purely MHD run is shown in blue.
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Dynamo efficiency

 We display magnetic energy vs. time in lin-log plot to estimate its growth rate during the kinematic 
dynamo stage. The purely MHD run is shown in blue.

 The run with moderate Hall  is shown
in purple.

 An enlargement of the “linear” regime 
shows that the role of the Hall term is 
to start increasing the growth rate at 
a given time.

 This departure in the growth rate is 
consistent with the nonlinear nature 
of the Hall term with the magnetic field. 

 The case with large Hall is shown 
in red. In this case it is not obvious that we
 can fit a linear growth rate.

 At the saturation stage, magnetic energy 
keeps growing at a much slower pace. At 
moderate Hall, the mean magnetic energy 
is larger. For larger Hall, the mean magnetic 
energy reduces.



 Looking at the induction equation

we find that the growth rate is related to the gradient of the electron 
velocity 

 We plot the ratio                         at different times.

 We see that             eventually overtakes           at small scales. 

 At large scales                      , electrons and ions move together 
since  

Hall dynamo
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Energy power spectra

 We compute energy power spectra. Total energy is shown in blue for the purely MHD run.

 Magnetic energy spectra are shown in red at four different times, while kinetic energy is purple.

 The Kolmogorov slope                          is overlaid for reference. 

 Kazantsev’s slope                       , corresponding to a dynamo driven by a non-helical, large-scale and 
delta-correlated velocity field (Kazantsev 1968; also Brandenburg & Subramanian 2004) is also shown. It is 
also obtained by Kleeorin & Rogachevskii 1994 including Hall.

 Magnetic energy remains much smaller than kinetic energy, except at very small scales, when a 
state of super-equipartition is reached.
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Energy power spectra

 We can compare energy spectra for three runs with different Hall strength for t=21.0

 To the left we have the purely MHD run (i.e. eps=0.00), the case with moderate Hall (eps=0.05) is at 
the center, and the case with intense Hall effect (eps=0.10) is the one to the right.

 Comparsions like this need to performed carefully, because of the intermittent behavior of turbulence.
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Energy power spectra

00.0=ε 05.0=ε 10.0=ε

 We can compare energy spectra for three runs with different Hall strength for t=42.0

 To the left we have the purely MHD run (i.e. eps=0.00), the case with moderate Hall (eps=0.05) is at 
the center, and the case with intense Hall effect (eps=0.10) is the one to the right.

 Comparsions like this need to performed carefully, because of the intermittent behavior of turbulence.



Energy power spectra
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 We can compare energy spectra for three runs with different Hall strength for t=63.0

 To the left we have the purely MHD run (i.e. eps=0.00), the case with moderate Hall (eps=0.05) is at 
the center, and the case with intense Hall effect (eps=0.10) is the one to the right.

 Comparsions like this need to performed carefully, because of the intermittent behavior of turbulence.



Energy power spectra
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 We can compare energy spectra for three runs with different Hall strength for t=84.0

 To the left we have the purely MHD run (i.e. eps=0.00), the case with moderate Hall (eps=0.05) is at 
the center, and the case with intense Hall effect (eps=0.10) is the one to the right.

 Comparsions like this need to performed carefully, because of the intermittent behavior of turbulence.



Current density distribution

 We compute and compare power spectra for current 
density, to see how it distributes along spatial scales. 

 The MHD run is shown in blue, the case with 
moderate Hall  is purple and intense Hall  is red.

 An average lengthscale for current density distribution can 
be defined as

and is shown with the coloured arrows.
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 Dissipative structures are therefore relatively “thicker” 
in the presence of the Hall effect. 

 The ratio of magnetic spectra also confirms the 
relatively larger amount of magnetic energy when Hall is 
present.



Energy transfer rates in k-space

 We quantitatively evaluate the shell-to-shell energy transfer rates as derived by Verma 2004 and later 
extended by Mininni et al. 2006 for Hall MHD. Detailed energy balance equations can be written as

where         is a filter in a Fourier shell defined as

 The corresponding energy fluxes are defined as

 We show the total energy flux in k-space for the purely 
MHD run (blue) and also for moderate Hall (red). 
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Energy transfer rates in k-space

 We display the energy fluxes for the same 
runs, but split into its various terms.

 None of these terms is negligible in any of 
the simulations. More important, the Hall 
effect modifies all the terms and not just 
the Hall flux.

 As reported in Mininni et al. 2006, the energy 
flux due to Hall reverses sign exactly at 

 Note that the UU flux in the Hall run is 
responsible for some backscattering at 
scales larger than externally forced ones.
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Conclusions

We performed several runs of the Hall-MHD equations, considering different values of the Hall parameter 

to study the efficiency of turbulent dynamo action.

The Hall effect causes magnetic energy to grow faster in the kinematic stage and also to saturate at a higher 

level. This is the case up to an optimal value of the Hall parameter, the efficiency is reduced for values larger 

than this (as shown in Mininni et al. 2005).

The dissipation rate of magnetic energy is lower when Hall is present, and the dissipative structures are 

relatively “thicker”.

All the terms participating in the energy flux in k-space change considerably in the presence of Hall. The term 

explicitly related to Hall, contributes to inhibit the direct cascade, which is consistent with a higher level of 

magnetic energy and smaller dissipation rate.

With Hall, the UU energy flux becomes negative at large scales, which can be interpreted as large scale flows 

driven by small-scale magnetic fields.



Large Pm: energy power spectra

We can compare energy spectra for the following three runs at t=21.0

To the left we have the purely MHD run (i.e. eps=0.00) and Pm=1. The case at the center is also MHD, 
but with Pm=10. The run with moderate Hall (eps=0.05) and Pm=10 is the one to the right.

Many of the features that we have shown for Pm=1 are also present here, except for the large  separation 
of the dissipative scales.
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