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* Introduction: the transverse distance scale
* Total cross section, elastic scattering
 BFKL and recent developments

* multiple interactions

® saturation

e diffraction

Not covered: heavy ion collisions (AAS or pA)
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Introduction

At the LHC we are looking for new physics (mostly)

at large momentum scales which allows to use ‘hard QCD’:

* parton densities,
* partonic subprocesses,
® jets

But: there is another class of final states which

|) has large cross section:
total cross section is about 100 mb
For comparison:
cross sections of hard processes are smaller:

Typical jet cross section at the LHC: 10 - 100 b
Higgs cross section: O(pb)

2) are fully or partly nonperturbative

this talk
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Perturbative vs. nonperturbative QCD: relevant scale is the transverse distance

time, longitudinal direction transverse plane

T(s,t) ~ is/deei‘T'gA(s,I;), t=—q*2

long extension along ]
. . . . 2 7
incoming direction Otor = —ImT(s,0) ~ /d bA(s,b)

.

long formation time

nonperturbative

R*(s) = R4+ R% +d'lns
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short distance - long distance:

static potential:

string

short distance:
coulomb potential

B A
- -~ N
gluon, tloud \
| o0
\ /
\ / b
N e

~— —

short distance: dipole-dipole: BFKL

no finite radius,
cloud grows with power of energy

V(r)

/

large distance:
linear potential, string tension

long distance: hadron-hadron: Pomeron

hadron size 74,5, Pomeron slope
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* hard processes confined to small regions

* total cross section, elastic scattering probes all distances

* most processes lie in between; in particular:
BFKL searches start in small regions, but are sensitive to large distances
multiple interactions and saturation explore the interface
hard diffraction is sensitive to small and large distances

* each final state has its own way to exhibit large distance effects

* Total cross section, elastic scattering
 BFKL and recent developments

* multiple interactions

® saturation

e diffraction
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Total cross section, elastic scattering

Sizes of soft cross section:

total cross section: 98 mb >/ IE

elastic cross section 24.8 mb J E
single diffractive cross section [4.16 mb 2/ §+
double diffractive cross section 8,8 mb 2/ E
inelastic cross section 70 mb

Forward direction has large cross sections: theory wanted!

2/
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Totem results:
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Fig. 2: The new TOTEM data demonstrate the continuation of the trends from
earlier measurements, and indicate the high precision of the TOTEM experiment*'
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Theory/models for total cross section: Exp : 040 = 98.3mb

Block, Halzen: Fit of formula (95.4)

Tior = 90.281 (ln 1)2 —1.44 In v +3724+37.1 (1)—0.5
m m m

Donnachie, Landshoff: Regge pole, soft plus hard (soft alone: ot =~ 91mb)

O-tot — ClSaP,soft(O)_]- _I_ C2SaP,hard(O)_]— (98)

soft :apsort(t) = 1.093 + ' + 0.25¢ hard :ap para(t) = 1.362 + ' + 0.1t

Eikonal ansatz for elastic cross section

Example of enhanced and semi-enhanced diagram

Tel Aviv (Gotsman, Levin, Maor)  (98.¢)

4 4 1 2= T 2
. . ::_ - S ‘._: -:.I ‘,_'\‘ < ::,;
Durham (Martin, Khoze, Ryskin) (96.4) oot g 13 Y
g gt ng® g 3 3%
, s 3wt 3K
S S S ‘E

> S rd
b)

Pomeron graphs

Different contributions to the Pomeron Green's function
a) examples of enhanced diagrams ;
(occur in the renormalisation of the Pomeron propagator)
b) examples of semi-enhanced diagrams
(occur in the renormalisation of the I -p vertex )
Multi-Pomeron interactions are crucial for the production of LARGE MASS
DIFFRACTION
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Elastic cross section: dip structure
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(a) The first TOTEM data on differential

cross-section of elastic p+p scattering at
Vs = 7 TeV, measured in the momentum
transfer range of 0.36 < |t| < 2.5 GeV?2.

— W T
“> F T I I Block etal
& — Bowmlyctal
H ——— Islamet al (COC)
- ~———— Jenkovszky ot al
3 [ ——— Petrov et 2l (3P)
s wiE ———TOTIM
- \
102 3
103
10
l._s PR SN T I TR [N NN SR NN SUN NN SN SN SUN S SN S S SN S S S S S
0 05 1 15 2 25

i [GeVE)

(b) When compared to predictions of dif-
ferent models, the TOTEM elastic scatter-
ing do/dt data show a strong discriminative
power >

Fig. 1: TOTEM elastic scattering do/dt data measurements at /s = 7 TeV.
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Comparison with pp (although at different energies):
signal for the Odderon!?
model-dependent analysis ,

before Totem
Jenkovsky et al

lozlllllllllllllllllllll
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Figure 3: (a) pp differential cross sections calculated in model, Eqs. (2-8, [TR.1]). and fitted
to the data, and fitted to the data in the range —f = 0.1 8 GeV2. (b) pp differential cross
sections calculated in the model and fitted to the data. The curves present calculations with the

parameters shown in Table ().

Simplest explanation: three gluon exchange (Donnachie, Landshoff: ISR data)
= beginning of Odderon (analogue of BFKL)
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Small-size dipole scattering: BFKL

Elastic Scattering Of tWo | Balitsky,Fadin,Kuraey, Lipatov 1975/76

small dipoles v’ v
Im T = sum over gluon production
" S
Important properties: |
, . " AN_.1In 2
* srowth with energy: O~ SYEFRL R pK, = (g S O(ay)

* strong growth in transverse direction

A

o —
~
7~
N

gluon, tloud \
, CY
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More remarkable properties of the BFKL Pomeron:

1) unitarity: ImTs o = Z/dﬂn\TQ_mF
nonlinear equations n

bootstrap equation

2) Beginning of a 2+ 1| dim field theory,
with reggeized gluons as d.o.f.

3) In LO: two-dimensional conformal invariance (Moebius invariance):
connection with N=4 SYM (=most symmetric gauge theory),
integrability, theory might be solvable

4) Electroweak theory, gravity:
high energy behavior vs. renormalizibility
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How to test this calculation:

) YY" collisions

in electron-positron scattering (LEP)

ok, not fully convincing

2) Mueller-Navelet jets

HERA, forward jets

ok

in pp-scattering (Tevatron, LHC)

YVYY

LHC, Mueller-Navelet

wait for data
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Comments on BFKL-related activities for the LHC: .

|) NLO available: BFKL, jet vertex,

numerical analysis

2) Angular decorrelation as BFKL signal

....

Fig. 2: -— l— in a pp collider at V~'§=1.8 TeV using a LO (stars), NLO (squares) and resummed (triangles) BFKL

kernel. Plots are shown for Y = 3 (top) and Y = 5 (bottom).

Sabio Vera, Schwennsen;
Colferai et al.
Papa et al:

3) BFKL energy dependence: use different machine energies
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Jet-gap-jet (hard color singlet exchange)

ﬁ YYYVYY

\
\
\
¥ fl

BFKL needs all conformal spins

doPP do®77 (n, E)
=5 E !

Survival factor S: (other chains, radiation?)
Modelled by Monte Carlo
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New formulation of BFKL (HERA): discrete Regge poles Kowalski, Ross, Lipatov

BFKL equation is often written as evolution equation
0 21,/ / /
where kernel has continuous eigenvalue spectrum.

Instead: boundary conditions at infrared plus asymptotic freedom Lipatov 1986
lead to discrete spectrum. Quasiclassical picture:

Eigenvalues and wave functions — In K, /A2 oo
are sensitive to changes at /
turning points in UV region v

Fit to HERA data.
Signal of new physics!?

Monday, December 10, 12



Multi-Parton Interactions (MPI)

Inclusive cross section vs.underlying event:

event structure in pp collisions:

Inclusive cross section . .
number of chains grows with energy

remnant

|-
AT

L~
L~
v YVY VY

partons (quarks, gluons)
+final state radiation
hadronization

remnant

Mostly based uopn eikonal formula

Pictures have slightly different meaning:

event —— cross section involves summation

Cancellations (collinear factorization, AGK) Important consisteny check!
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Important question: where is diffraction (rapidity gaps)?
Soft diffraction:

remnant
contains diffraction

> remnant
k > contains diffraction

—( L

BUT: second, third... chain
may fill the gap, less diffraction

Sum over chains and all rescattering effects:
lowers the probability of rapidity gaps
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(semi)hard diffraction:
add new contribution

__C

v YYY

Yy YYY

CL
””,»

4
v YYY

A\

gap

Y

Y v VY vy

4_<

Y v Y

required by AGK As in soft diffraction:
additional chains fill the gap.

Leaves the eikonal approximation!
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Double parton cross sections:

Y

Y

Y

do = Z/d5131d£l72f7;1(5171,M)d5i1¢2—>2jet(9€1,902,M;p1,Y17p2,Y2)f¢2(932,M)

1112

single parton (no rescattering)

m
doPt = Z dx1dyi1dzedysH;, i, (21, Y1, fa, tb)
Oeff i

1,J1,%2,J2

AGiyig— jet(T1, Y15 as D1y Y1)AGj, jo—sjet (Y2, Y2, fos D2, Y2 ) Hiy iy (T2, Y2, ta, b)

correction: double parton (no rescattering)
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Cross sections have been calculated (e.g. double J/Psi)

Theoretical questions being addressed:

Evolution of double parton densities: Jouble DGLAP
* double DGLAP misses transverse dependence
* corrections: correlations, splitting

a b
* Higher twist suppression: only after integration over jet momenta
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Saturation

Saturation was first discussed in the context of small-x gluon densities at HERA,
later on it started to play a major role in ion collisions (color glass condensate)

WV\(/ several chains
: recombinations

OO0 00 Oy hlgh g|u0n denSit)'
saturation scale

O] =
N/ (2% S i
000000”).000001‘.,000
O

oooooooo‘a

N nonlinear BK-equation

ooooooooooot'.

A
. 1
Saturation scale Q%= Q; (:1:) 0 ~1GeV at x=107

Evidence in ep scattering :

* geometric scaling

* successful models for F 2

* ratio of diffractive to total cross section
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Saturation at the LHC (in pp):
larger kinematic region

LHC parton kinematics

10’ L B B BN AL LR B L B ng
. . F x,, = (M/14 TeV) exp(zy) :
Potential signals: 10'F Q=M M=10TeV
e <pt>, <n>? i ]
* Ridge effect? f YAV
* Drell Yan in forward region ol MR S
2 104% M =100 GeV ﬁ~ ......... ;,.':. ......... .
| o5 i
much more in AA and pA: o b
larger saturation scale o= 8
10 EM-10Gev
10' F
10" - '
10° 10°
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Ridge effect in pp and pA collisions:
two particle correlation, azimuthal correlations

A (relatively big) ridge!

Physical origin still unclear

pp 7 TeV
(d) N>110, 1.OGoVIc<pT<3.OGoVIc

&
Z

o~
©

-

arXiv 1210.5482

Accepted by PLB -4
JHEP 09 (2010) 091

N = number of offline . .
tracks with p,>0.4 GeV/c Much bigger than in pp!

W) Yen-Jie Lee (CERN) MBUE working group 2012 16
Saturation is a strong candidate:
estrong field: high density
elow Pr: saturation momentum
x=10" — Q. =1GeV
eangular correlation: need extra ingredient

single chain

AY

double chain

AY

Y

A
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Dusling,Venugopalan

Ip-k|=~|q-k|~Qs: P =q

saturation
form factor effect form factor effect

Difference between pp and pA
is in the details of saturation
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Diffractive/rapidity gap processes

Central exclusive production (CEP): forward spectrometer

Topic of intense discussion

.......

) H or SUSY; candles Needed:

TTTTTTS NLO calculation
ARLLLL of hard subprocess
Q00000 : Sudakov

Survival probability

2

d
/ QQ4tfg (z1, 11 Qt H )fg(l" 1') Qt # )

dw~p+H+p~

Experimental aspects: clean signal, precise mass determination
Theoretical ingredients: parton densities, Sudakov factor, suppression rules
survival probability
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Higgs Boson: cross section predictions

(pp = p+ H+ p) b,

SuperCHIC

—25 <yy <235, s=14TeV

o
100 = T

10

' H(0"). MSTWOSLO —— -
H(0-}. MSTWO0SLO —— A

LA L B B

130 135 140
My [CeV]

{

(Halfway)
. olpp—=p+ H+ p) ], -25 <yy <25, /s=14TeV
| |
i MSTWOSNLO
LE CTI0
, NNPDF21
B CTEQ6IL —— ]
n \ MSTWOSLO = _]
| | |
120 125 130 135 140
My [CeV]

<S> >=0.02

@ Cross section ~ fbs, i.e. roughly 4 orders of mag. lower than inclusive
case (price paid for exclusivity).

@ CEP of a CP-odd Higgs suppressed by ¢(0~)/a(0%) ~ 1/100 — with
just a few signal events, the Higgs quantum numbers can be determined

(does not rely on coupling to weak bosons).

Khoze
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Recent developments:

* Diphoton seen at Tevatron

* double meson states, resonances } Learn about CEP dynamics
®* '\ Pproduction

* Two photon physics: W, <18TeV
p p :':/j
i

anomalous quartic coupling

Figure 1: Feynman diagrams for the signal (triple gauge couplings on the left, quartic on the

right)
W, W, AVAVAVAVAV
|
= ...+ : + - ) . ]
i VV-scattering : unitarity problem
W, w, AVAVAVAVAV

Monday, December 10, 12



Conclusions

Fundamental problem in ‘nonperturbative high energy QCD’:
understand the transition and the large distance region
small = large transverse distance region

Small: BFKL, DGLAP Large: total, elastic cross section
(Pomeron)

most final states sensitive to both, e.g.
* multiple interactions
® saturation

e diffraction

their study provides the necessary theoretical help
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